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Abstract

Let G be a finite group acting on the finite set X such that the corresponding
(complex) permutation representation is multiplicity free. There is a natural rank
and order preserving action of the wreath product G ∼ Sn on the generalized
Boolean algebra BX(n). We explicitly block diagonalize the commutant of this
action.

1 Introduction

This paper is inspired by the following two results:

(i) Explicit diagonalization of the “Bose-Mesner algebra” (= commutant of a certain
wreath product action) of the generalized Johnson scheme, by Ceccherini-Silberstein,
Scarabotti, and Tolli [2].

(ii) Explicit block diagonalization of the commutant of the wreath product action on the
nonbinary analog of the Boolean algebra, due to Dunkl [5] and Gijswijt, Schrijver,
and Tanaka [6].

A natural question suggested by these results is to explicitly block diagonalize the commu-
tant of the wreath product action on the generalized Boolean algebra. To do that is one
of the aims of this paper. Our second aim is to recast the results of [2] on the generalized
Johnson scheme, presented there in the language of harmonic analysis (Gelfand pairs,
induced representations, spherical functions etc.), in purely combinatorial terms. This
is achieved by means of the concepts of semisymmetric Jordan basis and upper Boolean
decomposition. These notions are implicit in [2, 6] and were stated explicitly in [10].
They allow a simple reduction to the case of symmetric group action on Boolean algebras,
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given in [5, 6]. In the rest of this introduction we define our objects of study and state
our result.

Let Mat(n×n) denote the algebra of complex n×n matrices and let A ⊆ Mat(n×n)
denote a ∗-subalgebra. Then the noncommutative analog of the spectral theorem asserts
that there exists a block diagonalization of A, i.e., there exists a {1, . . . , n} × S unitary
matrix N , for some index set S of cardinality n, and positive integers p0, q0, . . . , pm, qm
such that N∗AN is equal to the set of all S × S block-diagonal matrices

C0 0 . . . 0
0 C1 . . . 0
...

...
. . .

...
0 0 . . . Cm

 , (1)

where each Ck is a block-diagonal matrix with qk repeated, identical blocks of order pk

Ck =


Bk 0 . . . 0
0 Bk . . . 0
...

...
. . .

...
0 0 . . . Bk

 . (2)

Thus p2
0 + · · · + p2

m = dim A and p0q0 + · · · + pmqm = n. The numbers p0, q0, . . . , pm, qm
and m are uniquely determined (upto permutation of the indices) by A.

By dropping duplicate blocks we get a ∗-isomorphism

Φ : A ∼=
m⊕
k=0

Mat(pk × pk).

In an explicit block diagonalization we need to know this isomorphism explicitly, i.e.,
we need to know the entries in the image Φ(M), for M varying over a suitable basis of A.
When A is commutative we have pk = 1 for all k and we speak of explicit diagonalization.

We now define the ∗-algebras to be considered in this paper. Let B(n) denote the set
of all subsets of [n] = {1, 2, . . . , n}. For a finite set S, let V (S) denote the complex vector
space with S as basis.

Let G be a finite group acting on the finite set X. Assume that the corresponding
permutation representation on V (X) is multiplicity free. This implies, in particular, that
the action is transitive.

Let L0 be a symbol not in X and let Y denote the alphabet Y = {L0}∪X. We call the
elements of X the nonzero letters in Y . Define BX(n) = {(a1, . . . , an) : ai ∈ Y for all i},
the set of all n-tuples of elements of Y (we use L0 instead of 0 for the zero letter for
later convenience. We do not want to confuse the letter 0 with the vector 0). Given
a = (a1, . . . , an) ∈ BX(n), define the support of a by S(a) = {i ∈ [n] : ai 6= L0}. For
0 6 i 6 n, BX(n)i denotes the set of all elements a ∈ BX(n) with |S(a)| = i. We have

|BX(n)| = (|X|+ 1)n, |BX(n)i| =
(
n

i

)
|X|i.
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(We take the binomial coefficient
(
n
k

)
to be 0 if n < 0 or k < 0).

Let Sn denote the symmetric group on n letters. There is a natural action of the
wreath product G ∼ Sn (see [3, 7]) on BX(n) and BX(n)i: permute the n coordinates
followed by independently acting on the nonzero letters by elements of G. In detail, given
(g1, g2, . . . , gn, π) ∈ G ∼ Sn (where π ∈ Sn and gi ∈ G for all i) and a = (a1, . . . , an) ∈
BX(n), we have (g1, . . . , gn, π)(a1, . . . , an) = (b1, . . . , bn), where bi = giaπ−1(i), if aπ−1(i) is
a nonzero letter and bi = L0, if aπ−1(i) = L0.

We give V (Y ) and V (BX(n)) the standard inner products, i.e., we declare Y and
BX(n) to be orthonormal bases.

We represent elements of End(V (BX(n))) (in the standard basis BX(n)) as BX(n)×
BX(n) matrices (we think of V (BX(n)) as column vectors with coordinates indexed by
BX(n)). For a, b ∈ BX(n), the entry in row a, column b of a matrix M will be de-
noted M(a, b). The matrix corresponding to f ∈ End(V (BX(n))) will be denoted Mf .
We use similar notations for BX(n)i × BX(n)i matrices corresponding to elements of
End(V (BX(n)i)).

Set

AX(n) = {Mf : f ∈ EndG∼Sn(V (BX(n)))},
BX(n, i) = {Mf : f ∈ EndG∼Sn(V (BX(n)i))}.

Thus AX(n) and BX(n, i) are ∗-algebras of matrices.
In the paper [2] it is shown that the action of G ∼ Sn on V (BX(n)i) is multiplicity

free and the commutant BX(n, i) of this action is explicitly diagonalized. This generalizes
the case of the Johnson scheme [4] (corresponding to |X| = 1) and the nonbinary Johnson
scheme [13] (corresponding to G = group of all permutations of X). For other examples of
this framework see [2, 3]. We consider the related problem of explicitly block diagonalizing
the commutant AX(n) of the action of G ∼ Sn on V (BX(n)). In the process we also
present an alternative combinatorial approach to the generalized Johnson scheme of [2].

Let f : V (BX(n))→ V (BX(n)) be linear. Then f is G ∼ Sn-linear if and only if

Mf (a, b) = Mf (τ(a), τ(b)), for all a, b ∈ BX(n), τ ∈ G ∼ Sn, (3)

i.e., Mf is constant on the orbits of the action of G ∼ Sn on BX(n) × BX(n). We now
determine these orbits.

