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Abstract

In this paper, we prove that every contraction-critical 2-connected infinite graph
has no vertex of finite degree and contains uncountably many ends. Then, by inves-
tigating the distribution of contractible edges in a 2-connected locally finite infinite
graph G, we show that the closure of the subgraph induced by all the contractible
edges in the Freudenthal compactification of G is 2-arc-connected. Finally, we char-
acterize all 2-connected locally finite outerplanar graphs nonisomorphic to K3 as
precisely those graphs such that every vertex is incident to exactly two contractible
edges as well as those graphs such that every finite bond contains exactly two con-
tractible edges.
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1 Introduction

Since the pioneering work of Tutte [11] who proved that every 3-connected finite graph
nonisomorphic to K4 contains a contractible edge, a lot of research has been done on
contractible edges in finite graphs. One may consult the survey paper by Kriesell [8] for
details.

For any 2-connected graph nonisomorphic to K3, we have the well-known fact that
every edge can either be deleted or contracted so that the resulting graph remains 2-
connected. This immediately leads to the following result.

Theorem 1. Let G be a 2-connected finite graph nonisomorphic to K3. Then the subgraph
induced by all the contractible edges in G is 2-connected.
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Wu [12] investigated the distribution of contractible elements in matroids and extended
Theorem 1 to simple 2-connected matroids. He also characterized all simple 2-connected
matroids M having exactly r(M)+1 contractible elements (where r(M) is the rank of M)
as those matroids isomorphic to a graphic matroid of an outerplanar Hamiltonian graph.

Theorem 2 (Wu [12]). Let G be a 2-connected finite graph nonisomorphic to K3. Then
every vertex of G is incident to exactly two contractible edges if and only if G is outer-
planar.

On the other hand, only a few results were known for contractible edges in infinite
graphs. For example, Mader [10] showed that every contraction-critical locally finite
infinite graph has infinitely many triangles. Kriesell [9] provided a method of constructing
contraction-critical k-connected infinite graphs (k > 2). In Section 3, we will prove that
every contraction-critical 2-connected infinite graph contains vertices of infinite degree
only and has uncountably many ends.

A natural way to extend Theorems 1 and 2 is to consider locally finite infinite graphs.
Notice that Theorem 1 is no longer true as demonstrated by the infinite double ladder
(the cartesian product of a double ray and K2). The subgraph GC induced by all the
contractible edges is the disjoint union of two double rays and is not even connected.
Interestingly, the situation changes dramatically by looking at the graph from a topological
viewpoint as introduced by Diestel and Kühn [4, 5, 6]. By adding the two ends of the
double ladder to GC , the resulting closure GC is a circle and is 2-arc-connected. In
Section 4, we will prove that for every 2-connected locally finite infinite graph G, GC is
2-arc-connected.

Returning to Theorem 2, the backward direction is straightforward. For the forward
direction, by Theorem 1, GC is spanning and 2-connected. Since every vertex is incident
to exactly two contractible edges, GC is a Hamilton cycle. Then it is easy to see that G
is outerplanar. When extending to locally finite infinite graphs, we now need the non-
trivial statement that if G is a 2-connected locally finite infinite graph such that every
vertex is incident to exactly two contractible edges, then GC is a Hamilton circle. This
will be proved in Section 5. We will use it to prove an infinite analog of Theorem 2 for
any 2-connected locally finite graph G nonisomorphic to K3. Also we will show that G is
outerplanar if and only if every finite bond of G contains exactly two contractible edges.

