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Abstract

A recent paper of Bump, McNamara and Nakasuji introduced a factorial version
of Tokuyama’s identity, expressing the partition function of six vertex model as the
product of a t-deformed Vandermonde and a Schur function. Here we provide an
extension of their result by exploiting the language of primed shifted tableaux, with
its proof based on the use of non-intersecting lattice paths.
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1 Introduction

Tokuyama’s identity [33], which expresses a weighted sum over strict Gelfand-Tsetlin pat-
terns [8] as the product of a t-deformed Vandermonde determinant and a Schur function,
was originally established for GL(n,C) and its associated root system of type An−1, but
subsequently other Tokuyama-like identities have been derived for other groups and their
root systems [2, 3, 11]. One of the recent additions to this literature is the paper of Bump,
McNamara and Nakasuji [4], who extended the original Tokuyama identity in a way that
expresses the partition function of the six vertex model as the product of a factorial Schur
function and the same t-deformed Vandermonde as before by using a six-vertex model
interpretation due to Lascoux [17] and McNamara [21] and the repeated application of
the Yang–Baxter equation [2].

Here we provide a further generalisation involving more than just a single deformation
parameter t. To this end we make use of the fact that both the original Tokuyama
identity and that of Bump et al. can be expressed in a natural manner in terms of certain
primed shifted tableaux. Weighting these tableaux by means of two sets of indeterminates
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x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), together with a sequence of shift parameters
a = (a1, a2 . . .), enables us to establish the required generalisation, with a proof provided
by means of a non-intersecting lattice path argument.

Tokuyama’s identity can be expressed, with a slight change of notation, in the form:∑
G∈Gλ

wgt(G) =
∏

16i<j6n

(xi + txj) sµ(x) , (1)

where λ = µ + ρ, with µ a partition with no more than n parts and ρ = (n − 1, n −
2, . . . , 1, 0). Here x = (x1, x2, . . . , xn) and t are independent parameters. On the left, the
sum is over all strict Gelfand-Tsetlin patterns G whose top row is the strict partition λ
and wgt(G), which will be specified later. The reader will recognize

∏
16i<j6n(xi + txj)

as the expansion of a Vandermonde determinant deformed by the parameter t. The term
sµ(x) is a Schur function, defined for example in the texts by Littlewood [18] and by
Macdonald [19]. Tokuyama’s identity can be considered to be a deformation of Weyl’s
character formula for the reductive Lie algebra gl(n) of the general linear group GL(n)
since at t = −1 one can recover the expression for the irreducible character sµ(x) as the
ratio of two alternants.

The theorem of Bump, McNamara, and Nakasuji [4] states, again with a slight change
of notation, that

Z(SΓ
λ,t) =

∏
i<j

(txi + xj) sλ(x|a), (2)

where sλ(x|a) is a factorial Schur function defined in Section 3. The first such factorial
Schur function was defined by Biedenharn and Louck [1] in terms of Gelfand-Tsetlin
patterns in a slightly more restricted form (see also Chen and Louck [5]), but given its
more general form by Goulden and Greene [9] and Macdonald [20], expressed this time
in terms of column-strict, that is to say semistandard, tableaux, with Macdonald also
giving an alternative definition as a ratio of alternants. The term Z(SΓ

λ,t) is the partition
function of the six vertex model SΓ

λ,t with a particular choice of Boltzmann weights that
will also be specified later in Section 7.

The combinatorial identities (1) and (2) due to Tokuyama [33] and Bump et al. [4] that
we are trying to generalise here were stated in terms of strict Gelfand-Tsetlin patterns
and the partition function of the square ice six vertex model. That one is a generalisation
of the other comes about through the bijective correspondence between these two sets of
combinatorial objects, together with the fact that a factorial Schur function is a gener-
alisation of a Schur function. Here we will show that a natural combinatorial setting for
both these identities is that of primed shifted tableaux and associated non-intersecting
lattice paths.

The paper is organized as follows: Section 2 provides background information on
tableaux and primed shifted tableaux, including definitions; Section 3 gives our main
result along with its proof based on a sequence of lemmas that are proved in Section 4
by means of lattice path arguments that lead to flagged Jacob-Trudi type determinantal
identities and in Section 5 by means of various generating series. The first of these is a
mild generalisation of an identity due to Okounkov and Olshanski [27], that is used by

the electronic journal of combinatorics 22(2) (2015), #P2.42 2



Molev [23] within the context of factorial supersymmetric Schur functions and in the work
of Olshanski, Regev and Vershik [29] in dealing with multiparameter Schur functions. The
second is derived by a method that owes much to the proof of a combinatorial formula
for multiparameter skew Schur functions provived by Ivanov in the Appendix to [29]. A
vanishing property in the spirit of those offered by Okounkov [26] and Sahi [30] is noted in
Section 6. Finally in Section 7 a number of corollaries are derived, special cases of which
are shown to include both Tokuyama’s identity and that of Bump et al.

2 Tableaux and primed tableaux

To proceed we introduce some notation regarding partitions and tableaux. For any pos-
itive integer n the sequence λ = (λ1, λ2, . . . , λn) with λ1 > λ2 > . . . > λn is a partition
if each part λi is a non-negative integer. Its length `(λ) is the number of non-zero parts
and its weight |λ| is the sum of its parts. We say that the partition λ is strict if the above
inequalities are all strict, i.e. all the parts of λ are distinct.

A partition λ of length `(λ) 6 n defines a Young diagram F λ consisting of an array of
|λ| boxes (i, j) arranged in rows of lengths λi for i = 1, 2, . . . , `(λ) with j = 1, 2, . . . , λi.
Adopting the (English) convention whereby (i, j) are matrix coordinates, the rows of F λ

are left-adjusted to a vertical line. If λ is strict then it also defines a shifted Young diagram
SF λ in which the rows of F λ are shifted to the right and left-adjusted to a diagonal line
with boxes (i, j) at j = i, i + 1, . . . , i + λi − 1 for i = 1, 2, . . . , `(λ). Both F λ and SF λ

consist of columns top-adjusted to a horizontal line.
For example, we have

F 3221 = SF 6431 = (3)

Using these conventions we define three different kinds of tableaux: semistandard
tableaux, shifted tableaux and primed shifted tableaux [31]. We restrict our attention to
partitions λ of length `(λ) 6 n and strict partitions λ of length `(λ) = n and work with
alphabets [n] = {1 < 2 < · · · < n}, [n′] = {1′ < 2′ < · · · < n′} and [n,n′] = {1′ < 1 <
2′ < 2 < · · · < n′ < n}.

First, for each partition λ let T λ[n] be the set of all semistandard tableaux T of shape
λ that are obtained by filling each box (i, j) of F λ with an entry tij ∈ [n] in all possible
ways such that:

T1 entries weakly increase from left to right across rows;

T2 entries strictly increase from top to bottom down columns.

Then, for each strict partition λ let Sλ[n] be the set of all shifted tableaux S of shape
λ that are obtained by filling each box (i, j) of SF λ with an entry sij ∈ [n] in all possible
ways such that:
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S1 entries weakly increase from left to right across rows;

S2 entries weakly increase from top to bottom down columns;

S3 entries strictly increase down each diagonal from top-left to bottom-right.

Finally, for each strict partition λ let Qλ[n,n′] be the set of all primed shifted tableaux
P of shape λ that are obtained by filling each box (i, j) of SF λ with an entry pij ∈ [n,n′]
in all possible ways such that:

P1 entries weakly increase from left to right across rows;

P2 entries weakly increase from top to bottom down columns;

P3 at most one entry k′ appears in any row for each k > 1;

P4 at most one entry k appear in any column for each k > 1,

and let Pλ[n,n′] be the subset of Qλ[n,n′] such that:

P5 no primed entries appear on the main diagonal.

For example, we have

T =

1 2 4
2 3
4 4
5

S =

1 1 2 2 3 4
2 3 3 3

3 4 4
4

P =

1 1 2′ 2 3′ 4
2 3′ 3 3

3 4′ 4
4

(4)

with T ∈ T (3,2,2,1,0)([5]), S ∈ S(6,4,3,1)([4]) and P ∈ P(6,4,3,1)([4,4′]).