Denote the orbits of G on X ×X by

Z0, Z1, . . . , Zm,

where Z0 = {(x, x) : x ∈ X}. Note that m = 0 iff |X| = 1. Unless otherwise stated we
shall assume m > 1 (or, equivalently, |X| > 2). The theory to be presented in this paper
solves the |X| > 2 case in terms of the |X| = 1 case (which is summarized in Section 2
below).

Let
C(n,m) = {(l1, . . . , lm) ∈ Nm : l1 + · · ·+ lm = n},
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where N = {0, 1, 2, . . .}, denote the set of all weak compositions of n with m parts. We
have |C(n,m)| =

(
n+m−1

n

)
=
(
n+m−1
m−1

)
.

Given (a, b) ∈ BX(n)×BX(n), where a = (a1, . . . , an) and b = (b1, . . . , bn), define

C(a, b) = (l0, . . . , lm) ∈ C(|S(a) ∩ S(b)|,m+ 1)

by
lj = |{i ∈ S(a) ∩ S(b) : (ai, bi) ∈ Zj}|, j = 0, . . . ,m.

It is now easily seen that (a, b), (c, d) ∈ BX(n)×BX(n) are in the same G ∼ Sn-orbit
if and only if

|S(a)| = |S(c)|, |S(b)| = |S(d)|, |S(a) ∩ S(b)| = |S(c) ∩ S(d)|, C(a, b) = C(c, d). (4)

For 0 6 i, j, t 6 n and l = (l0, . . . , lm) ∈ Nm+1 let M t,l
i,j be the BX(n) × BX(n) matrix

given by

M t,l
i,j(a, b) =

{
1 if |S(a)| = i, |S(b)| = j, |S(a) ∩ S(b)| = t, C(a, b) = l,
0 otherwise.

Define

IX(n) = {(i, j, t, l) : i, j, t ∈ N, t 6 i, t 6 j, i+ j − t 6 n, l ∈ C(t,m+ 1)}.

It follows from (3) and (4) that {M t,l
i,j : (i, j, t, l) ∈ IX(n)} is a basis of AX(n). We

have

|IX(n)| = dim AX(n) =
(
n+m+3
m+3

)
, (5)

since (i, j, t, l) ∈ IX(n) if and only if (i − t) + (j − t) + l0 + · · · + lm 6 n and all m + 3
terms are nonnegative.

For 0 6 i 6 n define

IX(n, i) = {(t, l) : t ∈ N, t 6 i, 2i− t 6 n, l ∈ C(t,m+ 1)}.

We have that {M t,l
i,i : (t, l) ∈ IX(n, i)} is a basis of BX(n, i) (here we think of M t,l

i,i as
BX(n)i ×BX(n)i matrices). We have

dim BX(n, i) =


∑i

t=0 |C(t,m+ 1)| =
(
m+i+1
m+1

)
, if i 6 n/2,∑i

t=2i−n |C(t,m+ 1)| =
(
m+i+1
m+1

)
−
(
m+2i−n
m+1

)
, if i > n/2,

(6)

where we have used the identity
∑i

t=0

(
m+t
t

)
=
(
m+i+1
m+1

)
(Exercise 3(a) in Chapter 1 of

[12]).
Note that if m = 0 or 1 then, for x, y ∈ X, (x, y) and (y, x) are in the same G-orbit

of X × X. Thus M t,l
i,i is symmetric and it follows that BX(n, i) is commutative, since a

subalgebra of Mat(n×n) having a basis consisting of symmetric matrices is commutative.
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Hence V (BX(n)i) is a multiplicity free G ∼ Sn-module. This argument does not apply
when m > 2.

We now describe our explicit block diagonalization of AX(n). We need to make a
number of definitions.

Our poset terminology follows [12]. Let P be a finite graded poset with rank function
r : P → N. The rank of P is r(P ) = max{r(x) : x ∈ P} and, for i = 0, 1, . . . , r(P ), Pi
denotes the set of elements of P of rank i. For a subset S ⊆ P , we set rankset(S) =
{r(x) : x ∈ S}.

Let P be a graded poset with n = r(P ). Then we have V (P ) = V (P0) ⊕
V (P1) ⊕ · · · ⊕ V (Pn) (vector space direct sum). An element v ∈ V (P ) is homoge-
neous if v ∈ V (Pi) for some i, and if v 6= 0, we extend the notion of rank to nonzero
homogeneous elements by writing r(v) = i. Given an element v ∈ V (P ), write
v = v0 + · · · + vn, vi ∈ V (Pi), 0 6 i 6 n. We refer to the vi as the homogeneous
components of v. A subspace W ⊆ V (P ) is homogeneous if it contains the homogeneous
components of each of its elements. For a homogeneous subspace W ⊆ V (P ) we set
rankset(W ) = {r(v) : v is a nonzero homogeneous element of W}.

The up operator U : V (P )→ V (P ) is defined, for x ∈ P , by U(x) =
∑

y y, where the
sum is over all y covering x. Similarly, the down operator D : V (P ) → V (P ) is defined,
for x ∈ P , by D(x) =

∑
y y, where the sum is over all y covered by x.

Let 〈, 〉 denote the standard inner product on V (P ), i.e., 〈x, y〉 = δ(x, y) (Kronecker
delta), for x, y ∈ P . The length

√
〈v, v〉 of v ∈ V (P ) is denoted ‖ v ‖.

Let P be a graded poset of rank n. A graded Jordan chain in V (P ) is a sequence

c = (v1, . . . , vh) (7)

of nonzero homogeneous elements of V (P ) such that U(vi−1) = vi, for i = 2, . . . , h, and
U(vh) = 0 (note that the elements of this sequence are linearly independent, being nonzero
and of different ranks). We say that c starts at rank r(v1) and ends at rank r(vh). A
graded Jordan basis of V (P ) is a basis of V (P ) consisting of a disjoint union of graded
Jordan chains in V (P ).

The graded Jordan chain (7) is said to be a symmetric Jordan chain (SJC) if the
sum of the starting and ending ranks of c equals n, i.e., r(v1) + r(vh) = n if h > 2, or
2r(v1) = n if h = 1. A symmetric Jordan basis (SJB) of V (P ) is a basis of V (P ) consisting
of a disjoint union of symmetric Jordan chains in V (P ).