2 Definitions

All basic graph-theoretical terminology can be found in Diestel [3]. Unless otherwise
stated, all graphs considered in this paper can be finite or infinite. An edge of a k-
connected graph is said to be k-contractible if its contraction results in a k-connected
graph. Otherwise, it is called k-non-contractible. A k-connected graph in which every
edge is k-non-contractible is called contraction-critical k-connected. We simply write 2-
contractible as contractible. Let G = (V,E) be a 2-connected graph. Denote the set of all
contractible edges in G by EC and the subgraph induced by all the contractible edges by
GC := (V,EC). Let X and Y be two disjoint subsets of V . An X-Y path P is a path such
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that only the starting vertex of P lies in X and only the ending vertex of P lies in Y .
Denote the set of all edges between X and Y by EG(X, Y ). If X and Y form a partition
of V , then EG(X, Y ) is called a cut. A minimal non-empty cut is a bond. Denote the set
of all edges incident to a vertex x by EG(x) and the set of all neighbors of x by NG(x).
Define NG(X) := (

⋃
x∈X NG(x))\X. A set S of k vertices is called an k-separator if G−S

is not connected.
Let G be a locally finite graph. A ray is a 1-way infinite path, a double ray is a 2-way

infinite path, and the subrays of a ray or double ray are its tails. An end is an equivalence
class of rays where two rays are equivalent if no finite set of vertices separates them.
Denote the set of the ends by Ω(G). We define a topological space, denoted by |G|, on G
together with its ends, which is known as the Freudenthal compactification of G as follows.
View G as a 1-complex. Thus, every edge is homeomorphic to the unit interval. The basic
open neighborhoods of a vertex x consists of a choice of half-open half edges [xz), one for
each incident edge xy, where z is any interior point of xy. For an end ω ∈ Ω(G), we take
as a basic open neighborhood the set of the form: Ĉ(S, ω) := C(S, ω)∪Ω(S, ω)∪ E̊(S, ω),
where S ⊆ V is a finite set of vertices, C(S, ω) is the component of G− S in which every
ray from ω has a tail, Ω(S, ω) is the set of all ends whose rays have a tail in C(S, ω),
and E̊(S, ω) is the set of all interior points of edges between S and C(S, ω). Let H be a
subgraph of G. Then the closure of H in |G| is called a standard subspace and is denoted
by H. We say H contains a point x of |G| if x ∈ H.

Let X and Y be two topological spaces. A continuous map from the unit interval [0, 1]
to X is a path in X. A homeomorphic image of [0, 1] in X is called an arc in X. This
induces an ordering < for the points in the arc. The images of 0 and 1 are the endpoints of
the arc. An arc in X with endpoints x and y is called an x-y arc. A homeomorphic image
of the unit circle in X is called a circle in X. A (path-)component of X is a maximal
(path-)connected set in X. X is 2-connected (2-arc-connected) if for all x ∈ X, X \ x is
connected (arc-connected). We say X can be embedded in Y if there exists an injective
continuous function φ : X → Y such that X is homeomorphic to φ(X) in the subspace
topology of Y . Then φ is called an embedding of X in Y . Take Y to be R2. A component
of R2 \φ(X) is called a face of φ(X) in R2. A graph G is planar if G can be embedded in
R2. A graph G is outerplanar if there exists an embedding φ of G in R2 such that there
is a face f of φ(G) in R2 whose boundary ∂f contains all the vertices of G. Chartrand
and Harary [2] characterized outerplanar finite graphs as precisely those graphs that do
not contain a K2,3- or K4- subdivision.

Suppose A is an arc in |G| and x is a vertex in A. Then the vertex immediately before
x in A if exists is denoted by x− and the vertex immediately after x in A if exists is
denoted by x+. An arc in |G| is an ω-arc if the end ω is one of its endpoints and unless
otherwise stated, it corresponds to the image of 1. Following Bruhn and Stein [1], we
define the end degree of an end ω in G as the supremum over the cardinalities of sets of
edge-disjoint rays in ω, and denote this number by degG(ω). In fact, they proved that this
is equal to the supremum over the cardinalities of sets of edge-disjoint ω-arcs in |G|. For
a subgraph H of G, define the degree of ω in H as the supremum over the cardinalities
of sets of edge-disjoint ω-arcs in H which is denoted by degH(ω).
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3 Contraction-critical 2-connected infinite graphs