3 Main Result

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and a = (a0, a1, a2, . . .) be sequences of
independent parameters. Then each partition λ specifies not only the Schur function [18,
19]

sλ(x) =
∑

T∈T λ(n)

∏
(i,j)∈Fλ
tij∈[n]

xtij (5)

but also the factorial Schur function [9, 20]

sλ(x|a) =
∑

T∈T λ(n)

∏
(i,j)∈Fλ
tij∈[n]

(xtij + atij+j−i) . (6)
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Similarly, each strict partition λ specifies not only the generalised Schur P and Q-
functions [12]

Pλ(x;y) =
∑

P∈Pλ(n,n′)

∏
(i,j)∈SFλ
pij∈[n]

xpij
∏

(i,j)∈SFλ
pij∈[n′]

y|pij | ; (7)

Qλ(x;y) =
∑

P∈Qλ(n,n′)

∏
(i,j)∈SFλ
pij∈[n]

xpij
∏

(i,j)∈SFλ
pij∈[n′]

y|pij | , (8)

but also the factorial generalised Schur P and Q-functions introduced here for the first
time in the form

Pλ(x;y|a) =
∑

P∈Pλ(n,n′)

∏
(i,j)∈SFλ
pij∈[n]

(xpij + aj−i)
∏

(i,j)∈SFλ
pij∈[n′]

(y|pij | − aj−i) with a0 = 0; (9)

Qλ(x;y|a) =
∑

P∈Qλ(n,n′)

∏
(i,j)∈SFλ
pij∈[n]

(xpij + aj−i)
∏

(i,j)∈SFλ
pij∈[n′]

(y|pij | − aj−i) , (10)

where in both cases |pij| = k if pij = k′. It is notable here that the index on each a is
independent of pij, unlike the factorial Schur function case.

Generalised Schur Q-functions Qλ(x|a) were introduced by Ivanov [15] who showed
in his Theorem 2.11 that they may be expressed combinatorially by means of a formula
that coincides with that given above in the case y = x with ak replaced by −ak+1 for all
k. Ikeda et al. make use of Ivanov’s original definition of Qλ(x|a), which he refers to as
a factorial Schur Q-function, to derive a factorisation property in the case `(λ) = n, see
section 4.4 of [14]. It is this factorisation property that is generalised to the case y 6= x
in our main result that can be stated as follows:

Theorem 1 Let µ be a partition of length `(µ) 6 n and δ = (n, n − 1, . . . , 1), so that
λ = µ+ δ is a strict partition of length `(λ) = n. Then for a = (a1, a2, . . .) we have:

Pλ(x;y|a) =
∏

16i6n

xi
∏

16i<j6n

(xi + yj) sµ(x|a) ; (11)

Qλ(x;y|a) =
∏

16i6j6n

(xi + yj) sµ(x|a) ; (12)

or, equivalently, ∑
P∈Pλ(n,n′)

wgt(P ) =
∏

16i6n

xi
∏

16i<j6n

(xi + yj)
∑

T∈T µ(n)

wgt(T ) ; (13)

∑
Q∈Qλ(n,n′)

wgt(Q) =
∏

16i6j6n

(xi + yj)
∑

T∈T µ(n)

wgt(T ) ; (14)
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where

wgt(P ) =
∏

(i,j)∈SFλ
wgt(pij); wgt(Q) =

∏
(i,j)∈SFλ

wgt(qij); wgt(T ) =
∏

(i,j)∈Fµ
wgt(tij), (15)

with wgt(pij), wgt(qij) and wgt(tij) given by

pii wgt(pii) pij (i < j) wgt(pij) (i < j)
k xk k xk + aj−i

k′ yk − aj−i
qii wgt(qii) qij (i < j) wgt(qij) (i < j)
k xk k xk + aj−i
k′ yk k′ yk − aj−i

and
tij wgt(tij)
k xk + ak+j−i

(16)

In specifying the weights as above, advantage has been taken of the fact that both
sλ(x | a) and Qλ(x;y | a) are independent of a0 in our original definitions (6) and (10),
while a0 is set equal to 0 in the definition of Pλ(x;y | a) in (9). It might also be noted
that under the hypothesis of this Theorem that `(λ) = n, the diagonal entries of any
S ∈ Sλ([n]) are necessarily 1, 2, . . . , n. It follows that the contributions of diagonal entries
to every summand of Pλ(x;y|a) and to every summand of Qλ(x;y|a) yield the factors∏n

i=1 xi and
∏n

i=1(xi + yi), respectively. Since these factors represent the only difference
between the expressions on the right hand sides of (11) and of (12), in order to prove
Theorem 1 it suffices only to prove the required results for either just Pλ(x;y|a) or just
Qλ(x;y|a). We choose to concentrate on the case Pλ(x;y|a) and construct the proof of
(13).

In order to do this we make use of non-intersecting lattice path interpretations of the
two sums appearing in (13), allowing each of them to be expressed in determinantal form
by means of two lemmas, Lemma 2 and Lemma 3 below, whose proofs we defer to the
next section. A third, highly technical lemma, Lemma 4, is then required that allows us
to proceed by way of simple row operations on the determinant representing the left hand
side of (13) to the required factorisation on the right. In view of its technical nature the
proof of Lemma 4 is also deferred to the next section.

We begin with the determinantal expression for sµ(x|a). For the subsequence x̃ =
(xk, xk+1, . . . , xn) of x with 1 6 k 6 n and a = (a0, a1, a2, . . .) let hm(x̃|a) = s(m)(x̃|a) for
all positive integers m. Then it follows from (6) that

hm(x̃|a) = hm(xk, xk+1, xk+2, . . . , xn|a)

=
∑

k6i16i26···6im6n

(xi1 + ai1−k+1)(xi2 + ai2−k+2) · · · (xim + aim−k+m) .
(17)

In terms of these single row factorial Schur functions we have the following determi-
nantal identity that is originally due to Chen, Li and Louck [6]:
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Lemma 2 Let µ be a partition of length `(µ) 6 n, then

sµ(x|a) =
∑

T∈T λ(n)

wgt(T ) = det
16k,`6n

(
hµ`−`+k(xk, xk+1, xk+2, . . . , xn|a)

)
, (18)

where hm(xk, xk+1, xk+2, . . . , xn|a) = 1 if m = 0 and = 0 if m < 0.

To set up the relevant determinantal expression for Pλ(x;y|a) we require certain shifted
restricted versions qm(x̃; ỹ|a) of the factorial generalised Schur Q functions. Here shifts are
associated with the introduction of an operator τ [20] whose action on a = (a0, a1, a2, . . .)
is such that τa = (a1, a2, a3, . . .), so that in acting on any function of a each ai is replaced
by ai+1. For any p, q and n such that 1 6 p < q 6 n let x̃ = (xp, xp+1, . . . , xn) and
ỹ = (yq+1, yq+2, . . . , yn) be subsequences of our original sequences x and y, respectively,
and then let

qm(xp, xp+1, . . . , xq−1, xq, yq+1, xq+1, . . . , yn, xn|a) = Q(m)(x̃; ỹ|τa) , (19)

where in evaluating the right hand side the entries in the one-rowed primed tableaux P of
Q(m) are taken from the alphabet p < (p+1) < · · · < q < (q+1)′ < (q+1) < · · · < n′ < n
with repetitions allowed for unprimed entries but not for primed entries, and with k′

allowed in the box (1, 1) on the main diagonal if and only if q 6 k 6 n. The shift due to
τ is such that an unprimed entry k in column j is weighted xk + aj and a primed entry
k′ in column j is weighted yk − aj. Thus

qm(xp, xp+1, . . . , xq, yq+1, xq+1, . . . , yn, xn|a)

=
∑

p6i16i26···6im6n

∑
z

(zi1 ± a1)(zi2 ± a2) · · · (zim ± am) ,
(20)

where the sum over z allows factors (zk± aj) = (xk + aj) or (yk− aj) to appear according
as zk = xk or yk, with several factors of the form (xk +aj)(xk +aj+1) · · · allowed for any k
with p 6 k 6 n but at most one factor (yk−aj) allowed for any k such that q+1 6 k 6 n,
and no others.

This allows us to express the left hand side of (13) in the form of a determinant by
means of the following key lemma:

Lemma 3 Let λ be a strict partition of length `(λ) = n. Then we have

Pλ(x;y|a) =
∑

P∈Pλ(n,n′)

wgt(P ) = det
16k,`6n

(
xkqλ`−1(xk, yk+1, xk+1, yk+2, . . . , yn, xn|a)

)
. (21)

The evaluation of this determinant may be accomplished by way of a technical lemma.
In order to state this it is necessary to introduce a second type of shift operator S that
unlike τ is linked to letters of the alphabet. The action of S inserted in the jth position
in qm(z1, z2, . . . , zn|a) gives qm(z1, z2, . . . , zj−1, Szj, zj+1, . . . , zn|a) in which every linear
factor (zi + as) or (zi − at) of qm(z1, z2, . . . , zn|a) is replaced by (zi + as+1) or (zi − at+1),
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respectively, if and only if i > j. In other words the insertion of the operator S increases
by 1 the index of a in every linear factor associated with each parameter to its right.
Repeated insertions of shift operators S are allowed, either at the same or at different
points. Powers such as Sp inserted at a single point increase by p the index of a in every
linear factor associated with each parameter to its right. Now we can state our technical
lemma.