The graded Jordan chain (7) is said to be a semisymmetric Jordan chain (SSJC) if the
sum of the starting and ending ranks of c is > n. A semisymmetric Jordan basis (SSJB)
of V (P ) is a basis of V (P ) consisting of a disjoint union of semisymmetric Jordan chains
in V (P ).

For 0 6 k 6 n we set k− = max(0, 2k − n) (note that k− depends on both k and n.
The n will always be clear from the context). Note that 0 6 k− 6 k and k 6 n+ k− − k.
For a SSJC c in V (P ), starting at rank i and ending at rank j, we define the offset of
c to be i + j − n. It is easy to see that if an SSJC of offset s starts at rank k then the
chain ends at rank n + s − k and we have k− 6 s 6 k. Also note that the conditions
0 6 k 6 n, k− 6 s 6 k are easily seen to be equivalent to 0 6 s 6 k 6 bn+s

2
c 6 n.
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We use the following terminology in connection with the notion of block diagonal form:
let A be a finite set and let N be a A×A matrix. Given a partition A = A1 ∪ · · · ∪Ak of
A into pairwise disjoint nonempty subsets A1, . . . , Ak we say that N is in block diagonal
form with a block corresponding to each Ai if A(x, y) = 0 whenever (x, y) 6∈ (A1 × A1) ∪
· · · ∪ (Ak × Ak).

Suppose we have an orthogonal graded Jordan basis O of V (P ). Normalize the vectors
in O to get an orthonormal basis O′. Let (v1, . . . , vh) be a graded Jordan chain in O. Put

v′u = vu
‖vu‖ and αu = ‖vu+1‖

‖vu‖ , 1 6 u 6 h (we take v′0 = v′h+1 = 0). We have, for 1 6 u 6 h,

U(v′u) =
U(vu)

‖ vu ‖
=

vu+1

‖ vu ‖
= αuv

′
u+1. (8)

Thus the matrix of U with respect to O′ is in block diagonal form, with a block correspond-
ing to each (normalized) graded Jordan chain in O, and with the block corresponding to
(v′1, . . . , v

′
h) above being a lower triangular matrix with subdiagonal (α1, . . . , αh−1) and

0’s elsewhere.
Now note that the matrices, in the standard basis P , of U andD are real and transposes

of each other. Since O′ is orthonormal with respect to the standard inner product, it
follows that the matrices of U and D, in the basis O′, must be adjoints of each other. Thus
the matrix of D with respect to O′ is in block diagonal form, with a block corresponding
to each (normalized) graded Jordan chain in O, and with the block corresponding to
(v′1, . . . , v

′
h) above being an upper triangular matrix with superdiagonal (α1, . . . , αh−1)

and 0’s elsewhere. Thus, for 0 6 u 6 h− 1, we have

D(v′u+1) = αuv
′
u. (9)

It follows that the subspace spanned by each graded Jordan chain in O is closed under U
and D.

The Boolean algebra is the rank-n graded poset obtained by partially ordering B(n)
by inclusion. The rank of a subset is given by cardinality.

Given a = (a1, . . . , an), b = (b1, . . . , bn) ∈ BX(n), define a 6 b provided S(a) ⊆ S(b)
and ai = bi for all i ∈ S(a). It is easy to see that this makes BX(n) into a rank-n
graded poset with rank of a given by |S(a)|. We call BX(n) a generalized Boolean algebra.
Clearly, when |X| = 1, BX(n) is order isomorphic to B(n). When G is the group of all
permutations of X we have two orbits for the action on G on X × X (i.e., m = 1) and
we call BX(n) the nonbinary analog of the Boolean algebra. We use Un to denote the up
operator on both the posets V (B(n)) and V (BX(n)). Note that the action of G ∼ Sn
on BX(n) is order and rank preserving and that Un is G ∼ Sn-linear. Also note that the
inner product on V (BX(n)) is G ∼ Sn-invariant.

Consider the permutation representaion of G on V (X). A linear map f : V (X) →
V (X) is G-linear iff the X × X matrix Mf representing f (in the standard basis X) is
constant on the orbits of the action of G on X ×X. It follows that dim EndG(V (X)) =
m+ 1.

Consider the canonical orthogonal decomposition

V (X) = W0 ⊕ · · · ⊕Wm,
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of V (X) into distinct irreducible G-submodules, where W0 corresponds to the trivial
representation. Set di = dim Wi, i = 0, 1, . . . ,m, so d0 = 1 and d0 + · · ·+ dm = |X|.

For u = 0, . . . ,m, define the linear map fu : V (X)→ V (X) by

fu(y) =
∑

x, y ∈ X,

where the sum is over all x ∈ X with (x, y) ∈ Zu. The matrix of fu, in the standard
basis X, is the 0 − 1 matrix with a 1 in position (x, y) iff (x, y) ∈ Zu. Thus fu is
G-linear. Since W0, . . . ,Wm are distinct irreducibles we have by Schur’s lemma that
each of W0, . . . ,Wm is fu invariant for each u and that the action of each fu on each of
W0, . . . ,Wm is multiplication by a scalar. For u,w = 0, . . . ,m, let the action of fu on Ww

be multiplication by the scalar λ(u,w).
Set

JX(n) = {(k, s, p) : 0 6 k 6 n, k− 6 s 6 k, p ∈ C(s,m)}

= {(k, s, p) : 0 6 s 6 n, s 6 k 6 bn+ s

2
c, p ∈ C(s,m)}.

For (k, s, p) ∈ JX(n) with p = (p1, . . . , pm) define

µ(n, k, s, p) =

(
n

n− s, p1, . . . , pm

)
dp11 . . . dpmm

{(
n− s
k − s

)
−
(

n− s
k − s− 1

)}
.

(We take the multinomial coefficient
(

n
k1,...,kr

)
to be zero if any of n, k1, . . . , kr is negative

or if n 6= k1 + · · ·+ kr).
The following two definitions are from [8] and [2] respectively.
For i, j, k, t ∈ {0, . . . , n} define

βn,ti,j,k =
n∑
u=0

(−1)u−t
(
u

t

)(
n− 2k

u− k

)(
n− k − u
i− u

)(
n− k − u
j − u

)
.

