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Abstract

Let [u, v] be a Bruhat interval of a Coxeter group such that the Bruhat graph
BG(u, v) of [u, v] is isomorphic to a Boolean lattice. In this paper, we provide
a combinatorial explanation for the coefficients of the complete cd-index of [u, v].
Since in this case the complete cd-index and the cd-index of [u, v] coincide, we
also obtain a new combinatorial interpretation for the coefficients of the cd-index of
Boolean lattices. To this end, we label an edge in BG(u, v) by a pair of nonnegative
integers and show that there is a one-to-one correspondence between such sequences
of nonnegative integer pairs and Bruhat paths in BG(u, v). Based on this labeling,
we construct a flip F on the set of Bruhat paths in BG(u, v), which is an involution
that changes the ascent-descent sequence of a path. Then we show that the flip
F is compatible with any given reflection order and also satisfies the flip condition
for any cd-monomial M . Thus by results of Karu, the coefficient of M enumerates
certain Bruhat paths in BG(u, v), and so can be interpreted as the number of certain
sequences of nonnegative integer pairs. Moreover, we give two applications of the flip
F . We enumerate the number of cd-monomials in the complete cd-index of [u, v] in
terms of Entringer numbers, which are refined enumerations of Euler numbers. We
also give a refined enumeration of the coefficient of dn in terms of Poupard numbers,
and so obtain new combinatorial interpretations for Poupard numbers and reduced
tangent numbers.
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1 Introduction

Let W be a Coxeter group and u, v ∈ W such that u < v in the Bruhat order. The
complete cd-index ψ̃u,v(c,d) of the interval [u, v] is a nonhomogeneous polynomial in
the noncommuting variables c and d, which was introduced by Billera and Brenti [2]
and conjectured to have nonnegative coefficients, see also Billera [1]. The complete cd-

index ψ̃u,v(c,d) encodes compactly the ascent-descent sequences of the Bruhat paths in
the Bruhat graph BG(u, v) of [u, v], and its combinatorial invariance is equivalent to the
combinatorial invariance of the celebrated Kazhdan-Lusztig and R-polynomials, see [2,12].

In [2], Billera and Brenti also showed that ψ̃u,v(c,d) is a generalization of the cd-index
ψu,v(c,d) of [u, v] in the sense that ψu,v(c,d) is the sum of the highest degree terms of

ψ̃u,v(c,d). For the definition of the cd-index of an Eulerian poset, see, e.g., Stanley [16].
Purtill [15] gave a combinatorial interpretation for the cd-index ψBn(c,d) of the Boolean
lattice Bn by showing that ψBn(c,d) is the sum of the cd-variation monomials of aug-
mented André permutations on [n] := {1, 2, . . . , n}, and then derived a recursive formula
for ψBn(c,d). Besides, ψBn(c,d) is also a refined enumeration of simsun permutations,
which were first introduced by Simion and Sundaram [17,18], see also Hetyei [9].

In this paper, we give a combinatorial interpretation for the coefficients of the complete
cd-index of [u, v], where BG(u, v) is isomorphic to the Boolean lattice Bn. Since in this

case all the edges in BG(u, v) are covering relations, ψ̃u,v(c,d) has no lower degree terms.
Hence we have

ψ̃u,v(c,d) = ψu,v(c,d) = ψBn(c,d).

Thus we also obtain a new combinatorial interpretation for the coefficients of the cd-index
of the Boolean lattice Bn.

To this end, we label a directed edge in BG(u, v), say x→ y, by a pair of nonnegative
integers (i, j), where i (resp. j) is the number of edges y → z (y < z 6 v) such that the
reflection y−1z is larger (resp. smaller) than the reflection x−1y in a given reflection order
O. Then we show that there is a one-to-one correspondence between the Bruhat paths in
BG(u, v) and the sequences of nonnegative integer pairs

((i1, j1), (i2, j2), . . . , (in, jn)),

such that ik + jk = n− k for 1 6 k 6 n.
Based on this labeling, we construct a flip F on the set of Bruhat paths in BG(u, v),

which is an involution that changes the ascent-descent sequence of a path. We show that
the flip F is compatible with the reflection order O and also satisfies the flip condition for
any cd-monomial M defined by Karu [11]. Then the coefficient of M enumerates certain
Bruhat paths in BG(u, v). Such paths are called valid paths and their corresponding
sequences are called valid sequences. Therefore the coefficient of M is the number of
certain valid paths in BG(u, v) or certain valid sequences of nonnegative integer pairs.

We give two applications of the flip F . Let En denote the Euler number, i.e., the
number of up-down (or alternating) permutations on [n]. Denote by En(k) the number
of up-down permutations of length n beginning with k (1 6 k 6 n). Clearly, we have
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En =
∑n

k=1En(k). Purtill [15] showed that the number of cd-monomials in ψBn(c,d) is
the Euler number En, that is,

ψBn(1, 1) = ψ̃u,v(1, 1) = En.

We give a refined enumeration of ψ̃u,v(1, 1) in terms of the Entringer numbers En(k).
To be more specific, we show that the number of valid sequences of length n beginning
with (n − k, k − 1) or the number of valid paths in BG(u, v) with first edge labeled by
(n− k, k − 1) is equal to En(k).

