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Abstract

The degree-diameter problem asks for the maximum number of vertices in a
graph with maximum degree ∆ and diameter k. For fixed k, the answer is Θ(∆k).
We consider the degree-diameter problem for particular classes of sparse graphs, and
establish the following results. For graphs of bounded average degree the answer
is Θ(∆k−1), and for graphs of bounded arboricity the answer is Θ(∆bk/2c), in both
cases for fixed k. For graphs of given treewidth, we determine the the maximum
number of vertices up to a constant factor. Other precise bounds are given for
graphs embeddable on a given surface and apex-minor-free graphs.

Keywords: degree-diameter problem; treewidth; arboricity; sparse graph; surface
graph; apex-minor-free graph

1 Introduction

Let N(∆, k) be the maximum number of vertices in a graph with maximum degree at most
∆ and diameter at most k. Determining N(∆, k) is called the degree-diameter problem
and is widely studied, especially motivated by questions in network design; see [22] for a
survey. Obviously, N(∆, k) is at most the number of vertices at distance at most k from
a fixed vertex. For ∆ > 3 (which we implicitly assume), it follows that

N(∆, k) 6 M(∆, k) := 1 + ∆
k−1∑
i=0

(∆− 1)i =
∆(∆− 1)k − 2

∆− 2
.
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This inequality is called the Moore bound [22, p. 8]. The best lower bound is

N(∆, k) > f(k) ∆k ,

for some function f . For example, the de Bruijn graph shows that N(∆, k) >
(

∆
2

)k
;

see Lemma 1. Canale and Gómez [3] established the best known asymptotic bound of

N(∆, k) >
(

∆
1.59

)k
for sufficiently large ∆.

For a class of graphs G, let N(∆, k,G) be the maximum number of vertices in a graph
in G with maximum degree at most ∆ and diameter at most k. We consider N(∆, k,G)
for some particular classes G of sparse graphs, focusing on the case of small diameter k,
and large maximum degree ∆. We prove lower and upper bounds on N(∆, k,G) of the
form

f(k) ∆g(k) (1)

for some functions f and g. Since k is assumed to be small compared to ∆, the most
important term in such a bound is g(k). Thus our focus is on g(k) with f(k) a secondary
concern.

We first state two straightforward examples, namely bipartite graphs and trees. The
maximum number of vertices in a bipartite graph with maximum degree ∆ and diameter
k is f(k) ∆k−1 for some function f ; see references [22, Section 2.4.4] and [1, 5]. And for
trees, it is easily seen that the maximum number of vertices is within a constant factor of
(∆− 1)bk/2c, which is a big improvement over the unrestricted bound of ∆k. Some of the
results in this paper can be thought of as generalisations of this observation.

The following table summarises our current knowledge, where original results are in
bold.

graph class diameter k max. number of vertices
general f(k) ∆k

3-colourable k > 2 f(k) ∆k

triangle-free 3-colourable k > 4 f(k) ∆k

bipartite f(k) ∆k−1

average degree d f(k) d∆k−1

arboricity b f(k, b) ∆bk/2c

treewidth t odd k ct (∆− 1)(k−1)/2

treewidth t even k c
√
t (∆− 1)k/2

Euler genus g odd k 6 c(g + 1)k (∆− 1)(k−1)/2

Euler genus g even k 6 c
√

(g + 1)k (∆− 1)k/2

trees c∆bk/2c

First consider the class of graphs with average degree d. In this case, we prove that
the maximum number of vertices is f(k) d∆k−1 for some function f (see Section 3). This
shows that by assuming bounded average degree we obtain a modest improvement over
the standard bound of (∆ − 1)k. A much more substantial improvement is obtained by
considering arboricity.
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The arboricity of a graph G is the minimum number of spanning forests whose union
is G. Nash-Williams [24] proved that the arboricity of G equals

max
H⊆G

⌈ |E(H)|
|V (H)|−1

⌉
, (2)

where the maximum is taken over all subgraphs H of G. For example, it follows from
Euler’s formula that every planar graph has arboricity at most 3, and every graph with
Euler genus g has arboricity at most O(

√
g). More generally, every graph that excludes a

fixed minor has bounded arboricity. Note that δ 6 d 6 2b for every graph with minimum
degree δ, average degree d, and arboricity b. Arboricity is a more refined measure than
average degree, in the sense that a graph has bounded arboricity if and only if every
subgraph has bounded average degree.

We prove that for a graph with arboricity b the maximum number of vertices is
f(b, k) ∆bk/2c for some function f (see Section 4). Thus by moving from bounded av-
erage degree to bounded arboricity the g(k) term discussed above is reduced from k−1 to
bk

2
c. This result generalises the above-mentioned bound for trees, which have arboricity

1. The dependence on b in f can be reduced by making more restrictive assumptions
about the graph.

Treewidth is a parameter that measures how tree-like a given graph is. The treewidth of
a graph G can be defined to be the minimum integer t such that G is a spanning subgraph
of a chordal1 graph with no (t + 2)-clique. For example, trees are exactly the connected
graphs with treewidth 1. See [2, 26] for background on treewidth. Since the arboricity of a
graph is at most its treewidth, bounded treewidth is indeed a more restrictive assumption
than bounded arboricity. We prove that the maximum number of vertices in a graph with
treewidth t is within a constant factor of t(∆− 1)(k−1)/2 if k is odd, and of

√
t(∆− 1)k/2

if k is even (and ∆ is large). These results immediately imply the best known bounds
for graphs of given Euler genus2, and new bounds for apex-minor-free graphs. All these
results are presented in Section 5.

Our results in Section 6 are of a different nature. There, we describe (non-sparse)
graph classes for which the maximum number of vertices is not much different from the
unrestricted case. In particular, we prove that for k > 2, there are 3-colourable graphs
with f(k) ∆k vertices, and for for k > 4, there are triangle-free 3-colourable graphs with
f(k) ∆k vertices. These results are in contrast to the bipartite case, in which f(k) ∆k−1

is the answer.
All undefined terminology and notation is in reference [9].