Lemma 4 For all m > 1 and 1 6 p < q 6 n

qm(xp, Sxp+1, Sxp+2, · · · , Sxq−1, yq, xq, yq+1, xq+1, . . . , yn, xn|a)
−qm(xp+1, Sxp+2, · · · , Sxq−1, Sxq, yq+1, xq+1, . . . , yn, xn|a)

= (xp + yq)qm−1(xp, Sxp+1, · · · , Sxq−1, Sxq, yq+1, xq+1, . . . , yn, xn|a)
(22)

Given these three lemmas we have enough to prove our main Theorem 1.

Proof of Theorem 1: Lemma 3 expresses the left hand side of (13) as a determinant
from which we can extract xk from each row for k = 1, 2, . . . , n to give

∑
P∈Pλ(n,n′)

wgt(P ) =
n∏
i=1

xi det
16k,`6n

(qλ`−1(xk, yk+1, xk+1, yk+2, . . . , yn, xn|a) ) . (23)

Subtracting row k + 1 from row k of the determinant for k = 1, 2, . . . , n− 1 gives a new
determinant in which the (k, `)th element is given in Lemma 4 by the left hand side of
(22) with p = k, q = k + 1 and m = λ`−1, while the nth row remains unaltered with
elements qλ`−1

(xn|a). Applying (22) and extracting a common factor of (xk + yk+1) from
the kth row then gives

∑
P∈Pλ(n,n′)

wgt(P ) =
n∏
i=1

xi

n−1∏
i=1

(xi + yi+1)

× det
16k,`6n

(
qλ`−2(xk, Sxk+1, yk+2, xk+2 . . . , yn, xn|a)

qλ`−1(xn|a)

)
,

(24)

where we have distinguished between elements in the first n− 1 rows and the last row.
We can then use the same procedure of subtracting row k+ 1 from row k of the above

determinant, this time for k = 1, 2, . . . , n − 2 to give a new determinant in which the
(k, `)th element is given in Lemma 4 by the left hand side of (22) with p = k, q = k + 2
and m = λ`−2. Applying (22) and extracting a common factor of (xk + yk+2) from the
kth row then gives

∑
P∈Pλ(n,n′)

wgt(P ) =
n∏
i=1

xi

n−1∏
i=1

(xi + yi+1)
n−2∏
i

(xi + yi+2)

× det
16k,`6n

 qλ`−3(xk, Sxk+1, Sxk+2, yk+3, xk+3, . . . , yn, xn|a)
qλ`−2(xn−1, Sxn|a)

qλ`−1(xn|a)

 ,

(25)
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where this time we have distinguished between elements in the first n − 2 rows and the
last 2 rows.

Continuing in this way we obtain∑
P∈Pλ(n,n′)

wgt(P ) (26)

=
n∏
i=1

xi
∏

16i<j6n

(xi + yj) det
16k,`6n

(qλ`−n+k−1(xk, Sxk+1, Sxk+2, . . . , Sxn|a) ) . (27)

However

qm(xk, Sxk+1, Sxk+2, . . . , Sxn|a)

=
∑

k6i16i26···6im6n

(xi1 + ai1−k+1)(xi2 + ai2−k+2) · · · (xim + aim−k+m) , (28)

where account has been taken of the fact that there are precisely (ij − k) shift operators
S to the left of xij in the argument of qm. This will be recognised as coinciding with
the definition of hm(xk, xk+1, . . . , xn|a) given in (17). Then the use of Lemma 2 with
µ` = λ`−n+ `−1 completes the proof of (13) and thereby that of Theorem 1. It remains
only to prove the validity of our three lemmas, Lemmas 2, 3 and 4. �

4 Proofs of Lemmas 2 and 3

In each case we follow the lattice path approach of Okada [24], employing a variation on the
usual Gessel-Viennot-Lindström argument (see in particular Okada [24] and Stembridge
[32]). In the case of Lemma 2 a similar proof by way of a lattice path interpretation has
been offered by Chen, Li and Louck [6], but we offer an independent lattice path proof here
that takes particular advantage of the precise form of hm(x̃ | a) given in (17), since it is
this form that we have just seen emerging in a natural way in the application of Lemma 4
to the proof of Theorem 1. Moreover, it is our lattice path proof of Lemma 2 that sets the
scene for our rather similar lattice path proof of Lemma 3. In fact in the latter case our
proof can be seen as a close relative of that provided by Ivanov in the Appendix to [29] as
part of his derivation of an unflagged determinantal formula for unshifted supersymmetric
skew Schur functions. The lattice path approach was suggested by Chen and Louck [5] to
prove the Jacobi-Trudi identity for the original factorial Schur functions (with aj = i− 1)
and applied by Goulden and Hamel [10].

Proof of Lemma 2: We adopt matrix coordinates (i, j) for lattice points with i =
1, 2, . . . , n specifying row labels from top to bottom, and j = 1, 2, . . . , µ1 + n specifying
column labels from left to right. Each lattice path that we are interested in is a continuous
path from some Pi = (i, n − i + 1) with i ∈ {1, 2, . . . , n} to some Qj = (n + 1, j) with
j ∈ {µ1 + n, µ2 + n− 1, . . . , µn + 1}. Such a path consists of a sequence of horizontal or
vertical edges with the last edge vertical.
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Each semistandard tableau T of shape µ defines a set of non-intersecting lattice paths,
one for each row of T . The path associated with the ith row of T starts at Pi and ends
at Qj with j = µi +n− i+ 1. On this path each entry k in the `th column of T gives rise
to a horizontal edge from (k, j − 1) to (k, j) with j = n − k + `, and vertical edges are
added so as to make the path continuous. It is easy to see from the properties T1-T3 of
Section 2 that the paths are non-intersecting. This is exemplified in Figure 1 in the case
µ = (3, 2, 2, 1, 0) and T as given in (4).

T =

1 2 4
2 3
4 4
5

• • • •
• • • • •

• • • • • •
• • • • • • •

• • • • • • • •

P1

P2

P3

P4

P5

Q1 Q3 Q5 Q6 Q8

a1 a2 a3

a4

a5

a6

a7

Figure 1: Example of the lattice paths for a given semistandard tableau.

The map we have described from T to a set L of non-intersecting lattice paths is a
bijection as can be seen by reversing the argument and mapping consecutive horizontal
edges at level k along a path starting at Pi to entries k in the ith row of T . The non-
intersecting nature of the paths ensures that T constructed in this way is a semistandard
tableau as required.

In order to recover wgt(T ) as defined through (16) from the set of lattice paths it is
important to note that the entries k of T are associated with the kth row of the lattice,
and that the `th column of T is associated with the `th diagonal of the lattice along which
k+ j = n+ 1 + `. Each horizontal edge from (k, j− 1) to (k, j) is weighted xk + ak+j−n−1

and each vertical edge is weighted 1. With these asignments it follows that wgt(T ) is
just the product over all edges of these edge weights. Thus the left hand side of (18) is
evaluated by summing over all sets of non-intersecting paths with the given end points Pi
and Qµi+n−i+1 with i = 1, 2, . . . , n.

More generally, the total weight of all possible continuous lattice paths from Pi toQj by
means of horizontal and vertical edges is given by some summand of hm(xk, xk+1, . . . , xn|a)
with m = i+ j−n− 1. Then the usual argument [24], extended so as to allow a fixed set
of end points determined as in our case by µ, shows that the total weight of the set of all
(intersecting and non-intersecting) lattice paths from the given set of starting points Pi
to the ending points Qj, summed over all permutations of Qj, is exactly the determinant
of the matrix whose (k, `)th entry is hµ`(xk, xk+1, . . . , xn|a), as required to complete the
proof of Lemma 2. �
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Proof of Lemma 3
It is again convenient to adopt matrix coordinates (i, j) for the lattice points with

i = 1, 2, . . . , n specifying row labels from top to bottom, and j = 1, 2, . . . , λ1 specifying
column labels from left to right. This time each lattice path that we are interested in is
a continuous path from some Pi = (i, 0) with i ∈ {1, 2, . . . , n} to some Qj = (n + 1, j)
with j ∈ {λ1, λ2, . . . , λn}. Such a path now consists of a sequence of horizontal, diagonal
or vertical edges with the first edge horizontal and the last edge vertical.