As the second application, we give a refined enumeration of the coefficient of dn in
ψ̃u,v(c,d) in terms of the Poupard numbers Pn(k) (1 6 k 6 2n + 1), where BG(u, v) is
isomorphic to B2n+1. The paths in BG(u, v) corresponding to the monomial dn are called
alternating paths. We show that the number of alternating paths with first edge labeled
by (2n − k + 1, k − 1) is equal to the Poupard number Pn(k). Since by [8], the reduced
tangent number tn satisfies tn =

∑2n+1
k=1 Pn(k), we deduce that the coefficient of dn is the

reduced tangent number tn. Therefore we obtain new combinatorial interpretations for
the Poupard numbers and reduced tangent numbers.

The organization of this paper is as follows. In Section 2, we give some basic notation
and definitions on Coxeter groups and the complete cd-index. We also recall some results
of Karu. In Section 3, we first construct a flip F on [u, v] and show that this flip is
compatible with the given reflection order and satisfies the flip condition. Then we provide
a combinatorial interpretation for the coefficient of ψ̃u,v(c,d). In Section 4, We give a

refined enumeration of the number of cd-monomials in ψ̃u,v(c,d). Finally, in Section 5,

we give a refined enumeration of the coefficient of dn in ψ̃u,v(c,d).

2 Preliminary

Let (W,S) be a Coxeter system, and let T = {wsw−1 | s ∈ S, w ∈ W} be the set of
reflections, see, e.g., Humphreys [10]. We use `(w) to denote the length of w ∈ W . For
u, v ∈ W , we say that u 6 v in the Bruhat order if there exists a sequence of reflections
t1, t2, . . . , tr in T such that (i) v = u t1 t2 · · · tr and (ii) `(u t1 · · · ti−1) < `(u t1 · · · ti) for
1 6 i 6 r. We say that u is covered by v, if u < v and `(v) = `(u) + 1. Let [u, v] = {w ∈
W |u 6 w 6 v} be the interval formed by u and v in the Bruhat order. The atoms of
[u, v] are the elements w ∈ [u, v] such that w covers u.

The Bruhat graph BG(W ) of the Coxeter group W is a directed graph whose vertices
are the elements of W and there is a directed edge from u to v, denoted by u → v, if
v = ut for some reflection t ∈ T and `(u) < `(v). The interval [u, v] forms a subgraph
BG(u, v) of the Bruaht graph of W . A Bruhat path of length n from u to v in BG(u, v)
is a sequence

x = (u = x0 → x1 → · · · → xn−1 → xn = v) (1)

such that ti = x−1i−1xi ∈ T for 1 6 i 6 n. We call (t1, t2, . . . , tn) the reflection sequence of
x, and call the first edge u→ x1 of x a first edge of the interval [u, v]. Let Bk(u, v) denote
the set of Bruhat paths of length k from u to v, and let B(u, v) =

⋃
k Bk(u, v).
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Recall that a reflection order (O,≺) is a total order defined on the set of reflections, see
Dyer [4]. The reverse of the order O, denoted by O, is also a reflection order. Throughout
this paper, we shall always use a given reflection order (O,≺). We say that the path x
in (1) is increasing if t1 ≺ t2 ≺ · · · ≺ tn, and decreasing if t1 � t2 � · · · � tn. Dyer [4]
showed that each Bruhat interval [u, v] is shellable. That is, there is a unique increasing
(resp. decreasing) path of length n, say x (resp. y), and the reflection sequence of x (resp.
y) is the lexicographically smallest (resp. largest) among all the reflection sequences of
paths in Bn(u, v).

The following result is due to Dyer [5].

Theorem 1. Let x = (u→ x1 → · · · → xn−1 → v) be an increasing path in Bn(u, v), and
y = (u→ y1 → · · · → ym−1 → v) be a decreasing path in Bm(u, v). Then we have

u−1x1 ≺ u−1y1 and y−1m−1v ≺ x−1n−1v.

The ascent-descent sequence of the Bruhat path x is a monomial in the noncommuting
variables a and b defined by

w(x) = w1w2 · · ·wn−1,

where

wi =

{
a, if ti ≺ ti+1;

b, if ti � ti+1.

The ab-index φ̃u,v(a,b) of the interval [u, v] is the polynomial obtained by summing the
ascent-descent sequences of all the Bruhat paths from u to v:

φ̃u,v(a,b) =
∑

x∈B(u,v)

w(x).

The complete cd-index ψ̃u,v(c,d) of the interval [u, v] is obtained by a change of variable

in the ab-index φ̃u,v(a,b) of [u, v]. Let c = a + b and d = ab + ba. Billera and Brenti [2]

showed that φ̃u,v(a,b) can be expressed in terms of c and d:

ψ̃u,v(c,d) = ψ̃u,v(a + b, ab + ba) = φ̃u,v(a,b).

It can be shown that ψ̃u,v(c,d) does not depend on the reflection order.
Now we proceed to recall some definitions and results in [11].
For an ab-monomial M , denote by M the ab-monomial obtained by exchanging a

and b in M . This operator is an involution on the noncommutative ring Z〈a,b〉.

Definition 2. A flip F = Fu,v on [u, v] is defined to be an involution

Fu,v : B(u, v)→ B(u, v),

such that w(F (x)) = w(x) for any path x ∈ B(u, v).
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Fix a flip for every interval in the Bruhat graph of W . Let 1 6 m 6 n and

x = (u = x0 → x1 → · · · → xm → xm+1 → · · · → xn → xn+1 = v)

be a path in B(u, v). After applying the flip Fxm,v to x, we obtain

y = (u = x0 → x1 → · · · → xm → ym+1 → · · · → yn → yn+1 = v).