1A graph is chordal if every induced cycle is a triangle.
2A surface is a non-null compact connected 2-manifold without boundary. Every surface is homeo-

morphic to the sphere with h handles or the sphere with c cross-caps. The sphere with h handles has
Euler genus 2h, and the sphere with c cross-caps has Euler genus c. The Euler genus of a graph G is the
minimum Euler genus of a surface in which G embeds. See the monograph by Mohar and Thomassen
[23] for background on graphs embedded in surfaces.
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2 Basic Constructions

This section gives some graph constructions that will later be used for proving lower
bounds on N(∆, k,G). A digraph is a directed graph possibly with loops and possibly
with arcs in opposite directions between two vertices. A digraph is r-inout-regular if each
vertex has indegree r and outdegree r (where a loop at v counts in the indegree and
the outdegree of v). A digraph has strong diameter k if for all (not necessarily distinct)
vertices v and w there is a directed walk from v to w of length exactly k.

de Bruijn [4] and Good [16] independently introduced what is now known as the de

Bruijn digraph
−→
B (r, k). Fiol et al. [14], and Zhang and Lin [32] showed that

−→
B (r, k) can

be constructed recursively as a line digraph, as we now explain. If G is a digraph with arc
set A(G), then the line digraph L(G) has vertex set A(G), where (uv, vw) is an arc of L(G)

for all distinct arcs uv, vw ∈ A(G). Let
−→
B (r, 1) be the r-vertex digraph in which every

arc is present (including loops). Now recursively define
−→
B (r, k) := L(

−→
B (r, k − 1)). Then

−→
B (r, k) has rk vertices, is r-inout-regular, and has strong diameter k; see [14, Sec. IV].

Define the de Bruijn graph B(r, k) to be the undirected graph that underlies
−→
B (r, k)

(ignoring loops, and replacing bidirectional arcs by a single edge).

Lemma 1. For all integers r > 1 and k > 1 the de Bruijn graph B(r, k) has rk ver-
tices, maximum degree at most 2r, and diameter k. Moreover, for k > 2, there are sets
B1, . . . , Brk−1 of vertices in B(r, k), each containing 2r − 2 or 2r vertices, such that each
vertex of B(r, k) is in exactly two of the Bi, and the endpoints of each edge of B(r, k) are
in some Bi.

Proof. Clearly B(r, k) has rk vertices, has maximum degree at most 2r, and has (undi-
rected) diameter k (since loops can be ignored in shortest paths). It remains to prove the

final claim of the lemma, where k > 2. For each vertex v of
−→
B (r, k − 1), let Bv be the

set of vertices of B(r, k) that correspond to non-loop arcs incident with v in
−→
B (r, k − 1).

Thus |Bv| equals 2r − 2 or 2r depending on whether there is a loop at v in
−→
B (r, k − 1).

Each vertex of B(r, k) corresponding to an arc vw of
−→
B (r, k−1) is in exactly two of these

sets, namely Bv and Bw. The endpoints of each edge of B(r, k) corresponding to a path

uv, vw of
−→
B (r, k − 1) are both in Bv. These rk−1 sets, one for each vertex of

−→
B (r, k − 1),

define the desired sets in B(r, k).

The next two lemmas will be useful later.

Lemma 2. For every integer q > 1 there is a (2q−2)-regular graph L with
(
q+1

2

)
vertices,

containing cliques L1, . . . , Lq+1 each of order q, such that each vertex in L is in exactly
two of the Li, and Li ∩ Lj 6= ∅ for all i, j ∈ [1, q + 1].

Proof. Let L be the line graph of the complete graph Kq+1. That is, V (L) := {{i, j} :
1 6 i, j 6 q + 1, i 6= j}, where Li := {{i, j} : 1 6 j 6 q + 1, i 6= j} is a clique for each
i ∈ [1, q + 1]. The claimed properties are immediate.
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Lemma 3. For all integers p > 1 and q > 1 and m 6 (q + 1)p there is a bipartite graph
T with bipartition C,D, such that C consists of m vertices each with degree q, and D
consists of

(
q+1

2

)
vertices each with degree at most 2p, and every pair of vertices in C have

a common neighbour in D.

Proof. By Lemma 2, there is a set D = V (L) of size
(
q+1

2

)
, containing subsets D1, . . . , Dq+1

each of size q, such that each element of D is in exactly two of the Di, and Di ∩Dj 6= ∅
for all i, j ∈ [1, q + 1].

Let T be the graph with vertex set C ∪ D, where C is defined as follows. For each
i ∈ [1, q + 1] add a set Ci of p vertices to C, each adjacent to every vertex in Di. Since
|Di| = q, each vertex in C has degree q. Since each element of D is in exactly two of the
Di, each vertex in D has degree 2p.

Consider two vertices v, w ∈ C. Say v ∈ Ci and w ∈ Cj. Let x be a vertex in Di ∩Dj.
Then x is a common neighbour of v and w in G.

We have proved that T has the desired properties in the case that m = (q + 1)p.
Finally, delete (q + 1)p − m vertices from C, and the obtained graph has the desired
properties.

3 Average Degree

This section presents bounds on the maximum number of vertices in a graph with given
average degree. For fixed diameter, the upper and lower bounds are within a constant
factor. We have the following rough upper bound for graphs of given minimum degree.

Proposition 4. Every graph with minimum degree δ, maximum degree ∆ and diameter
k has at most 2δ(∆− 1)k−1 + 1 vertices.

Proof. Let v be a vertex of degree δ. For 0 6 i 6 k, let ni be the number of vertices
at distance i from v. Thus n0 = 1 and ni 6 δ(∆ − 1)i−1 for all i > 1. In total,

n =
∑k

i=0 ni 6 1 +
∑k

i=1 δ(∆− 1)i−1 = 1 + δ (∆−1)k−1
∆−2

6 1 + 2δ(∆− 1)k−1.

Since minimum degree is at most average degree, we have the following corollary.

Corollary 5. Every graph with average degree d, maximum degree ∆ and diameter k has
at most 2d(∆− 1)k−1 + 1 vertices.

The following is the main result of this section; it says that Corollary 5 is within a
constant factor of optimal for fixed k.