Each primed shifted tableau P of shape λ defines a set of non-intersecting lattice
paths, one for each row of P . The path associated with the ith row of P starts at Pi and
ends at Qj with j = λi. Each unprimed entry k in the jth diagonal of P gives rise to
a horizontal edge from (k, j − 1) to (k, j) and each primed entry k′ in the jth diagonal
of P gives rise to a diagonal edge from (k − 1, j − 1) to (k, j) with vertical edges being
added so as to make the path continuous. It is easy to see from the properties P1-P5 of
Section 2 that the paths are non-intersecting. This is exemplified in Figure 2 in the case
λ = (6, 4, 3, 1) and P as given in (4).

P =

1 1 2′ 2 3′ 4
2 3′ 3 3

3 4′ 4
4

• • • • • •
• • • • • •
• • • • • •
• • • • • •

P1

P2

P3

P4

Q1 Q3 Q4 Q6

a1 a2 a3 a4 a5

Figure 2: Example of the lattice paths for a given primed shifted tableau.

The map we have described from P to a set L of non-intersecting lattice paths is a
bijection as can be seen by reversing the argument and mapping consecutive horizontal
and diagonal edges along a path starting at Pi to entries k and k′, respectively, in the ith
row of P . The non-intersecting nature of the paths ensures that P constructed in this
way is a primed shifted tableau as required.

In order to recover wgt(P ) as defined through (16) from the set of lattice paths it is
important to note that the entries k and k′ in P are associated with the kth row of the
lattice, and that the `th diagonal of P is associated with the `th column of the lattice.
Since `(λ) = n and the ith row of P necessarily begins with an unprimed entry i, the
first horizontal edge of the path starting at Pi is weighted xi. As far as the remaining
edges of the set of lattice paths is concerned, any horizontal edge from (k, `) to (k, `) is
weighted xk+a`−1, any diagonal edge from (k−1, `−1) to (k, `) is weighted yk−a`−1 and
each vertical edge is weighted 1. With these asignments it follows that wgt(P ) is just the
product over all edges of these edge weights. Thus the left hand side of (21) is evaluated
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by summing over all sets of non-intersecting paths with the given starting points Pi and
Qλi with i = 1, 2, . . . , n.

Given this framework, it is not hard to see that the total weight of all continuous
lattice paths from Pk to Q` by means of the three types of edge, horizontal, diagonal
and vertical is given by xkqλ`−1(xk, yk+1, xk+1, . . . , yn, xn|a). Then Okada’s argument in
[24], extended so as to allow a fixed set of end points determined as in our case by λ,
shows that the total weight of the set of all (intersecting and non-intersecting) lattice
paths from the given set of starting points Pi to the ending points Qj, summed over
all permutations of Qj, is exactly the determinant of the matrix whose (k, `)th entry is
xkqλ`−1(xk, yk+1, xk+1, . . . , yn, xn|a), as required to complete the proof of Lemma 3. �

5 Proof of Lemma 4

Although this Lemma may be proved by the careful enumeration of primed shifted
tableaux and their weighting (see version 1 of [13]), such a proof is rather intricate
and lengthy, so here we offer a proof by way of generating functions for both hm(x|a)
and qm(z|a), with x = (x1, x2, . . . , xn) and z = (xp, Sxp+1, · · · , Sxq−1, Sxq, yq+1, xq+1, . . . ,
yn, xn), respectively. In each case we employ an expansion parameter t to carry the ex-
ponent m and assume that t is sufficiently small to guarantee convergence. We write
[tm] F (t;m) to signify the coefficient of tm in the expansion of any F (t;m) as a power se-
ries in t, where it is to be noted that in our setting F (t;m) may, and indeed does, depend
upon m. It might be noted that we have chosen to use this type of generating function
rather than the equivalent but rather more complicated generating series exploited in
the case of factorial supersymmetric Schur functions by Molev [23], and in the case of
Frobenius Schur functions by Olshanski, Regev and Vershik [29].

Lemma 5 Let x = (x1, x2, . . . , xn) and a = (a1, a2, . . .) then for m > 0 and n > 1

hm(x|a) = [tm]
n∏
i=1

1

1− txi

n+m−1∏
k=1

(1 + tak) . (29)

Proof: We proceed by noting first that hm(x|a) is completely determined for all m > 0
and n > 1 by the following boundary conditions and recurrence formulae:

hm(x|a) =


1 if m = 0 and n > 1;

(x1 + am) hm−1(x1|a) if m > 0 and n = 1;

hm(x′|a) + (xn + an+m−1) hm−1(x|a) if m > 0 and n > 1,

(30)

where x′ = (x1, x2, . . . , xn−1). These come about because the one-rowed tableaux con-
tributing to hm(x|a) are of length m either with all entries < n or having at least one entry
n, with the rightmost entry n carrying weight (xn + an+m−1) by virtue of the definition
(6) in the case s(m)(x|a) = hm(x|a).
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Now, for m > 0 and n > 1 let

fm(x|a) = [tm]
n∏
i=1

1

1− txi

n+m−1∏
k=1

(1 + tak) . (31)

Clearly, f0(x|a) = 1 for all n > 1, and in the case m > 0 and n = 1

fm(x1|a) = [tm]
1 + tam
1− tx1

m−1∏
k=1

(1 + tak) = [tm]

(
1 +

t(x1 + am)

1− tx1

)m−1∏
k=1

(1 + tak)

= (x1 + am) [tm−1]
1

1− tx1

m−1∏
k=1

(1 + tak) = (x1 + am)fm−1(x1|a) . (32)

Finally, for m > 0 and n > 1

fm(x|a) = [tm]
1 + tan+m−1

1− txn

n−1∏
i=1

1

1− txi

n+m−2∏
k=1

(1 + tak)

= [tm]

(
1 +

t(xn + an+m−1)

1− txn

) n−1∏
i=1

1

1− txi

n+m−2∏
k=1

(1 + tak)

= fm(x′|a) + (xn + an+m−1) [tm−1]
n∏
i=1

1

1− txi

n+m−2∏
k=1

(1 + tak)

= fm(x′|a) + (xn + an+m−1) fm−1(x|a) .

(33)

Thus fm(x|a) satisfies the same boundary conditions and recurrence relations as hm(x|a),
so they must be equal, as required to complete the proof of (29). �

In order to extend this result to something analogous in the case of qm(zp,q,n|a) it is
helpful to note the following:

Lemma 6 For any x, a = (a0, a1, a2, . . .) and m > 0 let

Im(x|a) = 1 +
m∑
r=1

(x+ a0)(x+ a1) · · · (x+ ar−1)

(1 + ta1)(1 + ta2) · · · (1 + tar)
tr . (34)

Then
1 + ta0

1− tx
= Im(x|a) +O(tm+1) . (35)

Although the limit as m→∞ of this identity appears as (A.2) in Ivanov’s Appendix
to [29], it is given there as a special case of a formula due to Molev [23][cf.(2.7)] that is
proved in the special case ai = −i+ 1 by Okounkov and Olshanksi [27][cf.(12.5)]. Guided
by their proof, we offer here a proof of the required more general identity.
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Proof: We use induction with respect to m. In the case m = 0 we have

I0(x|a) = 1 and
1 + ta0

1− tx
= 1 +O(t) , (36)

as required to start the induction. Now for m > 0 assume that (35) is true with m
replaced by m− 1. Then it follows from the definition (34) that

Im(x|a) = 1 +
t(x+ a0)

1 + ta1

(
1 +

m−1∑
s=1

(x+ a1)(x+ a2) · · · (x+ as)

(1 + ta2)(1 + ta3) · · · (1 + tas+1)
ts

)

= 1 +
t(x+ a0)

1 + ta1

Im−1(x|τa) = 1 +
t(x+ a0)

1 + ta1

(
1 + ta1

1− tx
+O(tm)

)
= 1 +

t(x+ a0)

1− tx
+O(tm+1) =

1 + ta0

1− tx
+O(tm+1) (37)

where τa = (a1, a2, . . .). This completes the induction argument, so that (35) is valid for
all m > 0. �

This result may then be used to establish the following

Lemma 7 Let a = (a1, a2, . . .), zp,q,n = (xp, Sxp+1, . . . , Sxq, yq+1, xq+1, . . . , yn, xn). Then
for m > 0 and 1 6 p < q 6 n

qm(zp,q,n|a) = [tm]
n∏
i=p

1

1− txi

n∏
j=q+1

(1 + tyj)

m+q−p∏
k=1

(1 + tak) . (38)

Proof: For m = 0 the result is clear because q0(zp,q,n|a) = 1 and the coefficient of t0 on
the right is also 1 for all p, q, n with 1 6 p < q 6 n.