If w(x) = β1 · · · βm · · · βn, then w(y) = β1 · · · βm−1αmβm+1 · · · βn, where αm can be either
a or b. Define

sm,a(x) =

{
1, if βm = a;

0, otherwise.

sm,b(x) =


1, if βm = b, αm = a;

−1, if βm = a, αm = b;

0, otherwise.

Let the variables a,b, c have degree 1, and let the variable d have degree 2. Given
a cd-monomial M(c,d) of degree n, we can obtain a unique ab-monomial M(a,ba) of
degree n by substituting a for c and ba for d in M(c,d). Clearly, this is a one-to-one
correspondence between cd-monomials and ab-monomials in which every b is followed
by an a.

Definition 3. Let M(c,d) be a cd-monomial such that M(a,ba) = γ1γ2 · · · γn. Define

sM(x) =
n∏

m=1

sm,γm(x).

Note that sm,γm(x), and hence sM(x), depend on both the reflection order and the
given flip. Denote by sm,γm(x) the value of sm,γm(x) by using the reverse reflection order

O, and let sM(x) =
n∏

m=1

sm,γm(x).

Definition 4. A flip F is said to be compatible with the reflection order O if

sM(x) = sM(F (x))

for any interval [u, v], any path x ∈ B(u, v) and any cd-monomial M .

Theorem 5. Assume that the flip F is compatible with the reflection order O. For any
cd-monomial M of degree n, the coefficient of M in ψ̃u,v(c,d) is equal to∑

x∈Bn+1(u,v)

sM(x).
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If−1 does not appear in the above sum, then the coefficient ofM is clearly nonnegative.
Therefore Karu [11] introduced the following flip condition.

Definition 6. The flip condition holds for the interval [u, v] and monomial M if for every
path x ∈ B(u, v) the following is satisfied. If sm,γm(x) = −1 for some m, then there exists
k > m such that sk,γk(x) = 0.

Definition 7. Let M(c,d) be a cd-monomial of degree n with M(a,ba) = γ1γ2 · · · γn.
Define

TM(u, v) = {x ∈ Bn+1(u, v) | sm,γm(x) = 1, for all 1 6 m 6 n}.

From Theorem 5 we have

Corollary 8. If the flip condition holds for the interval [u, v] and monomial M , then the

coefficient of M in ψ̃u,v(c,d) is equal to |TM(u, v)| and hence is nonnegative.

In [11], Karu proved that when M contains at most one d, that is, M = ci or M =
cidcj (i, j > 0), the flip condition holds by Theorem 1. Then the coefficient of M is
nonnegative by Corollary 8. Recently, the authors showed that when M = dcidcj (i, j >
0), the coefficient of M is also nonnegative, see [7].

3 Combinatorial interpretation of ψ̃u,v(c, d)

In this section, we first give a labeling scheme for the edges in BG(u, v) and then construct
a flip F on the set of paths in B(u, v) based on the labels of the paths. By using the flip

F , we provide a combinatorial interpretation for the coefficients of ψ̃u,v(c,d).
Let [u, v] be a Bruhat interval such that BG(u, v) is isomorphic to the Boolean lattice

Bn. In the following, we shall always refer to [u, v] as such an interval if there is no further
notification. Note that every edge in BG(u, v) is a covering relation. In fact, if there is
an edge u1 → u2 in BG(u, v) such that u2 = u1t for some t ∈ T and `(u2) − `(u1) > 1,
then we must have `(u2)− `(u1) = 2k+ 1 for some k > 1. This implies BG(u1, u2) would
not be isomorphic to a Boolean lattice. Hence B(u, v) = Bn(u, v), i.e., all the paths from
u to v have length n.

Suppose that
x = (u = x0 → x1 → x2 → · · · → xn = v)

is a path in B(u, v). For 1 6 k 6 n, label the edge xk−1 → xk by an integer pair (ik, jk),
where ik (resp. jk) is the number of first edges xk → z in the interval [xk, v] such that
x−1k z � x−1k−1xk (resp. x−1k z ≺ x−1k−1xk). Call the sequence ((i1, j1), . . . , (in, jn)) the label
sequence of the path x.

Proposition 9. Suppose that the atoms of [u, v] are u1, u2, . . . , un. Then the set of labels
of the first edges u→ uk (1 6 k 6 n) of [u, v] is

{(i, j) | i+ j = n− 1, 0 6 i 6 n− 1}.

Moreover, the label of u→ ur is lexicographically smaller than the label of u→ uk if and
only if u−1ur � u−1uk.
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Proof. We make induction on n. By Theorem 1, it is easy to see that the proposition
holds for n = 2. Now assume that n > 2. Since [u, v] is shellable, there is a unique
increasing (resp. decreasing) path x (resp. y), and the reflection sequence of x (resp. y) is
the lexicographically smallest (resp. largest). Without loss of generality, we can assume

x = (u→ u1 → x2 → · · · → xn = v)

and
y = (u→ un → y2 → · · · → yn = v).

So the reflection u−1u1 (resp. u−1un) is the minimum (resp. maximum) among all the
n first edges of [u, v]. Moreover, since x is increasing, u−1u1 ≺ u−11 x2 and u−11 x2 is
the minimum among all the n − 1 first edges of [u1, v]. Similarly, since y is decreasing,
u−1un � u−1n y2 and u−1n y2 is the maximum among all the n − 1 first edges in [un, v].
Therefore, the label of the edge u → u1 is (n− 1, 0) and the label of the edge u → un is
(0, n− 1).