For l = (l0, . . . , lm), p = (p0, . . . , pm) ∈ Zm+1 define

Λ(λ, l, p) =
∑{

m∏
w=0

(
pw

r(0, w), . . . , r(m,w)

)}{ m∏
u=0

m∏
w=0

λ(u,w)r(u,w)

}
,

where the sum is over all {0, . . . ,m} × {0, . . . ,m} nonnegative integer matrices (r(u,w))
with row sums l0, . . . , lm and column sums p0, . . . , pm. We take the empty sum to be zero.

For i, j, t, k, s ∈ {0, . . . , n}, l ∈ C(t,m + 1), and p = (p1, . . . , pm) ∈ C(s,m), set
p0 = t− s, p+ = (p0, p1, . . . , pm) and define

αn,t,l,pi,j,k,s = (|X|)
i+j
2
−t Λ(λ, l, p+) βn−s,t−si−s,j−s,k−s.

For 0 6 k 6 n, k− 6 s 6 k, and k 6 i, j 6 n + s − k, define Ei,j,k,s to be the
{k, k+ 1, . . . , n+ s− k}×{k, k+ 1, . . . , n+ s− k} matrix with entry in row i and column
j equal to 1 and all other entries 0.

We now state our result. Part (i) is proved in Lemma 3.2, part (ii) is proved in
Theorem 3.3, and parts (iii) and (iv) are proved in Section 4.
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Theorem 1.1. Let G be a finite group acting on the finite set X such that the correspond-
ing complex permutation representation is multiplicity free with m+1 distinct irreducibles
occuring in it. Assume m > 1. Then

(i) There exists an orthogonal semisymmetric Jordan basis JX(n) of V (BX(n)).
(ii) JX(n) can be expressed as a disjoint union

JX(n) = ∪(k,s,p)∈JX(n)JX(n, k, s, p),

where JX(n, k, s, p) consists of µ(n, k, s, p) semisymmetric Jordan chains starting at rank
k and ending at rank n+ s− k.

Let J ′X(n) denote the orthonormal basis obtained by normalizing the vectors in JX(n).
Define a BX(n) × J ′X(n) unitary matrix M(n) as follows: for v ∈ J ′X(n), the column of
M(n) indexed by v is the coordinate vector of v in the standard basis BX(n).

(iii) M(n)∗AX(n)M(n) consists of all J ′X(n) × J ′X(n) block diagonal matrices with a
block corresponding to each (normalized) SSJC in JX(n) and such that, for each (k, s, p) ∈
JX(n), the µ(n, k, s, p) blocks corresponding to the SSJC’s in JX(n, k, s, p) are identical.

(iv) Conjugating by M(n) and, for each (k, s, p) ∈ JX(n), preserving only one among
the duplicate blocks corresponding to the SSJC’s in JX(n, k, s, p), thus gives a ∗-algebra
isomorphism

Φ : AX(n) ∼=
⊕

(k,s,p)∈JX(n)

Mat((n+ s− 2k + 1)× (n+ s− 2k + 1)).

It will be convenient to re-index the rows and columns of a block corresponding to a SSJC
starting at rank k and having offset s by the set {k, k + 1, . . . , n+ s− k}.

Let (i, j, t, l) ∈ IX(n). Write

Φ(M t,l
i,j) = (Nk,s,p), (k, s, p) ∈ JX(n).

Then

Nk,s,p =

{ (
n+s−2k
i−k

)− 1
2
(
n+s−2k
j−k

)− 1
2 αn,t,l,pi,j,k,s Ei,j,k,s if k 6 i, j 6 n+ s− k,

0 otherwise.

2 Symmetric group action on Boolean algebras

In this section we summarize results on the Sn action on B(n) in the form needed in this
paper. The main sources are Dunkl [5] and Schrijver [8]. For 0 6 i, j, t 6 n let M t

i,j be
the B(n)×B(n) matrix given by

M t
i,j(a, b) =

{
1 if |a| = i, |b| = j, |a ∩ b| = t,
0 otherwise.

It is clear that {M t
i,j : i, j, t ∈ N, t 6 i, t 6 j, i+ j − t 6 n} is a basis of

A(n) = EndSn(V (B(n))).
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For 0 6 k 6 n/2, and k 6 i, j 6 n− k, define Ei,j,k, to be the {k, k + 1, . . . , n− k} ×
{k, k + 1, . . . , n − k} matrix with entry in row i and column j equal to 1 and all other
entries 0.

The following formulation is motivated by the one given in [8] (also see [9]). We do
not use part (v) (a classical result of Delsarte [4]) in this paper but we have included it
for completeness.

Theorem 2.1. (i) There exists an orthogonal SJB J(n) of V (B(n)).
For 0 6 k 6 n/2, let J(n, k) be the union of all SJC’s in J(n) starting at rank k. For

0 6 i 6 n and 0 6 k 6 min{i, n− i} set

J(n, i, k) = {v ∈ J(n, k) : r(v) = i}

and let V (n, i, k) be the subspace of V (B(n)i) spanned by J(n, i, k).
(ii) Let 0 6 i 6 n. Then V (B(n)i) is a multiplicity free Sn-module and

V (B(n)i) =
⊕

06k6min{i,n−i}

V (n, i, k)

is the orthogonal decomposition of V (B(n)i) into distinct irreducible submodules.
Let J ′(n) denote the orthonormal basis of V (B(n)) obtained by normalizing J(n).

Define a B(n)×J ′(n) unitary matrix N(n) as follows: for v ∈ J ′(n), the column of N(n)
indexed by v is the coordinate vector of v in the standard basis B(n).

(iii) N(n)∗A(n)N(n) consists of all J ′(n)× J ′(n) block diagonal matrices with a block
corresponding to each (normalized) SJC in J(n) and such that any two SJC’s starting and
ending at the same rank give rise to identical blocks. Thus there are

(
n
k

)
−
(
n
k−1

)
identical

blocks of size (n− 2k + 1)× (n− 2k + 1), for k = 0, . . . , bn/2c.
(iv) Conjugating by N(n) and dropping duplicate blocks thus gives a ∗-algebra isomor-

phism

Φ : A(n) ∼=
bn/2c⊕
k=0

Mat((n− 2k + 1)× (n− 2k + 1)).

It will be convenient to re-index the rows and columns of a block corresponding to a SJC
starting at rank k and ending at rank n− k by the set {k, k + 1, . . . , n− k}.

Let i, j, t ∈ N, t 6 i, t 6 j, i+ j − t 6 n. Write

Φ(M t
i,j) = (N0, . . . , Nbn/2c).