It is well-known that the only contraction-critical 2-connected finite graph is K3. However,
there are infinitely many contraction-critical 2-connected infinite graphs as shown by the
following construction due to Kriesell [9]. Define G0 := ∅ and let G1 be any 2-connected
finite graph. Suppose we have constructed Gn such that Gn−1 ( Gn. For each edge xy
in E(Gn) \ E(Gn−1), add a new x-y path of length at least 2. The resulting graph is
Gn+1. Repeat the process inductively. Then the graph G :=

⋃
i>1Gi is a contraction-

critical 2-connected infinite graph. Note that G has no vertex of finite degree and has
uncountably many ends. We will show that this holds in general for any contraction-
critical 2-connected infinite graph. First, we state a fundamental fact about contractible
edges in 2-connected graphs.

Lemma 3. Let G be a 2-connected graph nonisomorphic to K3 and e be an edge of G.
Then G− e or G/e is 2-connected.

Now, we can develop some tools that will be used for the rest of the paper.

Lemma 4. Let G be a 2-connected graph nonisomorphic to K3, and e and f be two
non-contractible edges of G. Then f is a non-contractible edge of G− e.

Proof. By Lemma 3, G− e is 2-connected. Since V (f) is a 2-separator of G, V (f) is also
a 2-separator of G− e and f is a non-contractible edge of G− e. �

Lemma 5. Let G be a 2-connected graph nonisomorphic to K3 and F be a finite subset
of E(G).

(a) If G− F is disconnected, then F contains at least two contractible edges.

(b) If G − F is connected but not 2-connected, then F contains at least one contractible
edge.

Proof. For (a), suppose F contains at most one contractible edge. Then by Lemma 3
and 4, we can delete all the non-contractible edges in F and the resulting graph is still
2-connected, a contradiction.

For (b), suppose all edges in F are non-contractible. Then by Lemma 3 and 4, we can
delete all edges in F and G− F is still 2-connected, a contradiction. �

Lemma 6. Let G be a 2-connected graph nonisomorphic to K3. Let {x, y} be a 2-separator
of G and C be a component of G− x− y. If |EG(x,C)| is finite, then EG(x,C) contains
a contractible edge.

Proof. Note that y is a cutvertex of G−EG(x,C). By Lemma 5(b), EG(x,C) contains a
contractible edge. �

Lemma 7. Let G be a 2-connected graph nonisomorphic to K3 and x be a vertex of G.
Suppose all edges incident to x are non-contractible. Then
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(a) x has infinite degree.

(b) For any edge xy incident to x, every component of G−x−y contains infinitely many
neighbors of x.

Proof. For (a), Suppose x has finite degree. By applying Lemma 5(a) to EG(x), x is
incident to at least two contractible edges, a contradiction.

For (b), let C be a component of G−x−y. By Lemma 6, EG(x,C) contains infinitely
many edges. �

Theorem 8. Let G be a contraction-critical 2-connected infinite graph. Then every vertex
of G has infinite degree and G has uncountably many ends.

Proof. By Lemma 7(a), every vertex of G has infinite degree.
Next, we will construct a rooted binary infinite tree T in G together with edges incident

to each vertex of T with the following properties:

(1) The root of T is denoted by x.

(2) The vertices of T are denoted by xn1n2...nk
where k ∈ N and ni ∈ {0, 1} for 1 6 i 6 k.

For k = 0, define xn1n2...nk
:= x.

(3) Each vertex xn1n2...nk
of T is adjacent to two vertices xn1n2...nk0 and xn1n2...nk1 in T .

(4) For each vertex xn1n2...nk
of T , there exists an edge xn1n2...nk

yn1n2...nk
in G such that

yn1n2...nk
does not lie in T .

(5) The subtree of T rooted at xn1n2...nk
is defined as

Tn1n2...nk
:= T [

⋃∞
i=0

⋃
(m1,m2,...,mi)∈{0,1}i xn1n2...nkm1m2...mi

].