Notice that u and the atoms u2, u3, . . . , un−1 determine a Boolean lattice Bn−2. By
induction, the set of labels of the first edges u→ uk (2 6 k 6 n−1) in the Boolean lattice
Bn−2 is

{(s, r) | s+ r = n− 3, 0 6 s 6 n− 3}.

Since BG(u, v) is a Boolean lattice, for each atom uk (2 6 k 6 n − 1), there exists
zk ∈ [u, v] such that uk → zk and u1 → zk. Since `(zk) − `(u) = 2, by [3, Lemma 2.7.3],
the interval [u, zk] has exactly two paths. Since u−1u1 ≺ u−11 zk and [u, zk] is shellable, we
have u−1uk � u−1k zk. Similarly, there exists wk ∈ [u, v] such that uk → wk and un → wk.
Since u−1un � u−1n wk, we see that u−1uk ≺ u−1k wk. That is to say, if the edge u→ uk has
label (s, r) in Bn−2, then its label would be (s+ 1, r+ 1) in Bn. Therefore, in the Boolean
lattice Bn, the set of labels of the first edges is

{(i, j) | i+ j = n− 1, 0 6 i 6 n− 1}.

It is clear that u−1u1 (resp. u−1un) is the minimum (resp. maximum) among all the
first edges of [u, v] in the reflection order O, and the label of u → u1 (resp. u → un) is
the largest (resp. smallest) in the lexicographic order. By induction, for 2 6 k, r 6 n− 1,
the label of u → uk is lexicographically smaller than the label of u → ur if and only
if u−1uk � u−1ur in Bn−2. Consequently, for 1 6 k, r 6 n, the label of u → uk is
lexicographically smaller than the label of u → ur if and only if u−1uk � u−1ur in Bn.
This completes the proof.

Remark 10. According to Proposition 9, if we arrange the labels of the first edges u →
u1, . . . , u → un of [u, v] decreasingly in the lexicographic order, then the corresponding
reflections u−1u1, . . . , u

−1un are arranged increasingly in the reflection order. Thus, with-
out loss of generality, we can require the edge u → uk to have label (n − k, k − 1) for
1 6 k 6 n.
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Corollary 11. There is a bijection between the Bruhat paths in B(u, v) and sequences of
nonnegative integer pairs ((i1, j1), . . . , (in, jn)) such that ik + jk = n− k for 1 6 k 6 n. In
other words, a label sequence determines a unique path in B(u, v) and vice versa.

Proposition 12. Let uk−1 → uk → uk+1 be two adjacent edges in B(u, v) such that the
edge uk−1 → uk has label (ik, jk) and the edge uk → uk+1 has label (ik+1, jk+1). Then

(1) ik > ik+1 if and only if u−1k−1uk ≺ u−1k uk+1.

(2) jk > jk+1 if and only if u−1k−1uk � u−1k uk+1.

Proof. (1) Since there are ik edges among the first edges of [uk, v] which are larger than
u−1k−1uk, by Remark 10, we see that the labels of these ik edges are (i, j) such that 0 6
i 6 ik − 1. It follows that ik > ik+1 if and only if u−1k−1uk ≺ u−1k uk+1. (2) Notice that
ik + jk = ik+1 + jk+1 + 1, then ik > ik+1 if and only if jk 6 jk+1. Thus jk > jk+1 if and
only if u−1k−1uk � u−1k uk+1.

Now we can define a flip on B(u, v) according to the labels of the edges.

Definition 13. Let

x = (u = x0 → x1 → x2 → · · · → xn = v)

be a path in B(u, v) with label sequence ((i1, j1), (i2, j2), . . . , (in, jn)). Define

F : B(u, v)→ B(u, v)

as follows.

(1) If min{i1, j1} 6 min{i2, j2}, then let

F(x) = (u = x0 → y1 → y2 → · · · → yn = v)

such that the label sequence of F(x) is ((j1, i1), (j2, i2), . . . , (jn, in)).

(2) If min{i1, j1} > min{i2, j2}, then let

F(x) = (u = x0 → x1 → y2 → · · · → yn = v)

such that the label sequence of F(x) is ((i1, j1), (j2, i2), . . . , (jn, in)).

By Proposition 12, it is easy to see that F is a flip on B(u, v). For example, let
[u, v] be an interval such that BG(u, v) is isomorphic to B4, see Figure 1. By Re-
mark 10, we can label the first edges u → u1, u → u2, u → u3, u → u4 of [u, v] by
(3, 0), (2, 1), (1, 2), (0, 3) respectively. The first edges u1 → u5, u1 → u6, u1 → u7 of [u1, v]
are labeled by (2, 0), (1, 1), (0, 2) respectively. The images of the flip F on some paths in
B(u, v) are listed below.

F : (u→ u1 → u5 → v1 → v) 7→ (u→ u4 → u10 → v4 → v),

F : (u→ u2 → u5 → v1 → v) 7→ (u→ u2 → u9 → v4 → v),

F : (u→ u2 → u8 → v1 → v) 7→ (u→ u3 → u8 → v4 → v),

F : (u→ u3 → u6 → v3 → v) 7→ (u→ u3 → u10 → v3 → v).
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Figure 1: The Boolean lattice B4.

Theorem 14. The flip F is compatible with the reflection order O and also satisfies the
flip condition for any cd-monomial M .