Then, for 0 6 k 6 bn/2c,

Nk =

{ (
n−2k
i−k

)− 1
2
(
n−2k
j−k

)− 1
2 βn,ti,j,k Ei,j,k if k 6 i, j 6 n− k,

0 otherwise,

where Ei,j,k = Ei,j,k,0.
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(v) Let 0 6 i 6 n, i− 6 t 6 i, and 0 6 k 6 min{i, n − i}. Substituting j = i in part
(iv) and simplifying we get that the eigenvalue of M t

i,i on V (n, i, k) is

n∑
u=0

(−1)u−t
(
u

t

)(
n− k − u
i− u

)(
i− k
i− u

)
.

For a subspace analog (or q-analog) of Theorem 2.1, see [1, 10]. For explicit construc-
tions of orthogonal SJB’s of V (B(n)) and V (Bq(n)) (the subspace analog of V (B(n))) see
[9, 11].

3 Upper Boolean decomposition

Let (V, f) be a pair consisting of a finite dimensional inner product space V (over C)
and a linear operator f on V . Let (W, g) be another such pair. By an isomorphism
of pairs (V, f) and (W, g) we mean a linear isometry (i.e, an inner product preserving
isomorphism) θ : V → W such that θ(f(v)) = g(θ(v)), v ∈ V .

Consider the inner product space V (BX(n)). An upper Boolean subspace of rank t
is a homogeneous subspace W ⊆ V (BX(n)) such that rankset(W ) = {n − t, n − t +
1, . . . , n}, W is closed under the up operator Un, and there is an isomorphism of pairs
(V (B(t)),

√
|X|Ut) ∼= (W,Un) that sends homogeneous elements to homogeneous ele-

ments and increases rank by n− t.
Consider the identity

(|X|+ 1)n = (d1 + d2 + · · ·+ dm + 2)n

=
∑

(l0,...,lm)∈C(n,m+1)

(
n

l0, . . . , lm

)
dl11 dl22 · · · dlmm 2l0 . (10)

We shall now give a linear algebraic interpretation to the identity above.
Consider the inner product space V (Y ), with Y as an orthonormal basis. Make the

tensor product
⊗ni=1V (Y ) = V (Y )⊗ · · · ⊗ V (Y ) (n factors)

into an inner product space by defining

〈v1 ⊗ · · · ⊗ vn, u1 ⊗ · · · ⊗ un〉 = 〈v1, u1〉 · · · 〈vn, un〉. (11)

There is an isometry

V (BX(n)) ∼= ⊗ni=1V (Y ) (12)

given by a = (a1, . . . , an) 7→ a = a1⊗· · ·⊗an, a ∈ BX(n). The rank function (on nonzero
homogeneous elements) and the up and down operators, Un and Dn, on V (BX(n)) are
transferred to ⊗ni=1V (Y ) via the isomorphism above. From now onwards, we shall not
distinguish between V (BX(n)) and ⊗ni=1V (Y ).
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Choose orthonormal bases Bi for Wi, i = 0, . . . ,m and set B = B0 ∪ · · · ∪ Bm. We
assume that B0 consists of the vector

1√
|X|

∑
x∈X

x = z.

Note that orthonormality of B implies that if v =
∑

x∈X αxx ∈ Bi, i = 1, . . . ,m, then∑
x∈X αx = 0.
We have in V (Y )

U1(v) = D1(v) = 0, v ∈ Bi, i = 1, . . . ,m, (13)

U1(z) = D1(L0) = 0, (14)

U1(L0) =
√
|X| z, D1(z) =

√
|X| L0. (15)

Given l = (l0, . . . , lm) ∈ C(n,m+ 1) set

S(n,m, l) =

{(A1, . . . , Am) : Ai ⊆ [n] for all i, Ai ∩ Aj = ∅ for i 6= j, and |Ai| = li for all i}.

Given A = (A1, . . . , Am) ∈ S(n,m, l) we set

Σ(A) = A1 ∪ · · · ∪ Am,
M(A) = {f = (f1, . . . , fm) | fi : Ai → Bi for all i}.

Given l = (l0, . . . , lm) ∈ C(n,m+ 1) define

SX(n, l) = {(A, f) : A ∈ S(n,m, l), f ∈M(A)} (16)

KX(n, l) = {(A, f, B) : A ∈ S(n,m, l), f ∈M(A), B ⊆ [n]− Σ(A)}. (17)

Note that

|SX(n, l)| =

(
n

l0, . . . , lm

)
dl11 dl22 · · · dlmm ,

|KX(n, l)| =

(
n

l0, . . . , lm

)
dl11 dl22 · · · dlmm 2l0 .

For (A, f, B) ∈ KX(n, l), with A = (A1, . . . , Am), f = (f1, . . . , fm), define a vector

v(A, f, B) = v1 ⊗ · · · ⊗ vn ∈ ⊗ni=1V (Y )

by

vi =


fj(i) if i ∈ Aj,

z if i ∈ B,

L0 if i ∈ [n]− (Σ(A) ∪B).
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Note that v(A, f, B) is a homogeneous vector in ⊗ni=1V (Y ) of rank |Σ(A)|+ |B|.
Given l ∈ C(n,m+ 1) and (A, f) ∈ SX(n, l), set

KX(l,A, f) = {v(A, f, B) : B ⊆ ([n]− Σ(A))},

and define V(l,A,f) to be the subspace of ⊗ni=1V (Y ) spanned by KX(l,A, f). Set

KX(n) = ∪l ∪(A,f) KX(l,A, f),

where the union is over l ∈ C(n,m+ 1) and (A, f) ∈ SX(n, l).
We have, using (13), (14), and (15), the following formula in ⊗ni=1V (Y ):

for v(A, f, B) ∈ KX(n)

Un(v(A, f, B)) =
√
|X|

{∑
B′

v(A, f, B′)

}
, (18)

where the sum is over all B′ ⊆ ([n]− Σ(A)) covering B.
It follows from the orthonormality of B and the inner product formula (11) that

〈v(A, f, B), v(A′, f ′, B′)〉 = δ((A, f, B), (A′, f ′, B′)), (19)

where v(A, f, B), v(A′, f ′, B′) ∈ KX(n) and δ is the Kronecker delta.
We can summarize the discussion above in the following result.

Theorem 3.1. (i) For l ∈ C(n,m + 1), (A, f) ∈ SX(n, l), V(l,A,f) is an upper Boolean
subspace of ⊗ni=1V (Y ) of rank n− |Σ(A)| and with orthonormal basis KX(l,A, f).