For fixed n1, n2, . . . , nk,
⋃k

j=0{xn1n2...nj
, yn1n2...nj

} separates Tn1n2...nk0 and Tn1n2...nk1 in
G.

Each ray in T starting at x is of the form: xxn1xn1n2xn1n2n3 . . .. Let R := xxn1xn1n2

xn1n2n3 . . . and Q := xxm1xm1m2xm1m2m3 . . . be two distinct rays in T . Then there exists
a smallest k such that ni = mi for all i 6 k and nk+1 6= mk+1. By property (5) above,⋃k

j=0{xn1n2...nj
, yn1n2...nj

} separates R and Q in G. Therefore, each ray in T starting at x
belongs to a unique end of G, and G has uncountably many ends.

Now, it remains to construct T inductively. Let x be any vertex in G. Define
T0 := ({x}, ∅). Choose any edge incident to x in G, say xy. Let C0 and C1 be any
two components of G − x − y. Let x0 be a neighbor of x in C0 and x1 be a neigh-
bor of x in C1. Define T1 := ({x, x0, x1}, {xx0, xx1}). Note that NG(C0) ⊆ {x, y} and
NG(C1) ⊆ {x, y}. Also, G− C0 and G− C1 are both connected.

Suppose we have constructed the rooted binary tree Tk where
V (Tk) :=

⋃k
i=0

⋃
(n1,n2,...,ni)∈{0,1}i xn1n2...ni

and

E(Tk) :=
⋃k−1

i=0

⋃
(n1,n2,...,ni)∈{0,1}i{xn1n2...ni

xn1n2...ni0, xn1n2...ni
xn1n2...ni1} such that
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(i) each vertex xn1n2...ni
(0 6 i 6 k) lies in a connected subgraph Cn1n2...ni

of G (for
i = 0, xn1n2...ni

:= x, yn1n2...ni
:= y and Cn1n2...ni

:= G),

(ii) for each vertex xn1n2...ni
(0 6 i < k), we have found an edge xn1n2...ni

yn1n2...ni
that

lies in Cn1n2...ni
such that Cn1n2...ni0 and Cn1n2...ni1 are two components of Cn1n2...ni

−
xn1n2...ni

− yn1n2...ni
that are adjacent to xn1n2...ni

,

(iii) for fixed n1, n2, . . . , ni (1 6 i 6 k), NG(Cn1n2...ni
) ⊆

⋃i−1
j=0{xn1n2...nj

, yn1n2...nj
},

(iv) for fixed n1, n2, . . . , ni (1 6 i 6 k), G− Cn1n2...ni
is connected.

Now, for each vertex xn1n2...nk
in Tk, since it has infinite degree and NG(xn1n2...nk

) \
Cn1n2...nk

⊆ NG(Cn1n2...nk
) is finite by (iii), all but finitely many neighbors of xn1n2...nk

lie
in Cn1n2...nk

. Let z be a neighbor of xn1n2...nk
in Cn1n2...nk

and B := Cn1n2...nk
−xn1n2...nk

−z.
Suppose B is connected. Since B′ := G − Cn1n2...nk

is connected by (iv), B and B′ are
the only two components of G − xn1n2...nk

− z. By Lemma 7(b), B′ contains infinitely
many neighbors of xn1n2...nk

contradicting NG(xn1n2...nk
)\Cn1n2...nk

⊆ NG(Cn1n2...nk
) which

is finite by (iii). Therefore, B is not connected.
Note that at least one component of B is adjacent to xn1n2...nk

. If not, then, by the 2-
connectedness of G, each component of B has a neighbor in NG(Cn1n2...nk

) ⊆ G−Cn1n2...nk
.