Proof. We first show that the flip F satisfies the flip condition for any cd-monomial M .
We claim that sm,b(x) 6= −1 for any m, any cd-monomial M and any path x in B(u, v).
Suppose to the contrary that there exists a path x in B(u, v) such that sm,b(x) = −1 for
some integer m. Let

x = (u→ x1 → · · · → xm−1 → xm → xm+1 → xm+2 → · · · → v). (2)

Since each b follows by an a in M(a,ba), by the definitions of sm,b(x) and sm,a(x), we
can assume that x−1m−1xm ≺ x−1m xm+1 ≺ x−1m+1xm+2. For k = m,m+ 1,m+ 2, let the label
of the edge xk−1 → xk be (ik, jk). Then by Proposition 12, we have im > im+1 > im+2.

To calculate sm,b(x), we need to flip the path x at xm. Let

y = Fxm,v(x) = (u→ x1 → · · · → xm−1 → xm → ym+1 → ym+2 → · · · → v). (3)

If xm+1 = ym+1 then we have sm,b(x) = 0, a contradiction. If xm+1 6= ym+1, then by
the definition of the flip F , we find that min{im+1, jm+1} 6 min{im+2, jm+2}. Since
im+1 > im+2, we have jm+1 6 im+2 and the label of the edge xm → ym+1 must be
(jm+1, im+1). Then we obtain im > im+1 > im+2 > jm+1. Thus by Proposition 12,
x−1m−1xm ≺ x−1m ym+1, and so sm,b(x) = 0 again, which is a contradiction. This means
sm,b(x) 6= −1 for any m. Thus the flip F satisfies the flip condition.

Now we proceed to show that the flip F is compatible with the reflection order O. Let
M(c,d) be a cd-monomial with M(a,ba) = γ1 · · · γn−1. It suffices to show that for any
integer m ∈ [n− 1] and any path p in B(u, v), we have sm,γm(p) = sm,γm(F(p)).

Assume that

p = (u→ p1 → · · · → pm−1 → pm → pm+1 → · · · → pn−1 → v)
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is a path in B(u, v) with label sequence

((r1, s1), . . . , (rm, sm), (rm+1, sm+1), . . . , (rn, sn))

in the reflection order O. And let

F(p) = (u→ q1 → · · · → qm−1 → qm → qm+1 → · · · → qn−1 → v).

By the definition of the flip F , the label sequence of F(p) is{
((r1, s1), (s2, r2), . . . , (sm, rm), (sm+1, rm+1), . . . , (sn, rn)), if p1 = q1;

((s1, r1), (s2, r2), . . . , (sm, rm), (sm+1, rm+1), . . . , (sn, rn)), if p1 6= q1.

It is easy to check that if γm = a, then sm,a(p) = sm,a(F(p)). Now we consider the
case γm = b. To compute sm,b(p), we need to flip the path p at pm. Let

p′ = Fpm,v(p) = (u→ p1 → · · · → pm−1 → pm → p′m+1 → · · · → p′n−1 → v).

Then the label sequence of p′ is{
((r1, s1), . . . , (rm, sm), (rm+1, sm+1), (sm+2, rm+2), . . . , (sn, rn)), if pm+1 = p′m+1;

((r1, s1), . . . , (rm, sm), (sm+1, rm+1), (sm+2, rm+2), . . . , (sn, rn)), if pm+1 6= p′m+1.

To calculate sm,b(F(p)), we need to flip F(p) at qm. Let

Fqm,v(F(p)) = (u→ q1 → · · · → qm−1 → qm → q′m+1 → · · · → q′n−1 → v).

Then the label sequence of Fqm,v(F(p)) is
((r1, s1), (s2, r2), . . . , (sm, rm), (sm+1, rm+1), . . . , (rn, sn)), if p1 = q1, pm+1 = p′m+1;

((r1, s1), (s2, r2), . . . , (sm, rm), (rm+1, sm+1), . . . , (rn, sn)), if p1 = q1, pm+1 6= p′m+1;

((s1, r1), (s2, r2), . . . , (sm, rm), (sm+1, rm+1), . . . , (rn, sn)), if p1 6= q1, pm+1 = p′m+1;

((s1, r1), (s2, r2), . . . , (sm, rm), (rm+1, sm+1), . . . , (rn, sn)), if p1 6= q1, pm+1 6= p′m+1.

It is not hard to check that the paths F(p′) and Fqm,v(F(p)) have the same label sequence.
Therefore,

F(p′) = Fqm,v(F(p)).

That is, if we flip the path p at pm to obtain p′, then under the flip F , we shall flip F(p)
at qm to obtain F(p′).

Now we are prepared to show that sm,b(p) = sm,b(F(p)). If m = 1 and p1 = q1, then
p′ = F(p) and p = F(p′). It is obvious that s1,b(p) = s1,b(F(p)). If m = 1 and p1 6= q1 or
m > 1, according to the label sequences of the paths p, p′,F(p) and F(p′) one can check
that: (i) If pm+1 = p′m+1, then sm,b(p) = sm,b(F(p)) = 0. (ii) If pm+1 6= p′m+1, then we
also have sm,b(p) = sm,b(F(p)). This completes the proof.
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We are ready to give a combinatorial interpretation for the coefficients of ψ̃u,v(c,d).

Theorem 15. Let M be a cd-monomial of degree n−1 such that M(a,ba) = γ1 · · · γn−1.

Then the coefficient of M in ψ̃u,v(c,d) is equal to the number of sequences

((i1, j1), (i2, j2), . . . , (in, jn))

satisfying the following conditions:

(1) For 1 6 m 6 n, im, jm > 0 and im + jm = n−m.