(ii) KX(n) is an orthonormal basis of ⊗ni=1V (Y ).
(iii) We have the following orthogonal decomposition into upper Boolean subspaces:

n⊗
i=1

V (Y ) =
⊕
l

⊕
A

⊕
f

V(l,A,f), (20)

where the sum is over all l ∈ C(n,m+ 1), A ∈ S(n,m, l) and f ∈M(A).
For each (l0, . . . , lm) ∈ C(n,m+ 1) the right hand side of (20) contains(

n

l0, . . . , lm

)
dl11 dl22 · · · dlmm

upper Boolean subspaces of rank l0.

Taking dimensions on both sides of (20) yields a linear algebraic interpretation to
identity (10) above. Certain problems on the generalized Boolean algebra BX(n) can be
reduced to corresponding problems on the Boolean algebra B(n) via the basis KX(n).
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Lemma 3.2. (i) For l = (l0, . . . , lm) ∈ C(n,m + 1), (A, f) ∈ SX(n, l) there exists an
orthogonal SSJB JX(l,A, f) of V(l,A,f), i.e., there exists a graded Jordan basis JX(l,A, f)
of V(l,A,f) (with respect to the up operator Un) such that each graded Jordan chain in
JX(l,A, f) is a SSJC in

⊗n
i=1 V (Y ).

Each SSJC in JX(l,A, f) has offset s = l1 + · · · + lm. For s 6 k 6 bn+s
2
c, denote by

JX(k, l,A, f) the set of all SSJC’s in JX(l,A, f) starting at rank k. Then

|JX(k, l,A, f)| =
(
n− s
k − s

)
−
(

n− s
k − s− 1

)
.

(ii) JX(n) = ∪JX(l,A, f), where the union is over all l ∈ C(n,m + 1) and (A, f) ∈
SX(n, l), is an orthogonal SSJB of ⊗ni=1V (Y ).

Proof. (i) Consider the upper Boolean subspace V(l,A,f) of rank l0. Let γ : {1, 2, . . . , l0} →
[n] − Σ(A) be the unique order preserving bijection, i.e., γ(i) = ith smallest element of
[n] − Σ(A). Denote by γ′ : V (B(l0)) → V(l,A,f) the linear isometry given by γ′(X) =
v(A, f, γ(X)), X ∈ B(l0).

Use Theorem 2.1 (i) to get an orthogonal SJB J(l0) of V (B(l0)) with respect to√
|X| Ul0 (rather than just Ul0) and transfer it to V(l,A,f) via γ′. Each SJC in J(l0) will

get transferred to a SSJC in V(l,A,f) of offset s. The number of these SSJC’s in V(l,A,f)

starting at rank k is
(
n−s
k−s

)
−
(
n−s
k−s−1

)
.

(ii) This is clear. �
We shall now make three observations on the action of G ∼ Sn on the basis elements

in JX(k, l,A, f).
Let l = (l0, l1, . . . , lm) ∈ C(n,m + 1) and (A, f) ∈ SX(n, l). Write A = (A1, . . . , Am)

and f = (f1, . . . , fm).
(a) Let v ∈ JX(k, l,A, f) (i.e., v is a vector lying in one of the SSJC’s in JX(l,A, f)

starting at rank k) of rank i and let τ = (1, . . . , 1, π) ∈ G ∼ Sn (1 = identity in G).
Write πA = (πA1, . . . , πAm) = A′ and fπ−1 = (f1π

−1|πA1 , . . . , fmπ
−1|πAm) = f ′. We

want to show that τv is in the subspace spanned by all elements of JX(k, l,A′, f ′) of rank
i.

Let σ : [n]−Σ(A)→ [n]−Σ(A′) be the unique order preserving bijection. There is an
obvious isomorphism of pairs Γ : (V(l,A,f), Un)→ (V(l,A′,f ′), Un) taking v(A, f, B) ∈ V(l,A,f)

to Γ(v(A, f, B)) = v(A′, f ′, σB).
Clearly we have Γ(v) ∈ JX(k, l,A′, f ′) with r(Γ(v)) = i. Define a permutation π′ :

[n] → [n] as follows: π′(i) = i for i ∈ Σ(A′) and π′(i) = πσ−1(i) for i ∈ [n] − Σ(A′). Set
τ ′ = (1, . . . , 1, π′) ∈ G ∼ Sn. A little reflection shows that τv = τ ′Γ(v).

Now, by Theorem 2.1 (ii), the subspace spanned by all elements of JX(k, l,A′, f ′) of
rank i is closed under permutations of [n] that fix Σ(A′) and thus it follows that τv is in
this subspace.

(b) Let v ∈ JX(k, l,A, f), i ∈ Aj, g ∈ G, and τ = (1, . . . , 1, g, 1, . . . , 1, id) ∈ G ∼ Sn,
with g in the ith spot and id denoting the identity of Sn. Then we have

τv =
∑
e

αeve,
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where the αe are scalars, ve ∈ JX(k, l,A, e), and where the sum is over all

e = (f1, . . . , fj−1, ej, fj+1, . . . , fm)

with ej : Aj → Bj satisfying ej(w) = fj(w), for all w ∈ Aj − {i}.
(c) Let v ∈ JX(k, l,A, f), i ∈ [n] − Σ(A), g ∈ G, and τ = (1, . . . , 1, g, 1, . . . , 1, id) ∈

G ∼ Sn, with g in the ith spot and id denoting the identity of Sn. Then we have τv = v.

Theorem 3.3. Let 0 6 s 6 n, p = (p1, . . . , pm) ∈ C(s,m) and set l = (n−s, p1, . . . , pm) ∈
C(n,m+ 1).

Define

V(s,p) =
⊕
A

⊕
f

V(l,A,f), JX(n, s, p) = ∪(A,f) JX(l,A, f),

where the sum and the disjoint union are over all (A, f) ∈ SX(n, l).
(i) We have the following orthogonal decomposition

n⊗
i=1

V (Y ) =
⊕

06s6n

⊕
p∈C(s,m)

V(s,p). (21)

(ii) JX(n, s, p) is an orthogonal SSJB of V(s,p) with each SSJC in JX(n, s, p) having
offset s. For s 6 k 6 bn+s

2
c define JX(n, k, s, p) to be the collection of all chains in

JX(n, s, p) starting at rank k. Then JX(n, k, s, p) consists of µ(n, k, s, p) semisymmetric
Jordan chains starting at rank k and ending at rank n+ s− k. We have

JX(n) = ∪(k,s,p)∈JX(n)JX(n, k, s, p).