For m > 0 we use induction with respect to n and our starting point is the case n = q
for which zp,q,q = (xp, Sxp+1, . . . , Sxq). In this case

qm(zp,q,q|a) = qm(xp, Sxp+1, . . . , Sxq|a) = hm(xp, xp+1, . . . , xq|a) = hm(xpq|a) , (39)

where xpq = (xp, xp+1, . . . , xq), as can be seen by comparing (17) and (28) with k = p and
n = q. It then follows from Lemma 5 that

qm(zp,q,q|a) = [tm]

q∏
i=p

1

1− txi

m+q−p∏
k=1

(1 + tak) , (40)

where use has been of (29) with x1, x2, . . . , xn replaced by xp, xp+1, . . . , xq, respectively.
This serves to validate (38) in the case n = q.

For n > q and zp,q,n = (xp, Sxp+1, . . . , Sxq, yq+1, xq+1, . . . , yn, xn) it should be noted
from (20) and the definition of the shift operator S that for m > 0

qm(zp,q,n|a) = qm(zp,q,n−1|a) +
m∑
r=1

qm−r(zp,q,n−1|a)(xn+ yn)
r−1∏
`=1

(xn+ am+q−p+1−`) , (41)
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where in the one-rowed tableaux of length m contributing to the left hand side, all those
tableaux containing no entry n or n′ yield the first term on the right, while in the sum
over r the first m − r boxes are assumed to be occupied by entries less than n′ and n,
with no repetitions of primed entries. The remaining r boxes are occupied by n′ or n,
again with no repetition of n′. The two possibilities n and n′ for the first of these r boxes
gives rise to the factor (xn + yn), with the remaining r− 1 entries n giving rise to factors
(xn + aq−p+j), where the column number j varies from m − r + 2 to m, and q − p is the
number of shift operators S to the left of each entry xn.

For x = (xp, xp+1, . . . , xn) and y = (yq+1, yq+2, . . . , yn) let

Fm(x,y|a) = [tm]
n∏
i=p

1

1− txi

n∏
j=q+1

(1 + tyj)

m+q−p∏
k=1

(1 + tak) . (42)

This can be rewritten in the form

Fm(x,y|a) = [tm]
1 + tyn
1− txn

n−1∏
i=p

1

1− txi

n−1∏
j=q+1

(1 + tyj)

m+q−p∏
k=1

(1 + tak) . (43)

Now we are in a position to use Lemma 6. We do so with x = xn, a0 = yn and (a1, a2, . . .)
replaced by (am+q−p, am+q−p−1, . . .). This yields

Fm(x,y|a) = Fm(x′,y′|a)+
m∑
r=1

[tm−r] (xn+ yn)
r−1∏
`=1

(xn+ am+q−p+1−`)
n−1∏
i=p

1

1− txi

n−1∏
j=q+1

(1 + tyj)

m+q−p−r∏
k=1

(1 + tak) .

(44)

where x′ = (xp, x2, . . . , xn−1) and y′ = (yq+1, yq+2, . . . , yn−1). Hence

Fm(x,y|a) = Fm(x′,y′|a) +
m∑
r=1

Fm−r(x
′,y′|a)(xn+yn)

r−1∏
`=1

(xn + am+q−p+1−`) . (45)

Under the induction hypothesis qm(zp,q,n−1|a) = Fm(x′,y′|a). Comparison of (41) with
(45) then yields qm(zp,q,n|a) = Fm(x,y|a), as required to complete the induction argument.
�

Now we are in a position to prove our technical Lemma 4 that we restate here in the
form

Lemma 8 Let a = (a1, a2, . . .), zp,q,n = (xp, Sxp+1, . . . , Sxq, yq+1, xq+1, . . . , yn, xn). Then
for m > 1

qm(zp,q−1,n|a)− qm(zp+1,q,n|a) = (xp + yq) qm−1(zp,q,n|a). (46)
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Proof: Using Lemma 7

qm(zp,q−1,n|a)− qm(zp+1,q,n|a)

= [tm] ((1 + tyq)− (1− txp))
n∏
i=p

1

1− txi

n∏
j=q+1

(1 + tyj)

m+q−p−1∏
k=1

(1 + tak)

= (xp + yq) qm−1(zp,q,n|a). (47)

�

6 Vanishing Property

Vanishing properties appear in the work of Okounkov [26], Okounkov and Olshanski [27],
and Ivanov [15] where they are used as part of the characterization of shifted Schur func-
tions and factorial Q functions. Okounkov and Olshanski also mention parallel develop-
ments of this approach by Sahi [30]. These properties are part of a toolbox of techniques
used to establish existence and uniqueness: functions with similar characteristics that
vanish for identical elements can be equated. Just as the vanishing property of factorial
Schur functions can be derived within the context of a six-vertex model [4], we show here
that it can also be derived directly from the combinatorial properties of primed shifted
tableaux.

Theorem 9 Let λ = µ + δ and κ = ν + δ with δ = (n, n − 1, . . . , 1), where µ and ν are
partitions of lengths 6 n, and let µ′ be the conjugate of µ. Then for a = (a1, a2, . . .) let
x = −x(κ, a) = (−aκn , . . . ,−aκ2 ,−aκ1).

sµ(−x(κ, a)|a) =


0 if µ 6⊂ ν;∏

(i,j)∈Fµ(an−µ′j+j − an+µi−i+1) if µ = ν;

P (µ, ν, a)) if µ ⊃ ν.

(48)

where P (µ, ν, a) is a homogeneous multinomial of total degree |µ| in a1, a2 . . . with lowest

term (−1)|µ|
∏`(µ)

i=1 a
µi
λi

.

Proof: Consider any primed shifted tableaux P ∈ Pλ(n,n′) contributing to Pλ(x,y|a)
as in (9). We aim to show first that in the case µ 6⊂ ν and x = −x(κ, a) this contribution
is always zero. Thanks to (11) this would be sufficient to ensure that sµ(−x(ν, a)|a) = 0,
as claimed in the first part of (48).

If µ 6⊂ ν then there exists j 6 n such that νj < µj, that is κj < λj. Let k be the
maximum j such that κj < λj. Assume for the moment that the contribution wgt(P )
of P is non-zero and consider the entries p1,j in its first row. More particularly, consider
the entries mj = p1,κj+1. These can be shown to be such that mj > n − j + 1 for j =
n, n−1, . . . , k. We proceed by induction. In the case j = n, if mn = 1 then the first κn+1
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entries in row 1 of P are all unprimed 1’s. The rightmost of these at position (1, κn + 1)
contributes a factor (x1 + aκn) = (−aκn + aκn) = 0. It follows that if wgt(P ) is non-zero,
we must have mn > 1. Under the induction hypothesis we assume that mj+1 > n− j so
that mj > n− j + 1. If mj = n− j + 1 then we must have mj+1 = mj = n− j + 1 so that
we have a string of κj − κj+1 + 1 > 2 entries n− j + 1, the rightmost of which at position
(1, κ, j + 1) contributes a factor (xn+j−1 + aκj) = (−aκj + aκj) = 0. So again we have a
contradiction unless mj > n−j+1. But this is what is required to complete the induction
argument. This process continues at least as far as the case j = k for which we must then
have mk > n− k + 1. However in this case κk < λk which means that the length `(d) of
the dth diagonal with d = κk+1 must be at least k. Such a diagonal cannot accommodate
k distinct entries, as it must do to be admissible, from the set {mk,mk + 1 < . . . , n}. We
conclude that if µ 6⊂ ν and x = −x(κ, a) then wgt(P ) = 0 for all P ∈ Pλ(n,n′). Since
the factors (xi + yj) = (−xκn−i+1

+ yj) are non-zero, we conclude that sµ(−x(κ, a)|a) = 0,
as required.