(2) For 1 6 m 6 n− 1, if γm = a then im > im+1.

(3) For 1 6 m 6 n− 2, if γm = b then im, jm > jm+1 and im+2 > jm+1.

Proof. According to Theorem 5, Corollary 8 and Theorem 14, the coefficient of M is
equal to the number of paths x in B(u, v) such that sM(x) = 1. Since a path is uniquely
determined by its label sequence, we turn to the characterization of the corresponding
sequences of nonnegative integer pairs ((i1, j1), (i2, j2), . . . , (in, jn)) with ik + jk = n − k
for 1 6 k 6 n.

Let x be the path in (2) with the edge xm−1 → xm labeled by (im, jm) for 1 6 m 6 n.
If γm = a, then sm,a(x) = 1 only if x−1m−1xm ≺ x−1m xm+1. By Proposition 12, we have
im > im+1. If γm = b, then γm+1 = a. By Proposition 12, we have im+1 > im+2. Since
im+1 + jm+1 = im+2 + jm+2 + 1, we see that jm+1 6 jm+2. After applying Fxm,v to x, we
get the path y as in (3). We see that sm,b(x) = 1 only if

x−1m−1xm � x−1m xm+1, x−1m−1xm ≺ x−1m ym+1 and xm+1 6= ym+1.

Then the label of the edge xm → ym+1 is (jm+1, im+1). By Proposition 12 and the definition
of the flip F , we find

im, jm > jm+1 and min{im+1, jm+1} 6 min{im+2, jm+2}.

Combining with the facts im+1 > im+2 and jm+1 6 jm+2, we obtain

im, jm > jm+1 and im+1 > im+2 > jm+1. (4)

This completes the proof.

For example, let [u, v] be a Bruhat interval such that BG(u, v) is isomorphic to B5.
And let M = d2 with M(a,ba) = baba. There are 4 sequences corresponding to M that
satisfy the conditions in Theorem 15, namely,

((1, 3), (3, 0), (1, 1), (1, 0), (0, 0)), ((2, 2), (2, 1), (1, 1), (1, 0), (0, 0)),

((2, 2), (3, 0), (1, 1), (1, 0), (0, 0)), ((3, 1), (3, 0), (1, 1), (1, 0), (0, 0)).

Then the coefficient of M in ψ̃u,v(c,d) is 4. In fact,

ψ̃u,v(c,d) = c4 + 3c2d + 5cdc + 3dc2 + 4d2.
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m = 1 2 3 4 5 6 7 En
n = 1 1 1

2 1 0 1
3 1 1 0 2
4 2 2 1 0 5
5 5 5 4 2 0 16
6 16 16 14 10 5 0 61
7 61 61 56 46 32 16 0 272

Table 1: The Entringer Numbers En(k).

4 Refined enumeration of ψ̃u,v(1, 1)

In this section, we give a refined enumeration of the number of cd-monomials in ψ̃u,v(c,d)
in terms of Entringer numbers.

Definition 16. A path x in B(u, v) is said to be valid if there exists some cd-monomial
M such that sM(x) = 1. A sequence s = ((i1, j1), (i2, j2), . . . , (in, jn)) with ik, jk > 0
and ik + jk = n − k (1 6 k 6 n) is said to be valid if it corresponds to a valid path in
B(u, v). Equivalently, the sequence s is said to be valid if s satisfies: (i) in−1 > in and
ik + jk = n − k for 1 6 k 6 n; (ii) For 1 6 k 6 n − 2, if jk > jk+1 then ik > jk+1 and
ik+1 > ik+2 > jk+1.

Now we enumerate the valid paths beginning with the same first edge. Let En be the
Euler number, i.e., the number of up-down permutations on [n]. It is well known that

tanu+ secu =
∑
n>0

En
un

n!
.

Denote by En(k) the number of up-down permutations on [n] beginning with k (1 6 k 6
n). It is clear that En =

∑n
k=1En(k). The numbers En(k) are called Euler and Bernoulli

numbers, or Entringer numbers, see [6]. The Entringer numbers En(k) for n, k 6 7 are
displayed in Table 1.

It is easy to verify that En(n) = 0 and

En(k) =
n−k∑
i=1

En−1(i), 1 6 k 6 n− 1. (5)

Theorem 17. Suppose that the atoms of [u, v] are u1, u2, . . . , un, and the edge u → uk
has label (n − k, k − 1) for 1 6 k 6 n. Then the number of valid paths in B(u, v) with
first edge u → uk is the Entringer number En(k). In other words, the number of valid
sequences beginning with (n− k, k − 1) is En(k).

Proof. Let Tn(k) denote the number of valid paths in B(u, v) with first edge u → uk
labeled by (n−k, k−1) for 1 6 k 6 n. It is easy to check that T2(1) = 1, T2(2) = 0. Then
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it suffices to show that Tn(k) satisfies the relation (5). We analyze when a valid path in
B(uk, v) can be extended to a valid path in B(u, v).

For 1 6 k 6 n, let
x′ = (uk → uik → uijk → · · · → v)

be a valid path in B(uk, v). By Proposition 9, we can label the edges uk → uik (1 6 i 6
n−1) and uik → uijk (1 6 j 6 n−2) by (n− i−1, i−1) and (n− j−2, j−1) respectively.
By induction, Tn−1(t) is the number of valid paths in B(uk, v) beginning with uk → utk
for 1 6 t 6 n− 1. Moreover, Tn−1(n− 1) = 0 and for 1 6 r 6 n− 2,

Tn−1(r) =
n−r−1∑
i=1

Tn−2(i).