By (iv), this implies G − xn1n2...nk
− z is connected, a contradiction. Suppose there are

two components of B, say D and D′, that are both adjacent to xn1n2...nk
. Then choose

yn1n2...nk
:= z, Cn1n2...nk0 := D and Cn1n2...nk1 := D′. Suppose only one component of B is

adjacent to xn1n2...nk
, say C. Each component of B other than C is adjacent to z by the

connectedness of Cn1n2...nk
and has a neighbor in NG(Cn1n2...nk

) ⊆ G − Cn1n2...nk
by the

2-connectedness of G. Denote the union of components of B other than C by C ′. Since
G−Cn1n2...nk

is connected by (iv), C ′′ := G[(G−Cn1n2...nk
)∪C ′] is connected. Hence, C and

C ′′ are the only two components of G−xn1n2...nk
−z and NG(C) = {xn1n2...nk

, z}. Let z′ be
a neighbor of xn1n2...nk

in C. Then one component D of Cn1n2...nk
− xn1n2...nk

− z′ contains
z and C ′. Since G− xn1n2...nk

− z′ is not connected, D cannot be the only component of
Cn1n2...nk

−xn1n2...nk
− z′. Let D′ be any component of Cn1n2...nk

−xn1n2...nk
− z′ other than

D. Then D′ lies in C and NG(D′) ⊆ {xn1n2...nk
, z′} ∪ (NG(C)− z) = {xn1n2...nk

, z′}. Now,
choose yn1n2...nk

:= z′, Cn1n2...nk0 := D and Cn1n2...nk1 := D′.
In both cases, xn1n2...nk

yn1n2...nk
lies in Cn1n2...nk

, and Cn1n2...nk0 and Cn1n2...nk1 are
two components of Cn1n2...nk

− xn1n2...nk
− yn1n2...nk

that are adjacent to xn1n2...nk
. Let

xn1n2...nk0 be a neighbor of xn1n2...nk
in Cn1n2...nk0 and xn1n2...nk1 be a neighbor of xn1n2...nk

in Cn1n2...nk1. Since Cn1n2...nk0 ⊆ Cn1n2...nk
and Cn1n2...nk1 ⊆ Cn1n2...nk

, NG(Cn1n2...nk0) ⊆
NG(Cn1n2...nk

) ∪ {xn1n2...nk
, yn1n2...nk

} ⊆
⋃k

j=0{xn1n2...nj
, yn1n2...nj

} and NG(Cn1n2...nk1) ⊆
NG(Cn1n2...nk

) ∪ {xn1n2...nk
, yn1n2...nk

} ⊆
⋃k

j=0{xn1n2...nj
, yn1n2...nj

} by (iii). By the connect-
edness of Cn1n2...nk

, every component of Cn1n2...nk
− xn1n2...nk

− yn1n2...nk
has a neighbor in

{xn1n2...nk
, yn1n2...nk

}. For nk+1 ∈ {0, 1}, denote the union of the components of Cn1n2...nk
−

xn1n2...nk
−yn1n2...nk

other than Cn1n2...nknk+1
by Unk+1

. Then G[xn1n2...nk
yn1n2...nk

∪Unk+1
] is

connected. Since xn1n2...nk−1
∈ G−Cn1n2...nk

, xn1n2...nk−1
xn1n2...nk

∈ E(G) and G−Cn1n2...nk

is connected by (iv), G−Cn1n2...nknk+1
:= G[(G−Cn1n2...nk

)∪ xn1n2...nk
yn1n2...nk

∪Unk+1
] is

connected.
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Define Tk+1 where V (Tk+1) :=
⋃k+1

i=0

⋃
(n1,n2,...,ni)∈{0,1}i xn1n2...ni

and

E(Tk+1) :=
⋃k

i=0

⋃
(n1,n2,...,ni)∈{0,1}i{xn1n2...ni

xn1n2...ni0, xn1n2...ni
xn1n2...ni1}.