In the case ν = µ, that is to say κ = λ, it can be seen as above that for a non-zero
contribution from P we must have mj = p1,λj+1 > n − j + 1 for j = n, n − 1, . . . , 2.
However, the djth diagonal with dj = λj +1 necessarily has length `(dj) = j−1. Ignoring
the distinction between primed and unprimed entries for the moment, the fact that the
sequence of entries are strictly increasing down this diagonal with topmost entry mj >
n−j+1 and bottommost entry no greater than n implies that the sequence is unique and
given by n−j+2, n−j+3, . . . , n. This necessarily implies that any further diagonals to the
right of the same length j−1 are also filled with the same sequence n−j+2, n−j+3, . . . , n.
Applying this argument for j = n, n − 1, . . . , 2 and recognising that diagonals of length
n are always filled with entries 1, 2, . . . , n is enough to conclude that in the case ν = µ
and x = −x(κ, a) there is only one primed shifted tableau P of non-zero weight, wgt(P ),
namely the one consisting of a sequence of continuous strips of identical entries k of length
λn−k+1 starting from the kth box on the first diagonal with primes added for each vertical
step and nowhere else. Typically, in the case n = 4 and λ = (8, 6, 3, 2) we have

P =

1 1 2′ 3′ 3 3 4′ 4
2 2 3′ 4′ 4 4

3 3 4′

4 4

with wgt(P ) given by the product of the factors displayed below:

−a2 −a2 + a1 y2 − a2 y3 − a3 −a6 + a4 −a6 + a5 y4 − a6 −a8 + a7

−a3 −a3 + a1 y3 − a2 y4 − a3 −a8 + a4 −a8 + a5

−a6 −a6 + a1 y4 − a2

−a8 −a8 + a1

More generally, if we set N = {1, 2, . . . , λ1}, L = {λ1, λ2, . . . , λn} and K = N\L it can
be seen that

Pλ(−x(λ, a), y|a) =
n∏
i=1

(−aλi)n
∏

16i<j6n

(yj − aλn−i+1
) sλ(−x(λ, a)|a) (49)
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where

sλ(−x(λ, a)|a) =
∏
`∈L

∏
k∈K

χ(l > k) (−a` + ak) =
∏

(i,j)∈Fµ
(−an+µi−i+1 + an−µ′j+j) . (50)

The final step depends on the fact that λi = n+µi− i+1 so that L = {n+µi− i+1 | 1 6
i 6 n}. The complement of this set L in N with λ1 = n+ µ1 is well known [20][p3] to be
{n − µ′j + j | 1 6 j 6 µ1} which must therefore be K. Not only this, but the condition
l = n+ µi− i+ 1 > n− µ′j + j = k is just the condition that hij = µi− i+ µ′j − j + 1 > 0
with hij the hook length of a box at position (i, j) in F µ. This hook length is negative if
(i, j) lies outside F µ. Retaining, therefore only those terms for which hij is positive then
yields the final expression required to complete the proof of the second part of (48).

The final part follows from the fact that the primed shifted tableau P that we have
identified has a non-zero weight for x = −x(κ, a) for all κ ⊃ λ, that is ν ⊃ µ and this
weight is the lowest possible and can only be obtained with the given configuration of
entries. �

7 Corollaries

First we note a corollary that is easily described, namely Lemma 4.10 of Ikeda et al. [14]
with the parameters a added rather than subtracted.

Corollary 10 Let µ be a partition of length `(µ) 6 n and δ = (n, n − 1, . . . , 1), so that
λ = µ+ δ is a strict partition of length `(λ) = n. Then for a = (a1, a2, . . .) we have:

Qλ(x|a) =
∏

16i6n

2xi
∏

16i<j6n

(xi + xj) sµ(x|a). (51)

Proof: One merely sets y = x in equation (12) of Theorem 1. �
To make contact with other results it is necessary to introduce and relate a number of

combinatorial constructs that are all in bijective correspondence with unprimed shifted
tableaux, (USTx), namely strict Gelfand-Tsetlin patterns, (GTPs), certain alternating
sign matrices, (ASMs), compass point matrices, (CPMs) and square-ice configurations,
(SICs).

A Gelfand-Tsetlin pattern G of size n is a triangular array of non-negative integers
mij of the form

G =


mn1 mn2 · · · mn,n−1 mnn

. . . . . . . . . · · ·
m31 m32 m33

m21 m22

m11

 (52)
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subject to the betweenness conditions

mi,j > mi−1,j > mi,j+1 for i = 2, 3, . . . , n and j = 1, 2, . . . , i− 1 . (53)

It follows that each row is a partition. A Gelfand-Tsetlin pattern is said to be strict if

mij > mi,j+1 for i = 1, 2, . . . , n and j = 1, 2, . . . , n− i , (54)

in which case each row is a strict partition. A strict Gelfand-Tsetlin is sometimes called
a monotone triangle [24].

For each strict partition λ of length `(λ) = n let Gλ(n) be the set of all strict GTPs G
with top row λ, that is mni = λi for i = 1, 2, . . . , n. These are in bijective correspondence
with all USTx S ∈ Sλ[n], where the correspondence is defined by

mij = number of entries 6 i in row j of S . (55)

Conversely,

sij =

{
1 if i = 1 and j 6 m11

k if i > 1 and mk−1,i < j 6 mki for each k = 2, . . . , n
(56)

It is straightforward to check that with the constraints (53) and (54) the conditions S1-S3
of section 2 are automatically satisfied and vice versa.

Next we turn to ASMs. For each strict partition λ of length `(λ) = n and breadth
λ1 = m let Aλ be the set of all n×m matrices A = (aij)16i6n,16j6m with ai,j ∈ {1, 0,−1}
such that

A1 the non-zero entries alternate in sign across each row and down each column;

A2 the rightmost non-zero entry in each row is 1;

A3 the topmost non-zero entry in any column is 1;

A4
∑m

j=1 aij = 1 for i = 1, 2, . . . , n;

A5
∑n

i=1 aij = 1 if j = λk for some k and 0 otherwise.

These too are in bijective correspondence with strict GTPs G ∈ Gλ with the corre-
spondence defined by [22]

aij =


1 if i = 1 and the 1st row of G contains j;
1 if i > 1 and the ith row of G contains j but the (i− 1)th does not;
−1 if i > 1 and the (i− 1)th row of G contains j but the ith does not;
0 otherwise,

(57)
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where it might be noted that the rows of G are counted from bottom to top and those of
A from top to bottom. Similarly, the bijective correspondence with USTx S ∈ Sλ[n] is
defined by

aij =


1 if j = m and the mth diagonal of S contains i;
1 if j < m and the jth diagonal of S contains i but (j + 1)th does not;
−1 if j < m and the (j + 1)th diagonal of S contains i but jth does not;
0 otherwise,

(58)
As emphasised elsewhere [12], to each ASM we can associate both a CPM and an SIC

of the 6-vertex model. We define the CPMs C ∈ Cλ corresponding to A ∈ Aλ to be those
matrices obtained by mapping the entries 1 and −1 in A to WE and NS, respectively,
and mapping an entry 0 in A to one or other of NE, SE, NW or SW in accordance with
the compass point arrangements of the nearest non-zero neighbours of the 0, as specified
in the tabulation (59).

Each SIC takes the form of a planar grid consisting of vertices and directed edges.
Each vertex has four edges, two incoming and two outgoing, resulting in six vertex config-
urations that may be constructed from the six possible entries XY of a CPM by attaching
to a vertex two incoming edges from the directions X and Y with the other two edges
outgoing, as shown in the fourth row of table (59).

ASM 1 1 0 0 0 0

1
1 1 1

1

1
1 1 1

1

1
1 0 1

1

1
1 0 1

1

1
1 0 1

1

1
1 0 1

1

CPM WE NS NE SE NW SW

SIC • • • • • •

(59)

In this table, and in the example that follows in (60), each symbol 1 is to be interpreted
as an ASM entry −1. The first row of the table specifies an ASM entry that is further
characterised in the second row by its four outer 1s and 1s indicating the values of the
nearest non-zero ASM entries to its north, east, south or west, where any missing non-zero
neighbour to the east or north is taken to be 1.

The admissible square ice configurations I ∈ Iλ are defined to be those constructed
from the six vertices in the form of n × m grids, with n = `(λ), m = λ1, for which
the boundary horizontal edges are all incoming and the boundary vertical edges are all
outgoing except for those on the lower boundary in columns that do not correspond to a
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part of λ. The maps defined by (59) from ASMs to CPMs to SICs are easily shown to
ensure that the I ∈ Iλ are in bijective correspondence with the A ∈ Aλ.

The bijections between Aλ, Sλ, Gλ and Iλ are all exemplified in (60).