Now we extend the path x′ to a path x in B(u, v). Let

x = (u→ uk → uik → uijk → · · · → v).

Since x′ is a valid path in B(uk, v), x is a valid path in B(u, v) if and only if s1,a(x) = 1
or s1,b(x) = 1. To compute s1,a(x) or s1,b(x), we need to flip the path x at uk. Let

y = Fuk,v(x) = (u→ uk → (uik)
′ → (uijk )′ → · · · → v).

Then x is a valid path in B(u, v) if and only if u−1uk ≺ u−1k uik, or u−1uk � u−1k uik and
u−1uk ≺ u−1k (uik)

′ and uik 6= (uik)
′. Since the edge u→ uk has label (n− k, k − 1), by (4),

we deduce that x is a valid path in B(u, v) if and only if

n− k > n− i− 1 (6)

or

k − 1 > i− 1, n− k > i− 1 and n− i− 1 > n− j − 2 > i− 1. (7)

If (6) holds, then we have k 6 i 6 n − 1. Hence by induction, the number of valid
paths in B(u, v) extended from the first edges uk → un−1k , . . . , uk → ukk in B(uk, v) is

n−1∑
i=k

Tn−1(i). (8)

If (7) holds, then we get

1 6 i 6 α and i 6 j 6 n− i− 1,

where α = min{n− k, k − 1}. Thus by induction, the number of valid paths in B(uk, v)
which begin with uk → uik (1 6 i 6 α) and can be extended to a valid path in B(u, v) is

T ′n−1(i) =
n−i−1∑
j=i

Tn−2(j)

= Tn−1(1)−
i−1∑
r=1

(Tn−2(r) + Tn−2(n− r − 1)). (9)
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Combining (8), (9) and by induction, we derive that

Tn(k) =
α∑
i=1

T ′n−1(i) +
n−1∑
i=k

Tn−1(i)

=
α∑
i=1

(
Tn−1(1)−

i−1∑
r=1

(Tn−2(r) + Tn−2(n− r − 1))

)
+

n−1∑
i=k

Tn−1(i)

= αTn−1(1)−
α∑
i=1

Tn−1(n− i)−
α∑
i=1

(Tn−1(1)− Tn−1(i)) +
n−1∑
i=k

Tn−1(i)

=
α∑
i=1

(Tn−1(i)− Tn−1(n− i)) +
n−1∑
i=k

Tn−1(i). (10)

Since α = n− k or k − 1, and it is easy to check that

n−k∑
i=1

(Tn−1(i)− Tn−1(n− i)) =
k−1∑
i=1

(Tn−1(i)− Tn−1(n− i)),

we find that

α∑
i=1

(Tn−1(i)− Tn−1(n− i)) =
k−1∑
i=1

(Tn−1(i)− Tn−1(n− i)). (11)

It follows from (10) and (11) that

Tn(k) =
k−1∑
i=1

(Tn−1(i)− Tn−1(n− i)) +
n−1∑
i=k

Tn−1(i) =
n−k∑
i=1

Tn−1(i),

as desired. This completes the proof.

Corollary 18. The number of valid paths in B(u, v) or the number of valid sequences of

length n is equal to the Euler number En. In other words, ψ̃u,v(1, 1) = ψBn(1, 1) = En.

It is worth mentioning that Billera [1] conjectured that for all lower Bruhat intervals

[e, v], ψ̃e,v(1, 1) 6 ψB`(v)
(1, 1). In our words, this conjecture asserts that for all lower

Bruhat intervals [e, v] such that `(v) = n, if there exists a flip on the set of paths in
B(e, v) satisfies the flip condition, then the number of valid paths in B(e, v) is less than
or equal to En.

5 The coefficient of dn

In this section, we interprete the coefficient of dn in terms of the Poupard numbers.
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0 1 0
0 1 2 1 0

0 4 8 10 8 4 0
0 34 68 94 104 94 68 34 0

Table 2: The Poupard triangle Pn(k).

The Poupard numbers Pn(k) (1 6 k 6 2n + 1) are defined recursively as follows, see
Poupard [14] or Foata and Han [8]. Let P1(1) = 0, P1(2) = 1, P1(3) = 0, and Pn(1) = 0,
Pn(2) =

∑2n−1
j=1 Pn−1(j) for n > 2. For 3 6 k 6 2n+ 1,

Pn(k) = 2Pn(k − 1)− Pn(k − 2)− 2Pn−1(k − 2). (12)

By [8, Corollary 4.3], we have

Pn(k) = Pn(2n− k + 2) for 1 6 k 6 n.

The first few lines of the Poupard triangle are listed in Table 2.
Recall that the numbers tn appearing in the Taylor expansion

√
2 tan(u/

√
2) =

∑
n>0

tn
u2n+1

(2n+ 1)!

= 1
u

1!
+ 1

u3

3!
+ 4

u5

5!
+ 34

u7

7!
+ 496

u9

9!
+ 11056

u11

11!
+ · · ·

are called the reduced tangent numbers. It is easy to see that tn = E2n+1/2
n, where E2n+1

are the Euler numbers. By [8, Theorem 1.1], we have

tn =
2n+1∑
k=1

Pn(k).