Finally, define T :=
⋃∞

k=0 Tk. It is easy to see that T satisfies properties (1) through (4).
Let z0 and z1 be any vertices in Tn1n2...nk0 and Tn1n2...nk1 respectively. Then z0 is of the form
xn1n2...nk0p1p2...pi while z1 is of the form xn1n2...nk1q1q2...qj . We have z0 = xn1n2...nk0p1p2...pi ∈
Cn1n2...nk0p1p2...pi ⊆ Cn1n2...nk0p1p2...pi−1

⊆ . . . ⊆ Cn1n2...nk0 and z1 = xn1n2...nk1q1q2...pj ∈
Cn1n2...nk1q1q2...qj ⊆ Cn1n2...nk1q1q2...qj−1

⊆ . . . ⊆ Cn1n2...nk1. Therefore, Tn1n2...nk0 ⊆ Cn1n2...nk0

and Tn1n2...nk1 ⊆ Cn1n2...nk1. Since
⋃k

j=0{xn1n2...nj
, yn1n2...nj

} contains both NG(Cn1n2...nk0)
and NG(Cn1n2...nk1), it separates Cn1n2...nk0 and Cn1n2...nk1 in G and thus separates Tn1n2...nk0

and Tn1n2...nk1 in G. Hence, Property (5) holds for T and the proof is complete. �

4 Subgraph induced by all the contractible edges

In this section, we will extend Theorem 1 to any 2-connected locally finite infinite graph
G and prove that GC is 2-arc-connected. Note that Lemma 5(a) implies that every vertex
is incident to at least two contractible edges. Hence, GC is spanning. Using the following
two lemmas, it is easy to see that GC is arc-connected.

Lemma 9 (Diestel [3]). Let G be a locally finite graph. Then a standard subspace of |G|
is connected if and only if it contains an edge from every finite cut of G of which it meets
both sides.

Lemma 10 (Diestel and Kühn [6]). If G is a locally finite graph, then every closed
connected subspace of |G| is arc-connected.

Theorem 11. Let G be a 2-connected locally finite infinite graph and GC be the subgraph
induced by all the contractible edges in G. Then GC is arc-connected.

Proof. Let F be any finite cut of G. By Lemma 5(a), F contains at least two edges in
GC . Hence, GC is connected by Lemma 9. By Lemma 10, GC is arc-connected. �

Next, we prove that GC is 2-connected.

Lemma 12. Let G be a 2-connected locally finite infinite graph and x be a point of |G|.
Suppose there is a partition (X,X ′) of V (G\x) such that EG(X,X ′) is non-empty and all
edges in EG(X,X ′) are non-contractible. Then G contains a subdivision of a 1-way infinite
ladder L consisting of two disjoint rays: R := x0P1x1P2x2 . . . and R′ := x′0P

′
1x
′
1P
′
2x
′
2 . . .

with the rungs of the ladder being x0x
′
0, x1x

′
1, x2x

′
2, . . ., all of which are X-X ′ edges such

that x /∈ L.

Proof. Since G is 2-connected, |EG(X,X ′)| > 2 unless x is a vertex and |EG(X,X ′)| = 1.
Consider any X-X ′ edge x0x

′
0 that does not contain x. Let C be the component of

G− x0 − x′0 containing x and C1 be a component of G− x0 − x′0 not containing x.
Suppose we have constructed the finite ladder Lk consisting of two disjoint paths

Rk := x0P1x1P2x2 . . . xk−1Pkxk and R′k := x′0P
′
1x
′
1P
′
2x
′
2 . . . x

′
k−1P

′
kx
′
k with the rungs of the
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ladder being x0x
′
0, x1x

′
1, . . . xkx

′
k, all of which are X-X ′ edges such that Lk ⊆ G[C1∪x0∪x′0]

and G[C ∪ Lk − xk − x′k] is connected. Let Ck+1 be a component of G − xk − x′k not
containing x. Then Ck+1 ⊆ C1 and Ck+1∩Lk = ∅. By applying Lemma 6 to EG(xk, Ck+1)
and EG(x′k, Ck+1), there exist contractible edges xkyk+1 and x′ky

′
k+1 where yk+1 ∈ Ck+1

and y′k+1 ∈ Ck+1. Since x /∈ Ck+1 and all edges in EG(X,X ′) are non-contractible,
yk+1 ∈ X and y′k+1 ∈ X ′. Choose a path Qk+1 in Ck+1 between yk+1 and y′k+1. Then there
exists an X-X ′ edge xk+1x

′
k+1 on Qk+1 such that V (yk+1Qk+1xk+1) ⊆ X and x′k+1 ∈ X ′.