Proposition 6. For all integers d > 4 and k > 3 and ∆ > 2d there is a graph with
average degree at most d, maximum degree at most ∆, diameter at most k, and at least
d
8
b∆

4
ck−1 vertices.

Proof. Let r := b∆
4
c. Let q := bd

4
c > 2. Let p := b∆

2
c − r − q + 1. Note that d > 4q and

4p > ∆− 4q > ∆
2

.
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Let B := B(r, k − 2) be the graph from Lemma 1 with maximum degree at most 2r,
diameter k − 2, and rk−2 vertices.

Let L be the (2q − 2)-regular graph from Lemma 2 with
(
q+1

2

)
vertices, containing

cliques L1, . . . , Lq+1 each of order q, such that each vertex in L is in exactly two of the
Li, and Li ∩ Lj 6= ∅ for all i, j ∈ [1, q + 1].

Let H be the cartesian product graph L�B. Note that H has
(
q+1

2

)
rk−2 vertices and

has maximum degree at most 2q − 2 + 2r. For i ∈ [1, q + 1] and v ∈ V (B), let Xi,v be
the clique {(x, v) : x ∈ Li} in H. Since each vertex in L is in exactly two of the Li, each
vertex in H is in exactly two of the Xi,v.

Let G be the graph obtained from H as follows: for i ∈ [1, q+1] and v ∈ V (B), add an
independent set Yi,v of p vertices to G completely adjacent to Xi,v; that is, every vertex in
Yi,v is adjacent to every vertex in Xi,v. We now prove that G has the claimed properties.

The number of vertices in G is

|V (G)| >
∑
i,v

|Yi,v| = (q + 1)rk−2p > d
4
b∆

4
ck−2 ∆

8
> d

8
b∆

4
ck−1 .

To determine the diameter of G, let α and β be vertices in G. Say α ∈ Xi,v ∪ Yi,v and
β ∈ Xj,w ∪ Yj,w. Let x be a vertex in Li ∩ Lj. Let v = y1, . . . , y` = w be a path of length
at most k− 2 in B. Then α, (x, y1), (x, y2), . . . , (x, y`), β is path of length at most k in G.
Hence G has diameter at most k.

Consider the maximum degree of G. Each vertex in some set Yi,v has degree |Xi,v| =
|Li| = q 6 ∆. Each vertex in some set Xi,v has degree 2q− 2 + 2r+ 2p 6 ∆. Thus G has
maximum degree at most ∆.

It remains to prove that the average degree of G is at most d. There are |V (H)| =(
q+1

2

)
rk−2 vertices of degree at most ∆, and there are (q + 1)rk−2p vertices of degree q.

Thus the average degree is at most(
q+1

2

)
rk−2 ·∆ + (q + 1)rk−2pq(

q+1
2

)
rk−2 + (q + 1)rk−2p

=
q
2
∆ + pq
q
2

+ p

Hence it suffices to prove that q∆ + 2pq 6 (q + 2p)d. Since ∆ > 2d and d > 4q,

d∆ = d∆
2

+ d∆
2
> d∆

2
+ d2 > 2q∆ + 4dq .

That is, 2d∆− 2q∆− 8qd > d∆− 4qd. Since 4p > ∆− 4q and 8q2 > 0,

8p(d− q) > 2(∆− 4q)(d− q) = 2d∆− 2q∆− 8qd+ 8q2 > d∆− 4qd > 4q∆− 4qd .

That is, 4pd + 2qd > 2q∆ + 4pq, as desired. Hence the average degree of G is at most
d.

Note that for particular values of k and ∆, other graphs can be used instead of the
de Bruijn graph in the proof of Proposition 6 to improve the constants in our results; we
omit all these details.
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4 Arboricity

This section proves that the maximum number of vertices in a graph with arboricity b is
f(b, k) · ∆bk/2c for some function f . Reasonably tight lower and upper bounds on f are
established. First we prove the upper bound.

Theorem 7. For every graph G with arboricity b, diameter k, and maximum degree ∆,

|V (G)| 6 4k(2b)k∆bk/2c + 1 .

Proof. Let G1, . . . , Gb be spanning forests of G whose union is G. Orient the edges of
each component of each Gi towards a root vertex. The choice of the root is arbitrary.
Thus each vertex v of G has outdegree at most 1 in each Gi; therefore v has outdegree at
most b in G.

Consider an unordered pair of vertices {v, w}. Let P be a shortest vw-path in G. Say
P has ` edges. Then ` 6 k. An edge of P oriented in the direction from v to w is called
forward. If at least d `

2
e of the edges in P are forward, then charge the pair {v, w} to v,

otherwise charge {v, w} to w.
Consider a vertex v. If some pair {v, w} is charged to v then there is path of length `

from v to w with exactly i forward arcs, for some i and ` with d `
2
e 6 i 6 ` 6 k. Since each

vertex has outdegree at most b, the number of such paths is at most
(
`
i

)
bi∆`−i. Hence the

number of pairs charged to v is at most

k∑
`=1

∑̀
i=d`/2e

(
`

i

)
bi∆`−i 6 k

k∑
i=dk/2e

(
k

i

)
bi∆k−i

= k

bk/2c∑
i=0

(
k

k − i

)
bk−i∆i

6 k 2kbk
bk/2c∑
i=0

∆i

6 2k(2b)k∆bk/2c .

Hence, the total number of pairs,
(
n
2

)
, is at most 2k(2b)k∆bk/2cn. The result follows.

We now show that the upper bound in Theorem 7 is close to being best possible (for
fixed k).

Theorem 8. For all even integers b > 2 and k > 4 and ∆ > b, such that ∆ ≡ 2 (mod 4)
or b ≡ 0 (mod 4), there is a graph G with arboricity at most b, maximum degree at most
∆, diameter at most k, and at least 8

b2
( b∆

8
)k/2 vertices.

Proof. Let q := ∆
2

and p := b
2

and ` := k
2
− 1. Then q, p and ` are positive integers. Let

r := (q+1)p
2

. Then r is a positive integer (since ∆ ≡ 2 (mod 4) or b ≡ 0 (mod 4)).
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Let B be the de Bruijn graph B(r, `). By Lemma 1, B has diameter ` and r` vertices.
Moreover, there are sets B1, . . . , Br`−1 of vertices in B, each containing 2r−2 or 2r vertices,
such that each vertex of B is in exactly two of the Bi, and the endpoints of each edge in
B are in some Bi. Let ri := |Bi|. Thus ri 6 2r = (q + 1)p.