A =


0 1 0 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
0 0 1 0 1 1

⇔


1 1 0 0 0 0
1 0 1 1 0 0
1 1 1 1 1 0
1 1 1 0 0 1

⇔
1 1 2 2 3 4

2 3 3 3
3 4 4

4

= S

m ↘↖
0 1 0 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
1 0 1 1 0 1

 C =


SW WE SE SE SE SE
WE NS SW WE SE SE
NW SW SW NW WE SE
NW SW WE NE NS WE


m ↘↖

G =


6 4 3 1

5 4 1
4 1

2

 I =

• • • • • •
• • • • • •
• • • • • •
• • • • • •

(60)

As illustrated in the top row of (60), the map from A ∈ Aλ to S ∈ Sλ[n] may be
constructed by first drawing up a cumulative row sum matrix of 1s and 0s by summing
the entries of A from right to left across its rows, and then filling the jth diagonal of
S from top-left to bottom-right with the row numbers of the 1s appearing from top to
bottom in the jth column of the cumulative row sum matrix. Similarly the bijective map
from A ∈ Aλ to G ∈ Gλ may be constructed by first drawing up a cumulative column sum
matrix cs(A) of 1s and 0s by summing entries the entries of A from top to bottom down
its columns, and then filling the ith row of G from left to right with the column numbers
of the 1s appearing from left to right in the ith row of the cumulative column sum matrix.
This is illustrated in left hand column of (60). Finally the map from A ∈ Aλ to I ∈ Iλ
proceeds, as shown on the diagonal of (60), by way of the compass point matrix C in
accordance with the six-vertex tabulation of (59). The simplicity of these maps makes it
easy to check that they are all bijections.

In order to establish corollaries of our main result Theorem 1 within the context of the
above combinatorial objects it is merely necessary to replace the sum over P ∈ Pλ(n,n′)
by sums over K ∈ Kλ with an appropriate identification of wgt(K) in the three cases
Kλ = Aλ, Gλ, and Iλ.

The simplest case is that of Aλ for which :
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Corollary 11 Let λ be a strict partition of length `(λ) = n and breadth λ1 = m and let
a = (a1, a2, . . .). Then for each n×m ASM A ∈ Aλ let C(A) = (cij) be the corresponding
CPM. Then ∑

A∈Aλ
wgt(A) =

n∏
i=1

xi
∏

16i<j6n

(xi + yj) sµ(x|a) , (61)

where µ = λ− δ with δ = (n, n− 1, . . . , 1) and

wgt(A) =
n∏
i=1

xi

n∏
i=1

m∏
j=1

wgt(cij) (62)

with
Entry

at (i, j) WE NS NE SE NW SW
wgt(cij) 1 xi + yj 1 1 yi − aj xi + aj

(63)

Proof: The right hand side of (61) coincides with that of (13) so that all we have to
show is that ∑

A∈Aλ
wgt(A) =

∑
P∈Pλ(n,n′)

wgt(P ) =
∑

S∈Sλ(n)

wgt(S) (64)

where wgt(P ) is defined by the left hand parts of (15) and (16). However the one-to-many
map from S ∈ Sλ(n) to P ∈ Pλ(n,n′) is such that∑

P∈Pλ(n,n′)

wgt(P ) =
∑

S∈Sλ(n)

wgt(S) where wgt(S) =
∑

(i,j)∈SFλ
wgt(sij) (65)

with

wgt(sij) =


xk if i = j and sii = k;
xk + aj−i if i < j, sij = k and si,j−1 = k;
yk − aj−i if i < j, sij = k and si+1,j = k;
xk + yk if i < j, sij = k, si,j−1 6= k and si+1,j 6= k,

(66)

where the last case follows from the fact that xk +aj−i+yk−aj−i = xk +yk. Now we only
have to ensure that wgt(A) = wgt(S) where A and S are related by the bijective map we
have identified from A ∈ Aλ to S ∈ Sλ(n).

The diagonal elements of any S ∈ Sλ(n) are always 1, 2, . . . , n since they are strictly
increasing down this diagonal. Since in this case i = j it follows from (66) that their
contribution to wgt(S) is just the factor x1x2 · · · xn that appears on the right hand side
of the expression (62) for wgt(A). To determine the remaining factors it should be noted
that the passage from S to C is such that each entry k in diagonal d > 1 is mapped to an
entry SW, NW or NS in row k and column d− 1 of C according as there is another entry
k immediately to its left, another entry k immediately below or no entry k in diagonal
d − 1. It follows from (66) that the corresponding weights in S are xk + ad−1, yk − ad−1
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and xk + yk. Taking into account the shift from d to d− 1, and identifying (k, d− 1) with
(i, j) gives wgt(cij) as tabulated in (63). Thus wgt(A) = wgt(S) as required. �

In our example (60) this is illustrated by the following example in which S and C are
shown on the left with their weights given by the product of all the entries on the right:

1 1 2 2 3 4
2 3 3 3

3 4 4
4

7→

x1 x1+a1 x2+y2 x2+a3 y3−a4 x4+y4

x2 y3−a1 x3+a2 x3+a3

x3 y4−a1 x4+a2

x4
SW WE SE SE SE SE
WE NS SW WE SE SE
NW SW SW NW WE SE
NW SW WE NE NS WE

 7→
x1+a1 1 1 1 1 1

1 x2+y2 x2 + a3 1 1 1
y3−a1 x3+a2 x3+a3 y3−a4 1 1
y4−a1 x4+a2 1 1 x4+y4 1

Thanks to the tabulation (59) this corollary covers the cases Aλ and Iλ. It remains
to consider the case Gλ.

Corollary 12 Let λ be a strict partition of length `(λ) = n and let a = (a0, a1, a2, . . .)
with a0 = 0. Then for each strict Gelfand-Tsetlin pattern G ∈ Gλ, with entries mij for
i = 1, 2, . . . , n and j = 1, 2, . . . , i,

∑
G∈Gλ

wgt(G) =
n∏
i=1

xi
∏

16i<j6n

(xi + yj) sµ(x|a) , (67)

where µ = λ− δ with δ = (n, n− 1, . . . , 1) and

wgt(G) =
n∏
i=1

mii−1∏
k=0

(xi + ak) ×

n∏
i=2

i−1∏
j=1

(
χ(Bij)(xi+yi) + χ(Lij)(xi+ami−1,j

+ χ(Rij)(yi−ami−1,j
)
) mij−1∏
k=mi−1,j+1

(xi+ak) ,

(68)
where Bij := mi,j > mi−1,j > mi,j+1, Lij := mi,j = mi−1,j > mi,j+1, Rij := mi,j >
mi−1,j = mi,j+1 and χ(P ) is the truth function whereby χ(P ) = 1 if the proposition P is
true, and 0 otherwise.

Proof: As in the previous corollary, it is only necessary to establish that wgt(G) =
wgt(S) where G and S are related through the bijection between G ∈ Gλ and S ∈ Sλ(n)
that is defined by (55). This states that the entry mij in G is the number of entries no
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greater than i in row j of the corresponding shifted tableau S. Thanks to the betweenness
and strictness conditions (53) and (54) there are three cases to consider:

(L) mi,j = mi−1,j > mi,j+1 > mi−1,j+1

mij

mi−1,j = mij

mi−1,j+1 i i i
mi,j+1

(R) mi,j > mi−1,j = mi,j+1 > mi−1,j+1

mij

mi−1,j i i i i
mi−1,j+1 i i i i
mi,j+1 = mi−1,j

(B) mi,j > mi−1,j > mi,j+1 > mi−1,j+1

mij

mi−1,j i i i i
mi−1,j+1 i i i

mi,j+1

(69)

On the left are given the various constraints that may apply to entries in the ith row of
G for various j. These govern the entries i that appear in the jth and (j+ 1)th rows of S
as illustrated on the right, where each isolated i in a box must appear, while the triples
i i i are intended to indicate optional sequences of is of various possible lengths.

Case (L) corresponds to the left-saturation of the betweenness condition (53), and in
this case there are no entries i in the jth rows of S and thus no contribution to wgt(G),
that is to say a trivial multiplicative contribution of 1. In (68) this is reflected in the fact
that if χ(Lij) = 1 this contribution is given by

χ(Lij) (xi + ami−1,j
)

mij−1∏
k=mi−1,j+1

(xi + ak) =

mi−1,j∏
k=mi−1,j+1

(xi + ak) , (70)

which contains no multiplicative factors (xi + ak) and must be interpreted as 1. Case (R)
corresponds to the right-saturation of (53) and implies that there is at least one entry i in
row j of S and this entry lies immediately above an entry i in row j + 1 as a result of the
strictness condition (54) applied to entries i in row j + 1. It follows that its contribution
to wgt(S) is (yi−ak) where k = mi−1,j is the number of steps it is from the main diagonal.
This accounts for the term χ(Rij)(yi−ami−1,j

) in (68). The case (B) is the one, sometimes
called special [25], in which the betweennness condition is strict on both sides. In this
case there is at least one entry i in row j of S, but the leftmost such i has no entry i
either to its left or vertically beneath it. Its contribution to wgt(S) is therefore xi + yi.
This accounts for the term χ(Bij)(xi + yi) in (68).