Definition 19. A valid path x in B(u, v) of length 2n + 1 is said to be alternating if
w(x) = baba · · ·ba. The label sequence s = ((i1, j1), (i2, j2), . . . , (i2n+1, j2n+1)) of an
alternating path is called an alternating sequence. Equivalently, the sequence s is said to
be alternating if s is valid and j2r−1 > j2r and i2r > i2r+1 for 1 6 r 6 n.

Theorem 20. Let [u, v] be a Bruhat interval such that BG(u, v) is isomorphic to the
Boolean lattice B2n+1. Suppose that the atoms of [u, v] are u1, u2, . . . , u2n+1, and the edge
u→ uk (1 6 k 6 2n+1) has label (2n−k+1, k−1). Then the number of alternating paths
in B(u, v) beginning with the edge u→ uk is the Poupard number Pn(k). In other words,
the number of alternating sequences of length 2n+ 1 beginning with (2n− k + 1, k − 1) is
Pn(k).
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Proof. Assume that Fn(k) is the number of alternating paths in B(u, v) with first edge
u → uk labeled by (2n − k + 1, k − 1) for 1 6 k 6 2n + 1. It is easy to check that
F1(1) = 0, F1(2) = 1, F1(3) = 0. We claim that for 1 6 k 6 n+ 1,

Fn(k) =
k−1∑
i=1

2n−i∑
j=i

Fn−1(j), (13)

and for n+ 1 < k 6 2n+ 1,

Fn(k) = Fn(2n− k + 2). (14)

We prove (13) first. Let

x = (u→ uk → uik → uijk → · · · → v)

be a path in B(u, v). By Proposition 9, we can assume that the edges u → uk, uk → uik
and uik → uijk are labeled by (2n − k + 1, k − 1), (2n − i, i − 1) and (2n − j − 1, j − 1)
respectively. Since the path x is valid and w(x) = baba · · ·ba, by Theorem 15, we see
that

k − 1 > i− 1, 2n− k + 1 > i− 1, (15)

and

2n− j − 1 > i− 1, 2n− i > 2n− j − 1. (16)

Suppose that
x′′ = (uik → uijk → · · · → v)

is an alternating path in B(uik, v). By induction, the number of alternating paths in
B(uik, v) with first edge uik → uijk is Fn−1(j).

If 1 6 k 6 n + 1, then we have 2n − k + 1 > k − 1. By (15), we see that i 6 k − 1.
By (16), we have i 6 j 6 2n − i. That is to say, only the paths beginning with uk →
uik (1 6 i 6 k− 1) and uik → uijk (i 6 j 6 2n− i) will contribute to Fn(k). Therefore, the
equation (13) holds.

If n + 1 < k 6 2n + 1, i.e., 2n− k + 1 < k − 1, then by (15) we have i 6 2n− k + 1
and by (16), we have i 6 j 6 2n− i. Let k′ = 2n− k + 2, then 1 6 k′ 6 n and so

Fn(k) =
2n−k+1∑
i=1

2n−i∑
j=i

Fn−1(j) =
k′−1∑
i=1

2n−i∑
j=i

Fn−1(j) = Fn(k′) = Fn(2n− k + 2).

Thus the equation (14) holds.
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Now we show that Fn(k) (1 6 k 6 n+ 1) satisfies the relation (12). By (13), we have

2Fn(k − 1)− Fn(k − 2)− 2Fn−1(k − 2)

= 2
k−2∑
i=1

2n−i∑
j=i

Fn−1(j)−
k−3∑
i=1

2n−i∑
j=i

Fn−1(j)− 2Fn−1(k − 2)

=
k−2∑
i=1

2n−i∑
j=i

Fn−1(j) +
2n−k+2∑
j=k−2

Fn−1(j)− 2Fn−1(k − 2)

=
k−2∑
i=1

2n−i∑
j=i

Fn−1(j) +
2n−k+1∑
j=k−1

Fn−1(j)

=
k−1∑
i=1

2n−i∑
j=i

Fn−1(j) = Fn(k),

where the third equation follows from the fact Fn−1(k − 2) = Fn−1(2n − k + 2), which
holds by induction. This completes the proof.

Corollary 21. The Poupard numbers Pn(k) can be defined recursively as follows. For
1 6 k 6 n+ 1,

Pn(k) =
k−1∑
i=1

2n−i∑
j=i

Pn−1(j),

where P1(1) = 0, P1(2) = 1, P1(3) = 0 and Pn(1) = 0 for all n > 1, and Pn(k) =
Pn(2n− k + 2) for n+ 1 < k 6 2n+ 1.

The following corollary was also obtained by Mahajan [13] algebraically.

Corollary 22. The coefficient of dn is the reduced tangent number tn.

To conclude, we remark that since the cd-index of Bn depends only on the poset struc-
ture of Bn and ψ̃u,v(c,d) = ψu,v(c,d) when BG(u, v) is isomorphic to Bn, the complete
cd-index of [u, v] is combinatorial invariant. However, there lacks of a direct proof of this
fact in the viewpoint of the complete cd-index. In this paper, we provide such a proof by
labeling the edges of [u, v] by pairs of nonnegative integers, and show that this labeling
is independent of the specific interval [u, v] as long as its Bruhat graph is isomorphic to

Bn. Then we can compute the ab-polynomial φ̃u,v(a,b) of [u, v] according to this labeling
(Proposition 12), and get rid of the specific Coxeter group.

It would be interesting to find a direct correspondence between the set of up-down
permutations on [n] beginning with k (1 6 k 6 n) and the set of valid sequences of length
n beginning with (n− k, k − 1).
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