By Lemma 3, for each i ∈ [1, r`−1] there is a bipartite graph Ti with bipartition Bi, Di,
such that Bi consists of ri vertices each with degree q, and Di consists of

(
q+1

2

)
vertices

each with degree at most 2p 6 b, and each pair of vertices in Bi have a common neighbour
in Di.

Let G be the bipartite graph with bipartition V (B) ∪ D, where D := ∪iDi and the
induced subgraph G[Bi, Di] is Ti. In G, each vertex in V (B) has degree 2q 6 ∆, and each
vertex in D has degree at most b 6 ∆. Thus G has maximum degree ∆. Assign each
edge in G one of b colours, such that two edges receive distinct colours whenever they
have an endpoint in D in common. Each colour class induces a subgraph in which each
component is a star. Hence G has arboricity at most b. Observe that

|V (G)| > |D| = r`−1
(
q+1

2

)
> ( b∆

8
)`−1 ∆2

8
= ( b∆

8
)k/2−2 ∆2

8
= 8

b2
( b∆

8
)k/2 .

It remains to prove that G has diameter at most k. Consider two vertices v and w in
G. If v ∈ Di then let v′ be a neighbour of v in Bi. If v ∈ Bi then let v′ be v. If w ∈ Dj

then let w′ be a neighbour of w in Bj. If w ∈ Bj then let w′ be w. In B, there is a
v′w′-path P of length at most `. For each edge xy in P , both x and y are in some set Ba

(see Lemma 1). Since x and y have a common neighbour in Ta (by Lemma 3), we can
replace xy in P by a 2-edge path in Ta, to obtain a v′w′-path in G of length at most 2`.
Possibly adding the edges vv′ or ww′ gives a vw-path in G of length at most 2`+ 2 = k.
Hence G has diameter at most k.

Consider the case of diameter 2 graphs with arboricity b. Every such graph has average
degree less than 2b, and thus has at most 4b∆ vertices by Corollary 5. We now show that
this upper bound is within a constant factor of optimal. (This result is not covered by
Theorem 8 which assumes k > 4.)

Proposition 9. For all integers b > 1 and even ∆ > 4b there is a graph with diameter
2, arboricity at most b, maximum degree ∆, and at least b∆

4
vertices.

Proof. By Lemma 2, there is a (2b − 2)-regular graph X with
(
b+1

2

)
vertices, containing

cliques X1, . . . , Xb+1 each of order b, such that each vertex in X is in exactly two of the
Xi, and Xi ∩Xj 6= ∅ for all i, j ∈ [1, q + 1].

Initialise a graph G equal to X. For i ∈ [1, b + 1], add an independent set Yi of
p := ∆

2
− b+ 1 vertices to G completely adjacent to Xi.

Consider two vertices v and w in G. Say v ∈ Xi ∪ Yi and w ∈ Xj ∪ Yj. Let x be the
vertex in Xi ∩Xj. If v = x or x = w then vw is an edge in G, otherwise vxw is a path in
G. Thus G has diameter 2.

Vertices in each Xi have degree 2b − 2 + 2p = ∆ and vertices in each Yi have degree
b 6 ∆. Hence G has maximum degree ∆. The number of vertices in G is more than
(b+ 1)p = (b+ 1)(∆

2
− b+ 1) > b∆

4
.
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To calculate the arboricity of G, consider a subgraph H of G. Let xi := |Xi ∩ V (H)|
and yi := |Yi ∩ V (H)|. Since xi 6 |Xi| = b and b > 2,∑

i

(
xi
2

)
=
∑
i

xi(xi−1)
2
6
∑
i

b(xi−1)
2

=
∑
i

bxi−b
2

< (
∑
i

bxi
2

)− b .

Since xiyi 6 |Xi|yi = byi,∑
i

(
xi
2

)
+ xiyi 6 (

∑
i

bxi
2

+ byi)− b = b
(
(
∑
i

xi
2

+ yi)− 1
)
.

Observe that |E(H)| 6
∑

i

(
xi
2

)
+ xiyi and |V (H)| >

∑
i
xi
2

+ yi (since each vertex in X is
in exactly two of the Xi). Thus |E(H)| 6 b(|V (H)| − 1), and G has arboricity at most b
by (2).

We conclude this section with an open problem about the degree-diameter problem
for graphs containing no Kt-minor. Every such graph has arboricity at most ct

√
log t, for

some constant c > 0; see [21, 28, 29]. Thus Theorem 7 implies that for every Kt-minor-free
graph G with diameter k and maximum degree ∆� t,

|V (G)| 6 4k(ct
√

log t)k∆bk/2c.

Improving the f(t, k) term in this f(t, k) ∆bk/2c bound is a challenging open problem.

5 Separators and Treewidth

This section studies a separator-based approach for proving upper bounds in the degree-
diameter problem. A separation of order s in an n-vertex graph G is a partition (A, S,B)
of V (G), such that |A| 6 2

3
n and |B| 6 2

3
n and |S| 6 s and there is no edge between A and

B. Fellows et al. [12] first used separators to prove upper bounds in the degree–diameter
problem. In particular, they implicitly proved that every graph that has a separation of
order s has 3sM(∆, bk

2
c) vertices. The following lemma improves the dependence on s in

this result when k is even. We include the proof by Fellows et al. [12] for completeness.

Lemma 10. Let G be a graph with maximum degree at most ∆, and diameter at most k.
Assume (A, S,B) is a separation of order s in G. Then

|V (G)| 6

{
3sM(∆, k−1

2
) if k is odd

3
2

√
s∆(∆− 1)k/2−1 + 3sM(∆, k

2
− 1) if k is even .

Proof. Let n := |V (G)|. Note that |A| > n− |B| − s > n
3
− s. By symmetry, |B| > n

3
− s.