As can be seen from the above diagrams, in cases (R) and (B) there may remain
additional entries i in row j of S and in both cases these are to the right of the leftmost i
that we have previously identified, and contribute to wgt(S) a contribution (xk +ak) with
k equal to the number of steps to the right of the main diagonal. This is the origin of the
product of terms (xi + ak) on the right of the second line of (68). Finally the remaining
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product of terms (xi + ak) in the first line of (68) arise from the entries mii in G that
specify a sequence of mii entries i in row i of S that start on the main diagonal, with k
varying from 0 to mii − 1. This ensures that wgt(G) = wgt(S), as required. �

Finally, we make contact with the results of Tokuyama [33] and Bump et al. [4] that
motivated this work in the first place.

Corollary 13 [Tokuyama] [33] Let λ = µ + ρ with `(µ) 6 n and ρ = (n − 1, . . . , 1, 0),
then for x = (x1, x2, . . . , xn) and any t∑

G∈Gλ
t#R(G)(1 + t)#B(G)

n∏
i=1

x
∑i
j=1 mij−

∑i−1
j=1mi−1,j

i =
∏

16i<j6n

(xi + txj) sµ(x) , (71)

where #R(G) and #B(G) are the numbers of triples (mij,mi−1,j,mi,j+1) in G satisfying
the conditions (R) and (B) of (69), that is to say the number that are right-saturated and
the number that are neither right nor left saturated, respectively, and the exponent of xi
is the difference between the sum of entries in the ith row of G and the sum of entries in
the (i− 1)th row of G, with the 0th row defined to be empty.

Proof: This result, which makes precise Tokuyama’s identity (1), is a special case of
Corollary 12. First, it should be noted that the difference between the use of λ = µ + δ
and λ = µ+ ρ in Corollaries 12 and 13, respectively, just amounts to dropping the contri-
bution x1x2 . . . xn that comes from the diagonal entries of S and amounts to subtracting
(1, 1, . . . , 1) from λ. Then, the left hand side of (71) is an immediate consequence of
setting a = (0, 0, . . .) and yi = txi for i = 1, 2, . . . , n on the right hand side of (68) and
collecting up the terms in t, (1 + t) and xi. Applying the same conditions to the right
hand side of (67) without the factor x1x2 . . . xn then yields the right hand side of (71), as
required. �

Before proceeding to the next corollary it is convenient to introduce a small lemma

Lemma 14 Let λ = µ+ δ with µ a partition of length `(µ) 6 n and δ = (n, n− 1, . . . , 1)
and let m = λ1. For A ∈ Aλ let C be the corresponding compass point matrix and let
#XY be the number of CPM entries XY in C. Then

#SW = #NE + |µ| . (72)

Proof: Let #XYi be the number of entries XY in the ith row of C and let #i be the
number of entries i in the corresponding shifted tableau S. With this notation,

#NSi + #NWi + #NEi =
i−1∑
k=1

m∑
j=1

akj = i− 1 . (73)

Here the first step follows from the fact that the tabulation of (59) implies that the column
sum in A above the position of each entry XY in the ith row of C is 1 or 0 according
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as XY is or is not in {NS,NW,NE}, and the second step from the fact that the sum of
entries in each row of A is 1. However

#WEi + #NWi + #SWi = #i ∈ S and #WEi = #NSi + 1 (74)

since each entry XY ∈ {WE,NWSW} in the ith row of C gives rise to an entry i in S
and each entry WE or NS in the ith row of C corresponds to an entry 1 or 1, respectively,
in the ith row of A whose row sum is 1. Combining these identities and summing over i
gives

#SW−#NE = |λ| −
n∑
i=1

i = |µ| , (75)

as required. �

This identity allows us to prove the following as a direct consequence of Corollary 11.

Corollary 15 [Bump, McNamara and Nakasuji] [4]. Let µ be any partition of length
`(µ) 6 n and let m = µ1 +n, then for z = (z1, z2, . . . , zn), α = (α1, α2, . . .) and any t, the
partition function of the 6-vertex planar spin configuration model takes the form

Z(SΓ
µ,t) =

∑
s∈SΓ

µ,t

n∏
i=1

m∏
j=1

βij , (76)

where the sum is over all possible internal spin states s consistent with a given set of
external spin states. The six types of vertex at (i, j) carry the Boltzmann weights βij as
tabulated below:

Spin states
at (i, j)

• • • • • •

βij 1 (1 + t)zi t 1 zi − tαj zi + αj
c(i, j) WE NS NE SE NW SW

(77)

where and signify spin up and down states, respectively. Then

Z(SΓ
µ,t) =

∏
16i<j6n

(tzi + zj) sµ(z |α) . (78)

Proof: It should first be noticed that the 6-vertex model spin state configurations are
in bijective correspondence with SICs, ASMs and CPMs. The easiest way to implement
the bijection between spin states s and CPMs C is to rotate s through π and map the
resulting vertices to CPM entries XY as tabulated above. It follows that

Z(SΓ
µ,t) =

∑
A∈Aλ

n∏
i=1

m∏
j=1

wgt(cij) (79)
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where A is the ASM corresponding to the CPM C, λ = µ + δ and wgt(ci,j) = βij for all
(i, j). This expression may then be evaluated by specialising the Boltzmann weights of
(63) in such a way as to give those of (77) modified by moving the factor t from NE to
SW through the use of Lemma 14.

cij WE NS NE SE NW SW
(77) modified wgt(cij) 1 (1 + t)zi 1 1 zi − tαj t(zi + αj)

(63) wgt(cij) 1 xi + yi 1 1 yi − aj xi + aj

(80)

Clearly these coincide if we set xi = tzi, yi = zi and ai = tαi for i = 1, 2, . . . , n. Com-
paring (62) and (61) and remembering to include an overall factor t−|µ| as required by
Lemmma 14, we find

Z(SΓ
µ,t) = t−|µ|

∏
16i<j6n

(tzi + zj) sµ(tz | tα) (81)

However the factorial Schur function sµ(tz | tα) is homogeneous of degree |µ| in factors of
the form (tzi + tαj), so that t−|µ|sµ(tz | tα) = sµ(z |α), as required to complete the proof
of (71). �

As a final corollary it is rather easy to recover the following result originally due to
Lascoux [17] and rederived both by McNamara [21] and by Bump et al. [4]:

Corollary 16 Let x = (x1, x2, . . . , xn), a = (a1, a2, . . .), δ = (n, n − 1, . . . , 1), ρ =
(n− 1, n− 2, . . . , 0), µ be a partition of length `(µ) 6 n, λ = µ+ δ and κ = µ+ ρ, with λ′

and κ′ the partitions conjugate to λ and κ, respectively. Then writing zν = zν1
1 z

ν2
2 · · · for

any z = (z1, z2, . . .) and any ν = (ν1, ν2, . . .), we have

Z(Sµ) =
xρ

aκ′
(−1)|κ| sµ(x | a) , (82)

where Z(Sµ) is the partition function of the 6-vertex model with Boltzman weights βij =
wgt(cij) given by

cij WE NS NE SE NW SW
wgt(cij) 1 −xi/aj 1 1 1 −(xi/aj + 1)

(83)

Proof: To see this one sets yi = 0 in the various wgt(cij) taken from (63) of Corollary 11.
This yields ∑

A∈Aλ

n∏
i=1

m∏
j=1

wgt(cij) = xρ sµ(x | a) , (84)

with wgt(cij) is given by the yi = 0 values specified below

cij WE NS NE SE NW SW
(63) wgt(cij) 1 xi + yi 1 1 yi − aj xi + aj
yi = 0 wgt(cij) 1 xi 1 1 −aj xi + aj

(85)
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To effect the transition from (84) to the required (82) it is necessary to reassign the
contributions −aj arising from each entry NW in C. This can be done by noting that if
#XYj now represents the number of entries XY in the jth column of C then #WEj +
#NWj+#SWj is the number of entries in the jth diagonal of the corresponding unprimed
shifted tableau S of shape λ, but this number of entries is λ′j. It follows that

(−aj)#NWj = (−aj)λ
′
j−#WEj−#SWj = (−aj)λ

′
j−χ(j∈{λ1,λ2,...,λn})−#NSj−#SWj

= (−aj)λ
′
j+1−#NSj−#SWj = (−aj)κ

′
j−#NSj−#SWj

(86)

where use has been made of the fact that #WEj = #NSj + 1 or #NSj according as j is
or is not a part of λ, and the observation that for any strict partition λ its conjugate λ′

is such that λ′j+1 = λ′j − 1 or λ′j again according as j is or is not a part of λ. This implies
that we can pass from (84) to (82) by changing the weights from the yi = 0 set in (85)
to those of (83) and dividing on the right by the product over j of (−aj)κ

′
j , that is to say

multiplying by (−1)|κ|/aκ
′
. �
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