Proof. Clear. �
For 0 6 i 6 n, define

JX(n, i) = {(k, s, p) ∈ JX(n) : k 6 i 6 n+ s− k}
= {(k, s, p) ∈ JX(n) : s 6 k 6 min{i, n+ s− i}}.

For 0 6 i 6 n and (k, s, p) ∈ JX(n, i), define

JX(n, i, k, s, p) = {v ∈ JX(n, k, s, p) : r(v) = i}

and VX(n, i, k, s, p) to be the subspace of V (BX(n)i) spanned by JX(n, i, k, s, p). We have
the following orthogonal decomposition into subspaces

V (BX(n)i) =
⊕

(k,s,p)∈JX(n,i)

VX(n, i, k, s, p). (22)

Theorem 3.4. (Ceccherini-Silberstein, Scarabotti, and Tolli [2]) The action of G ∼ Sn
on V (BX(n)i) is multiplicity free and (22) gives the decomposition into distinct irreducible
submodules.
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Proof. Let 0 6 i 6 n and (k, s, p) ∈ JX(n, i). It follows from the three properties (a),
(b), and (c) stated above that VX(n, i, k, s, p) is a G ∼ Sn-submodule of ⊗ni=1V (Y ).

The decomposition (22) is indexed by JX(n, i) and a basis of EndG∼Sn(V (BX(n)i)) is
indexed by IX(n, i). The result will follow if we show that JX(n, i) and IX(n, i) have the
same cardinality.
Case (i) i 6 n/2: We have

IX(n, i) = {(t, l) : 0 6 t 6 i, l ∈ C(t,m+ 1)}
JX(n, i) = {(k, s, p) : 0 6 s 6 k 6 i, p ∈ C(s,m)}

= {(k, p) : 0 6 k 6 i, p ∈ C(k,m+ 1)}

Clearly IX(n, i) and JX(n, i) have the same cardinality.
Case (ii) i > n/2: We have

IX(n, i) = {(t, l) : 2i− n 6 t 6 i, l ∈ C(t,m+ 1)}
= {(t, s, p) : 2i− n 6 t 6 i, 0 6 s 6 t, p ∈ C(s,m)}
= {(t, s, p) : 0 6 s, max{2i− n, s} 6 t 6 i, p ∈ C(s,m)}.

JX(n, i) = {(k, s, p) : 0 6 s, s 6 k 6 min{i, n+ s− i}, p ∈ C(s,m)}.

Clearly IX(n, i) and JX(n, i) have the same cardinality. �
We have from Theorem 3.4 above that, for 0 6 i 6 n, the VX(n, i, k, s, p), (k, s, p) ∈

JX(n, i) are the common eigenspaces for M t,l
i,i , (t, l) ∈ IX(n, i). The eigenvalues will

follow from part (iv) of Theorem 1.1 (see Theorem 4.4).

4 Explicit block diagonalization

We shall need the following result.

Lemma 4.1. For m > 1 we have

n∑
k=0

k∑
s=k−

(n+ s− 2k + 1)2

(
s+m− 1

m− 1

)
=

(
n+m+ 3

m+ 3

)
.

Proof. We shall use the following well known identities:
(i) For n odd, 12 + 32 + 52 + · · ·+ n2 =

(
n+2

3

)
.

(ii) For n even, 22 + 42 + 62 + · · ·+ n2 =
(
n+2

3

)
.

(iii) For r, s > 0 we have

n∑
k=0

(
k + r

r

) (
n− k + s

s

)
=

(
n+ r + s+ 1

r + s+ 1

)
.

(For the proof multiply the expansions
∑

k>0

(
k+r
r

)
xk = 1

(1−x)r+1 and
∑

k>0

(
k+s
s

)
xk =

1
(1−x)s+1 and compare coefficients of xn on both sides.)
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We have

n∑
s=0

bn+s
2
c∑

k=s

(n+ s− 2k + 1)2

(
s+m− 1

m− 1

)
=

n∑
s=0, n+s even

(12 + 32 + · · ·+ (n− s+ 1)2)

(
s+m− 1

m− 1

)

+
n∑

s=0, n+s odd

(22 + 42 + · · ·+ (n− s+ 1)2)

(
s+m− 1

m− 1

)

=
n∑
s=0

(
n− s+ 3

3

)(
s+m− 1

m− 1

)
=

(
n+m+ 3

m+ 3

)
. �

Consider the linear operator on V (BX(n)) whose matrix with respect to the standard
basis BX(n) is M t,l

i,j . Transfer this operator to ⊗ni=1V (Y ) via the isomorphism (12) above

and denote the resulting linear operator byMt,l
i,j. In Theorem 4.3 below we show that the

action ofMt,l
i,j on the basis KX(n) mirrors the action of M t

i,j on the standard basis of the
Boolean algebra B(n).

Recall the maps fu on V (X) from the introduction. Define linear operators Z,Ru :
V (Y )→ V (Y ), u = 0, . . . ,m, on V (Y ) as follows

• Z(L0) = L0 and Z(x) = 0 for x ∈ X.

• For u = 0, . . . ,m, Ru(L0) = 0 and Ru(y) = fu(y), y ∈ X.

Note that, for w = 0, . . . ,m,

Ru(v) = λ(u,w)v, v ∈ Bw. (23)

Let there be given a (m+ 4)-tuple

X = (SU , SD, SZ , SR0 , . . . , SRm)

of pairwise disjoint subsets of [n] with union [n] (it is convenient to index the components
of X in this fashion). Define a linear operator

F (X ) :
n⊗
i=1

V (Y )→
n⊗
i=1

V (Y )

by F (X ) = F1 ⊗ · · · ⊗ Fn, where each Fi is U1 or D1 or Z or Rj according as i ∈ SU or
SD or SZ or SRj

, respectively.
Let b ∈ BX(n). It follows from the definitions that

F (X )(b) 6= 0 implies SD ∪ SR0 ∪ · · · ∪ SRm = S(b), SU ∪ SZ = [n]− S(b). (24)

the electronic journal of combinatorics 22(2) (2015), #P2.43 16



Given a (m + 4)-tuple r = (rU , rD, rZ , rR0 , . . . , rRm) ∈ C(n,m + 4) define Π(r) to be
the set of all (m + 4)-tuples X = (SU , SD, SZ , SR0 , . . . , SRm) of pairwise disjoint subsets
of [n] with union [n] and with |SU | = rU , |SD| = rD, |SZ | = rZ , and |SRj

| = rRj
, for

j = 0, . . . ,m.