We use this fact repeatedly.
For v ∈ A ∪ B, let dist(v, S) := min{dist(v, x) : x ∈ S}. If dist(v, S) > bk/2c + 1 for

some v ∈ A and dist(w, S) > bk/2c + 1 for some w ∈ B, then dist(v, w) > 2bk/2c + 2 >
k + 1, which is a contradiction. Hence, without loss of generality, dist(v, S) 6 bk/2c for
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each v ∈ A. By the Moore bound, for each vertex x ∈ S, there are at most M(∆, bk/2c)−1
vertices in A at distance at most bk/2c from x. Each vertex in A is thus counted. Hence

n

3
− s 6 |A| 6 sM(∆, bk/2c)− s ,

implying n 6 3sM(∆, bk/2c). This proves the result of Fellows et al. [12] mentioned
above, and proves the case of odd k in the theorem.

Now assume that k = 2` is even. Suppose on the contrary that

n

3
>

√
s

2
∆(∆− 1)`−1 + sM(∆, `− 1) .

First consider the case in which some vertex in A is at distance at least ` + 1 from S.
Thus every vertex in B is at distance at most `− 1 from S. By the Moore bound,

sM(∆, `− 1)− s > |B| > n

3
− s >

√
s

2
M(∆, `) + sM(∆, `− 1)− s ,

which is a contradiction. Now assume that every vertex in A is at distance at most ` from
S. By symmetry, every vertex in B is at distance at most ` from S.

Let A′ and B′ be the subsets of A and B respectively at distance exactly ` from S.
By the Moore bound, |A− A′| 6 sM(∆, `− 1)− s. Hence

|A′| = |A| − |A− A′| > n

3
− s− sM(∆, `− 1) + s >

√
s

2
∆(∆− 1)`−1 .

By symmetry, |B′| >
√
s

2
∆(∆− 1)`−1.

Let P := {(x, y) : x ∈ A′, y ∈ B′}. For each pair (x, y) ∈ P , some vertex v in S is at
distance ` from both x and y. Charge (x, y) to v. We now bound the number of pairs
in P charged to each vertex v ∈ S. Say v has degree a in A and degree b in B. Thus
a+ b 6 ∆. There are at most a(∆− 1)`−1 vertices at distance exactly ` from v in A, and
there at most b(∆− 1)`−1 vertices at distance exactly ` from v in B. Thus the number of
pairs charged to v is at most

ab(∆− 1)2`−2 6 1
4
(a+ b)2(∆− 1)2`−2 6 1

4
∆2(∆− 1)2`−2 .

Hence

s

4
∆2(∆− 1)2`−2 =

(√
s

2
∆(∆− 1)`−1

)2

< |A′| · |B′| = |P | 6 s

4
∆2(∆− 1)2`−2 .

This contradiction proves that n 6 3
2

√
s∆(∆− 1)`−1 + 3sM(∆, `− 1).

Lemma 10 can be written in the following convenient form.

Lemma 11. For all ε > 0 there is a constant cε such that for every graph G with maximum
degree ∆, diameter k, and a separation of order s,

|V (G)| 6

{
(3 + ε)s(∆− 1)(k−1)/2 if k is odd and ∆ > cε

(3
2

+ ε)
√
s (∆− 1)k/2 if k is even and ∆ > cε

√
s .
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Proof. First consider the the odd k case. For ∆ > 6
ε

+ 2 we have 3( ∆
∆−2

) 6 3 + ε. Thus,
by Lemma 10 and the Moore bound,

|V (G)| 6 3s ( ∆
∆−2

)(∆− 1)(k−1)/2 6 (3 + ε)s(∆− 1)(k−1)/2 .

Now consider the even k case. For ∆ > 3
ε

+ 1 we have 3
2

∆ 6 (3
2

+ ε
2
) (∆ − 1). And for

∆ > 9
ε

√
s+2 we have 3

√
s 6 ε

3
(∆−2) 6 ε

2
(∆−1

∆
)(∆−2), implying 3s ( ∆

∆−2
) 6 ε

2

√
s(∆−1).

Hence, by Lemma 10 and the Moore bound,

|V (G)| 6 3
2

√
s∆(∆− 1)k/2−1 + 3s ( ∆

∆−2
)(∆− 1)k/2−1

6 (3
2

+ ε
2
)
√
s (∆− 1)k/2 + ε

2

√
s(∆− 1)k/2

6 (3
2

+ ε)
√
s (∆− 1)k/2 .

This completes the proof of the lemma.

Treewidth is a key topic when studying separators. In particular, every graph with
treewidth t has a separation of order t+ 1, and in fact, a converse result holds [26]. Thus
Lemma 11 implies:

Theorem 12. For all ε > 0 there is a constant cε such that for every graph G with
maximum degree ∆, treewidth t, and diameter k,

|V (G)| 6

{
(3 + ε)(t+ 1)(∆− 1)(k−1)/2 if k is odd and ∆ > cε

(3
2

+ ε)
√
t+ 1 (∆− 1)k/2 if k is even and ∆ > cε

√
t+ 1 .

Note that Theorem 12 in the case of odd k can also be concluded from a result by
Gavoille et al. [15, Theorem 3.2]. Our original contribution is for the even k case. We
now show that both upper bounds in Theorem 12 are within a constant factor of optimal.

Proposition 13. For all integers k > 1 and t > 2 and ∆ there is a graph G with
maximum degree ∆, diameter k, treewidth at most t, and

|V (G)| >

{
1
2
(t+ 1)(∆− 1)(k−1)/2 if k is odd and ∆ > 2t− 2

1
2

√
t+ 1 (∆− 1)k/2 if k is even and ∆ > 4

√
2t .

Proof. First consider the case of odd k. Let T be the rooted tree such that the root vertex
has degree ∆− t, every non-root non-leaf vertex has degree ∆, and the distance between
the root and each leaf equals k−1

2
. Since t > 2 and ∆−t

∆−2
> 1

2
,

|V (T )| = 1 + (∆− t)
(k−3)/2∑
i=0

(∆− 1)i =
t− 2 + (∆− t)(∆− 1)(k−1)/2

∆− 2

>
1

2
(∆− 1)(k−1)/2 .
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Take t + 1 disjoint copies of T , and add a clique on their roots. This graph is chordal
with maximum clique size t+ 1. Thus it has treewidth t. The maximum degree is ∆ and
the number of vertices is at least 1

2
(t+ 1)(∆− 1)(k−1)/2.

Now consider the case of even k. Let q be the maximum integer such that
(
q+1

2

)
6 t+1.

Thus 2 6 q 6
√

2t 6 ∆
4

and q + 1 >
√
t+ 1. Let T be the tree, rooted at r, such that r

has degree ∆− q, every non-leaf non-root vertex has degree ∆, and the distance between
r and each leaf is k

2
− 1. Since q > 2 and ∆−q

∆−2
> 1

2
,

|V (T )| = 1 + (∆− q)
k/2−2∑
i=0

(∆− 1)i =
q − 2 + (∆− q)(∆− 1)k/2−1

∆− 2

>
1

2
(∆− 1)k/2−1 .

By Lemma 2, there is a (2q − 2)-regular graph L with
(
q+1

2

)
vertices, containing cliques

L1, . . . , Lq+1 each of order q, such that each vertex in L is in exactly two of the Li, and
Li∩Lj 6= ∅ for all i, j ∈ [1, q+1]. Let G be the graph obtained from L as follows. For each
i ∈ [1, q + 1], add ∆ − 2(q − 1) disjoint copies of T (called i-copies), where every vertex
in Li is adjacent to the roots of the i-copies of T , as illustrated in Figure 1. It is easily
verified that G has maximum degree ∆. Consider a vertex v in some i-copy of T or in Li,
and a vertex w in some j-copy of T or in Lj. Let x be in Li∩Lj. Then dist(v, x) 6 k

2
and

dist(w, x) 6 k
2
, implying dist(v, w) 6 k. Hence G has diameter at most k. Let G′ be the

supergraph of G obtained by adding a clique on V (L). Thus G′ is chordal with maximum
clique size

(
q+1

2

)
6 t+ 1. Hence G has treewidth at most t. The number of vertices in G

is at least (q + 1)(∆− 2q + 2)|V (T )| >
√
t+ 1 · ∆

2
· (∆− 1)k/2−1.

We now consider the degree-diameter problem for graphs with given Euler genus. Note
that the case of planar graphs has been widely studied [12, 13, 19, 25, 30, 31]. Šiagiová
and Simanjuntak [27] proved that for every graph G with Euler genus g,

|V (G)| 6 c(g + 1)k (∆− 1)bk/2c , (3)

for some absolute constant c. Eppstein [11] proved that every graph with Euler genus
g and diameter k has treewidth at most c(g + 1)k for some absolute constant c, and
Dujmovic et al. [10] proved the explicit bound of (2g+ 3)k. Theorem 12 thus implies the
upper bound in (3) and improves upon it when k is even:

Theorem 14. For all ε > 0 there is a constant cε such that for every graph G with Euler
genus g, maximum degree ∆ and diameter k,

|V (G)| 6

{
(3 + ε)((2g + 3)k + 1)(∆− 1)(k−1)/2 for odd k and ∆ > cε

(3
2

+ ε)
√

(2g + 3)k + 1 (∆− 1)k/2 for even k and ∆ > cε
√

(2g + 3)k + 1.

In our companion paper [25] we further investigate the degree-diameter problem for
graphs on surfaces, providing an improved upper bound and a new lower bound.
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Figure 1: Construction in Proposition 13 for even k. Here ∆ = 4 and k = 8 and t = 2.

To obtain an upper bound of the form n 6 f(k) ∆bk/2c using the separator-based
approach, one needs a separation of order bounded by a function of the graph’s diameter.
In some sense, the graphs that have a separation of bounded order are precisely the graphs
with bounded treewidth. See Reed’s survey [26] for a precise statement here. Thus the
separator-based method only works for graphs whose treewidth is bounded by a function
of their diameter. The minor-closed graph classes with this property are precisely those
that exclude a fixed apex graph as a minor [11]. Here a graph H is apex if H − v is
planar for some vertex v of H. For example, K5 and K3,3 are apex. Eppstein [11] proved
that for some apex graph H and some function f (depending on H), the treewidth of
every H-minor-free graph G is at most f(diam(G)). This is called the diameter-treewidth
or bounded local treewidth property; also see [6, 7, 10, 17]. Demaine and Hajiaghayi [8]
strengthened Eppstein’s result by showing that one can take f(k) = ck for some constant
c = c(H). Thus the next result follows from Theorem 12.
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Theorem 15. For every fixed apex graph H there is a constant c = c(H), such that for
every H-minor-free graph G with diameter k,

|V (G)| 6

{
ck (∆− 1)(k−1)/2 if k is odd

c
√
k (∆− 1)k/2 if k is even and ∆ > c

√
k .

As discussed above, for minor-closed classes, Theorem 15 is the strongest possible
result that can be obtained using the separator-based method.

6 3-Colourable and Triangle-Free Graphs

As mentioned in the introduction, it is well known that the maximum number of vertices
in a bipartite graph is f(k) ∆k−1. We now show that this bound does not hold for the more
general class of 3-colourable graphs. In fact, we construct 3-colourable graphs where the
number of vertices is within a constant factor of the Moore bound. First note that Kawai
and Shibata [20] (building on the work of Harner and Entringer [18]) proved that for large

k & log r, the de Bruijn graph B(r, k), which roughly has
(

∆
2

)k
vertices, is 3-colourable.

The constructions below have the advantage of not assuming that k is large.
In what follows a pseudograph is an undirected graph possibly with loops. A loop at

a vertex v counts for 1 in the degree of v. A pseudograph H is k-good if for all (not
necessarily distinct) vertices v and w there is a vw-walk of length exactly k in H.

Given pseudographs H1 and H2, the direct product graph H1 × H2 has vertex set
V (H1) × V (H2), where (v, x)(w, y) ∈ E(H1 × H2) if and only if vw ∈ E(H1) and xy ∈
E(H2).