Lemma 4.2. Let (i, j, t, l) ∈ IX(n) with l = (l0, . . . , lm). Set r = (i− t, j − t, n+ t− i−
j, l0, . . . , lm). Then

Mt,l
i,j =

∑
X∈Π(r)

F (X ). (25)

Proof. Let b = (b1, . . . , bn) ∈ BX(n) and X = (SU , SD, SZ , SR0 , . . . , SRm) ∈ Π(r). We
consider two cases:

(i) |S(b)| 6= j: In this case we have Mt,l
i,j(b) = 0. Now |SD| + |SR0| + · · · + |SRm| =

j − t+ l0 + · · ·+ lm = j. Thus, from (24), we also have F (X )(b) = 0.
(ii) |S(b)| = j: Assume that F (X )(b) 6= 0. We have from (24) that F (X )(b) =

∑
a a,

where the sum is over all a = (a1, . . . , an) ∈ BX(n)i with S(a) = SU ∪ SR0 ∪ · · · ∪ SRm

and (ak, bk) ∈ Zq, for k ∈ SRq , q = 0, . . . ,m.
Going over all elements of Π(r) and summing we see that both sides of (25) evaluate

to the same element on b. �

Theorem 4.3. Let 0 6 s 6 n, p = (p1, . . . , pm) ∈ C(s,m) and (i, j, t, l) ∈ IX(n). Let
(A, f, B) ∈ KX(n, (n− s, p1, . . . , pm)). Set p0 = t− s and p+ = (p0, p1, . . . , pm).

(i) Mt,l
i,j(v(A, f, B)) = 0 if |B| 6= j − s.

(ii) If |B| = j − s then

Mt,l
i,j(v(A, f, B)) = (|X|)

i+j
2
−t Λ(λ, l, p+)

(∑
B′

v(A, f, B′)

)
, (26)

where the sum is over all B′ ⊆ ([n]− Σ(A)) with |B′| = i− s and |B ∩B′| = t− s.

Proof. Let r = (i − t, j − t, n + t − i − j, l0, . . . , lm), where l = (l0, . . . , lm) and let
X = (SU , SD, SZ , SR0 , . . . , SRm) ∈ Π(r). Assume that F (X )(v(A, f, B)) 6= 0. Then we
must have

SU ∪ SZ = [n]− (Σ(A) ∪B), (27)

SD ∪ SR0 ∪ · · · ∪ SRm = Σ(A) ∪B, (28)

SD ⊆ B. (29)

Thus, using (28) above, |B| = j − t+ l0 + · · ·+ lm − s = j − s (so part (i) follows).
We have

SR0 ∪ · · · ∪ SRm = Σ(A) ∪ (B − SD).

Since each vector in B is an eigenvector for each of R0, . . . ,Rm we see that

F (X )(v(A, f, B)) = α v(A, f, B′),
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where α is a scalar and where B′ = SU ∪ (B − SD), yielding |B′| = i− s and |B ∩ B′| =
|B − SD| = (j − s)− (j − t) = t− s.

We now determine α. Write A = (A1, . . . , Am) and put A0 = B − SD. It is easily
seen, using (15) and the definition of λ(u,w), that

α = |X|
i+j
2
−t

m∏
u=0

m∏
w=0

λ(u,w)|SRu∩Aw|. (30)

The {0, 1, . . . ,m} × {0, 1, . . . ,m} integer matrix with entry in row u, column w equal
to |SRu ∩ Aw| has row sums l0, . . . , lm and columns sums p0, p1, . . . , pm.

Now fix a {0, 1, . . . ,m}×{0, 1, . . . ,m} integer matrix (r(u,w)) with row sums l0, . . . , lm
and columns sums p0, p1, . . . , pm and fix B′ ⊆ ([n]−Σ(A)) with |B′| = i−s and |B∩B′| =
t − s. We want to count the number of X = (SU , SD, SZ , SR0 , . . . , SRm) ∈ Π(r) with
F (X )(v(A, f, B)) = α v(A, f, B′), where |SRu ∩ Aw| = r(u,w) for u,w ∈ {0, . . . ,m} and
α is given by (30) above.

The discussion above shows that SU = B′ −B and SD = B −B′ and (27) above then
determines SZ . The number of choices for SR0 , . . . , SRm is easily seen to be{

m∏
w=0

(
pw

r(0, w), . . . , r(m,w)

)}
.

Going over all elements of Π(r) and summing we get the result. �

Proof of Theorem 1.1 (parts (iii) and (iv)):
(iii) Let (i, j, t, l) ∈ IX(n) and (k, s, p) ∈ JX(n). Observe that the term

(|X|)
i+j
2
−t Λ(λ, l, p+)

in (26) above depends only on i, j, t, l, s, p (and not on (A, f, B)). It thus follows from
Theorem 4.3 and Theorem 2.1 (iii) that each SSJC in JX(n, k, s, p) is closed under all the
operators Mt,l

i,j and that all these SSJC’s give rise to identical blocks. That the image of
Φ consists of all such block diagonal matrices follows from the dimension count (5) and
Lemma 4.1.
(iv) Follows from Theorem 4.3 and Theorem 2.1 (iv). �

Theorem 4.4. (Ceccherini-Silberstein, Scarabotti, and Tolli [2]) Let 0 6 i 6 n,
(t, l) ∈ IX(n, i), and (k, s, p) ∈ JX(n, i) with p = (p1, . . . , pm). Set p0 = t − s and
p+ = (p0, p1, . . . , pm). The eigenvalue of M t,l

i,i on VX(n, i, k, s, p) is

(|X|)i−t Λ(λ, l, p+)

{
n−s∑
u=0

(−1)u−t+s
(

u

t− s

)(
n− k − u
i− s− u

)(
i− k

i− s− u

)}
.

Proof. Follows from substituting j = i in Theorem 1.1 (iv) and noting that(
n+ s− 2k

i− k

)−1(
n+ s− 2k

u+ s− k

)(
n− k − u
i− s− u

)
=

(
i− k

i− s− u

)
. �
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