Lemma 16. Let H1 and H2 be k-good pseudographs with maximum degree ∆1 and ∆2

respectively. Then H1 × H2 has |V (H1)| · |V (H2)| vertices, maximum degree ∆1∆2, and
diameter at most k. Moreover, if H2 is loopless and c-colourable, then H1 × H2 is c-
colourable.

Proof. Clearly H1 ×H2 has |V (H1)| · |V (H2)| vertices and maximum degree ∆1 ∆2. Let
(v, x) and (w, y) be distinct vertices of G. To prove that G has diameter at most k, we
construct a (v, x)(w, y)-walk of length at most k in G. Since H1 is k-good, there is a
walk v = v0, v1, . . . , vk = w of length k in H1. Since H2 is k-good, there is a walk x =
x0, x1, . . . , xk = y of length k in H2. Thus (v, x) = (v0, x0), (v1, x1), . . . , (vk, xk) = (w, y)
is a walk of length k between (v, x) and (w, y) in H1 ×H2. Hence H1 ×H2 has diameter
at most k. Finally, colouring each vertex (v, x) of H1 ×H2 by the colour assigned to x in
a c-colouring of H2 gives a c-colouring of H1 ×H2.

Lemma 17. K3 is k-good for all k > 2.

Proof. Let v, w ∈ V (K3) = {0, 1, 2}. If there is a vw-walk of length k− 2, then there is a
vw-walk of length k (just repeat one edge twice). Thus the claim follows from the k = 2
and k = 3 cases. Without loss of generality, v = 0. For k = 2, one of 010, 021 and 012
is a vw-walk of length 2. For k = 3, one of 0120, 0121 and 0102 is a vw-walk of length
3.
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To obtain results for triangle-free graphs we use the following:

Lemma 18. C5 is k-good for all k > 4.

Proof. Say V (C5) = {0, 1, 2, 3, 4} and E(C5) = {01, 12, 23, 34, 40}. Let v, w ∈ V (C5). If
there is a vw-walk of length k − 2, then there is a vw-walk of length k (just repeat one
edge twice). Thus the claim follows from the k = 4 and k = 5 cases. Without loss of
generality, v = 0. For k = 4, one of 01010, 04321, 01212, 04343 and 01234 is a vw-walk
of length 4. For k = 5, one of 012340, 040101, 043232, 012323 and 010404 is a vw-walk
of length 5.

Lemmas 16 and 17 imply:

Lemma 19. Let H be a k-good pseudograph with maximum degree ∆ for some k > 2.
Then H × K3 is a 3-colourable graph with 3|V (H)| vertices, maximum degree 2∆, and
diameter at most k.

Lemma 20. Let H be a k-good pseudograph with maximum degree ∆ for some k > 4.
Then H ×C5 is a 3-colourable triangle-free graph with 5|V (H)| vertices, maximum degree
2∆, and diameter at most k.

Proof. For any graph G (without loops), if H × G contains a triangle (a, u)(b, v)(c, w),
then uvw is a triangle in G (even if H has loops). Since C5 is triangle-free, H × C5 is
triangle-free. Thus Lemmas 16 and 18 imply the claim.

For particular values of ∆ and k, various constructions for the degree-diameter problem
can be used in the following lemma to give large 3-colourable and triangle-free graphs.

Proposition 21. Let H be a graph with maximum degree ∆ and diameter k > 2. Then
there is a 3-colourable graph with 3|V (H)| vertices, maximum degree 2∆+2 and diameter
at most k. Moreover, if k > 4 then there is a 3-colourable triangle-free graph with 5|V (H)|
vertices, maximum degree 2∆ + 2, and diameter at most k.

Proof. Let H ′ be the pseudograph obtained from H by adding a loop at each vertex. Thus
H ′ is k-good and has maximum degree ∆ + 1. Lemmas 19 and 20 imply that H ′ × K3

and H ′ × C5 satisfy the claims.

This result implies that for fixed k > 2 and ∆� k, the maximum number of vertices
in a 3-colourable graph is within a constant factor of the unrestricted case. And the same
conclusion holds for k > 4 for 3-colourable triangle-free graphs.

We now give a concrete example:

Theorem 22. For all integers ∆ > 4 and k > 2, there is a 3-colourable graph with 3b∆
4
ck

vertices, maximum degree at most ∆, and diameter at most k. Moreover, if k > 4 then
there is a 3-colourable triangle-free graph with 5b∆

4
ck vertices, maximum degree at most

∆, and diameter at most k.
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Proof. Let r := b∆
4
c. Let H be the undirected pseudograph underlying the de Bruijn

digraph
−→
B (r, k) including any loops. Lemma 1 shows that H has rk vertices, maximum

degree at most 2r, and is k-good. Lemma 19 shows that H ×K3 satisfies the first claim.
Lemma 20 implies that H × C5 satisfies the second claim.

We now give ad-hoc constructions of triangle-free graphs with diameter 2 and 3. These
lower bounds are within a constant factor of the Moore bound. Let Zp be the cyclic group
with p elements. For a, b ∈ Zp, let dist(a, b) := min{a−b, b−a}. Here, as always, addition
and subtraction are in the group, so dist(a, b) > 0.

Proposition 23. For all ∆ > 20 there is a triangle-free graph with diameter 2, maximum
degree at most ∆, and at least (2b∆+4

8
c+ 2)2 vertices.

Proof. Let p := 2b∆+4
8
c+2. Thus p > 8 is even. Let G be a graph with vertex set Z2

p. Thus

|V (G)| = (2b∆+4
8
c + 2)2. Let (v1, v2) denote a vertex v in G. For distinct vertices v and

w, define the vw-vector to be (a, b), where a 6 b and {a, b} = {dist(v1, w1), dist(v2, w2)}.
Then vw ∈ E(G) if and only if a = 1 and b 6= 2. Observe that G is 4(p− 3)-regular, and
4(p− 3) 6 ∆.

We now show that the distance between distinct vertices v, w in G is at most 2.
Consider the following cases for the vw-vector (a, b), where without loss of generality,
(a, b) = (dist(v1, w1), dist(v2, w2)):

Case (0,> 1): Since p > 8, there exists y ∈ Zp such that dist(v2, y) 6∈ {0, 2} and
dist(w2, y) 6∈ {0, 2}. Then (v1 + 1, y) = (w1 + 1, y) is a common neighbour of v and w.

Case (1, 2): Since p > 8, there exists x ∈ Zp such that dist(v1, x) 6∈ {0, 2} and
dist(w1, x) 6∈ {0, 2}. Since dist(v2, w2) = 2 there exists y ∈ Zp such that dist(v2, y) =
dist(w2, y) = 1. Then (x, y) is a common neighbour of v and w.

Case (1, 6= 2): Then v and w are adjacent.
Case (> 2,> 2): Since p > 8, there exists x ∈ Zp such that dist(w1, x) = 1 and

dist(v1, x) 6∈ {0, 2}. Similarly, there exists y ∈ Zp such that dist(w2, y) 6∈ {0, 2} and
dist(y, v1) = 1. Then (x, y) is a common neighbour of v and w.

Suppose on the contrary that G contains a triangle T . For each edge uv of T , we
have dist(ui, vi) = 1 for some i ∈ [1, 2]. In this case, say uv is type i. Since there are
three pairs of vertices in T and only two types, two pairs of vertices in T have the same
type. Say T = uvw. Without loss of generality, uv and vw are both type 1. That is,
dist(u1, v1) = 1 and dist(v1, w1) = 1. Thus dist(u1, w1) ∈ {0, 2}, in which case uw 6∈ E(G).
This contradiction shows that G contains no triangle.

Proposition 24. For all ∆ > 42 there is a triangle-free graph with diameter 3, maximum
degree at most ∆, and at least (2b∆+6

12
c+ 4)3 vertices.

Proof. Let p := 2b∆+6
12
c+ 4. Thus p > 12 is even. Let H be the graph with vertex set Zp,

where ab ∈ E(H) whenever dist(a, b) > 3. Observe that every pair of vertices in H have
a common neighbour (since p > 12).

Define a graph G with vertex set V (G) := Z3
p. Thus |V (G)| = p3. Let (v1, v2, v3)

denote a vertex v in G. For distinct vertices v and w, define the vw-vector to be (a, b, c),

the electronic journal of combinatorics 22(2) (2015), #P2.46 16



where a 6 b 6 c and {a, b, c} = {dist(v1, w1), dist(v2, w2), dist(v3, w3)}. Then vw ∈ E(G)
if and only if a = 0 and b = 1 and c > 3. Observe that G is 6(p − 5)-regular, and
6(p− 5) 6 ∆.

We now show that the distance between distinct vertices v, w in G is at most 3.
Consider the following cases for the vw-vector, where without loss of generality, (a, b, c) =
(dist(v1, w1), dist(v2, w2), dist(v3, w3)):

Case (0, 0,> 1): Let u be a common neighbour of v3 and w3 in H. Then (v1+1, v2, u) =
(w1 + 1, w2, u) is a common neighbour of v and w.

Case (0, 1, 1): Then (v1 + 3, w2, v3) = (w1 + 3, w2, v3) is a common neighbour of v and
w.

Case (0, 1, 2): Let y be a common neighbour of v2 and w2 in H. Since dist(v3, w3) = 2,
there is an element z such that dist(v3, z) = dist(w3, z) = 1. Then (v1, y, z) = (w1, y, z) is
a common neighbour of v and w.

Case (0, 1,> 3): Then v and w are adjacent.
Case (0,> 2,> 2): Since dist(v2, w2) > 2, there is an element y ∈ {w2 − 1, w2 + 1}

such that dist(v2, y) > 3. Similarly, dist(w3, z) > 3 for some z ∈ {v3 − 1, v3 + 1}. Then
(v1, y, z) is a common neighbour of v and w.

Case (1,> 1,> 1): Since v2 6= w2, there is an element u ∈ {w2, w2 + 2, w2 − 2} such
that dist(v2, u) > 3. Let u′ be such that dist(u, u′) = dist(w2, u

′) = 1. Let z be a common
neighbour of v3 and z3 in H. Then

(v1, v2, v3)(w1, u, v3)(w1, u
′, z)(w1, w2, w3)

is a vw-path of length 3.
Case (> 2,> 2,> 2): Since p > 6 and dist(v1, w1) > 2, there exists x ∈ Zp such

that dist(w1, x) = 1 and dist(v1, x) > 3). Similarly, there exists y, z ∈ Zp such that
dist(w2, y) = 1 and dist(v2, y) > 3, and dist(v3, z) = 1 and dist(w3, z) > 3. Then

(v1, v2, v3)(x, v2, z)(w1, y, z)(w1, w2, w3)

is a vw-path of length 3.
Thus G has diameter at most 3.
Suppose on the contrary that G contains a triangle T . For each edge uv of T , we have

ui = vi for exactly one value of i ∈ [1, 3]. In this case, say uv is type i. First suppose
that at least two of the edges in T are the same type. Then all three edges in T are the
same type. Without loss of generality, u1 = v1 = w1. Then the subgraph of G induced by
{u, v, w} (ignoring the first coordinate) is a subgraph of the graph in Proposition 23, which
is triangle-free. Now assume that all three edges in T have distinct types. Without loss of
generality, u1 = v1 and u2 = w2 and v3 = w3. Since uv ∈ E(G), without loss of generality,
dist(u2, v2) = 1 and dist(u3, v3) > 3. Thus dist(v2, w2) = 1 and dist(u3, w3) > 3. Since
vw ∈ E(G) and u1 = v1, we have dist(u1, w1) = dist(v1, w1) > 3. We have shown that
dist(u1, w1) > 3 and u2 = w2 and dist(u3, w3) > 3. Thus the uw-vector is (0, 3, 3),
implying uw 6∈ E(G). This contradiction shows that G is triangle-free.
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Finally, note that the graphs in Propositions 23 and 24 have bounded chromatic num-
ber. In Proposition 23, colour each vertex v by (v1 mod 2, v2 mod 2). For each edge vw,
we have dist(vi, wi) = 1 for some i. Since p is even, vi 6≡ wi (mod 2). Thus, this is a valid
4-colouring. In Proposition 24, colouring each vertex v by (v1 mod 2, v2 mod 2, v3 mod 2)
gives an 8-colouring.
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