Define Pk+1 := xkyk+1∪yk+1Qk+1xk+1, P
′
k+1 := x′ky

′
k+1∪y′k+1Qk+1x

′
k+1, Rk+1 := Rk∪Pk+1,

R′k+1 := R′k∪P ′k+1 and Lk+1 := Lk∪Pk+1∪P ′k+1∪xk+1x
′
k+1. Note that Lk+1 ⊆ G[C1∪x0∪x′0]

and G[C ∪ Lk+1 − xk+1 − x′k+1] is connected.
Define R :=

⋃
k>0Rk, R′ :=

⋃
k>0R

′
k and L :=

⋃
k>0 Lk. Then L ⊆ G[C1 ∪ x0 ∪ x′0]

and x /∈ L. �

Theorem 13. Let G be a 2-connected locally finite infinite graph and GC be the subgraph
induced by all the contractible edges in G. Then GC is 2-connected.

Proof. Suppose GC is not 2-connected. Then there exists a point x in GC such that
GC \ x is not connected. Let U and U ′ be two disjoint non-empty open sets in |G| such
that GC\x ⊆ U∪U ′, (GC\x)∩U 6= ∅ and (GC\x)∩U ′ 6= ∅. Define X := (GC\x)∩U∩V (G)
and X ′ := (GC \ x) ∩ U ′ ∩ V (G). Since GC is spanning, X ∪ X ′ = V (G \ x). Suppose
U contains an interior point a of an edge bc of GC . Then GC \ x contains half edges [ba]
or [ca] of bc. By the connectedness of half edge, U contains b or c. Suppose U contains
an end ω of |G|. Then U contains a basic open neighborhood of ω, say Ĉ(S, ω), and thus
contains infinitely many vertices. The same arguments hold for U ′. Therefore, both X
and X ′ are non-empty. Since G \ x is connected, EG(X,X ′) is non-empty.

Suppose x is a vertex or an end of G. Then all edges in EG(X,X ′) are non-contractible
and (X,X ′) is a partition of V (G \ x). Suppose x is an interior point of an edge e. Then
all edges in EG(X,X ′) are non-contractible unless e ∈ EG(X,X ′) ∩ EC . Note that,
EG(X,X ′)− e is non-empty as G is 2-connected and every edge in EG(X,X ′)− e is non-
contractible. Let e = yy′ where y ∈ X and y′ ∈ X ′. Suppose X = {y}. By Lemma 5(a),
since y is incident to at least two contractible edges, there is a contractible X-X ′ edge
other than e, which is impossible. Therefore, |X| > 2. Now, all edges in EG(X − y,X ′)
are non-contractible and (X − y,X ′) is a partition of V (G \ y). In both cases, by Lemma
12, G contains a subdivision of a 1-way infinite ladder L such that x /∈ L.

Let ω be the end of |G| containing R and R′. Note that ω 6= x. Since GC is span-
ning, GC \ x contains all the ends of |G| except possibly x. Without loss of generality,
assume ω ∈ U . Since U is open, there exists a basic open neighborhood Ĉ(S, ω) ⊆ U .
Since x′0, x

′
1, x
′
2, . . . ∈ X ′ ⊆ U ′ converge to ω, all but finitely many of them lie in Ĉ(S, ω),

contradicting U ∩ U ′ = ∅. �

Finally, we prove the main result of this section, namely, GC is 2-arc-connected.
This follows from a theorem by Georgakopoulos [7] concerning connected but not path-
connected subspaces of locally finite graphs. Note that since |G| is Hausdorff, path-
connectedness is equivalent to arc-connectedness.
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Theorem 14 (Georgakopoulos [7]). Given any locally finite connected graph G, a con-
nected subspace X of |G| is path-connected unless it satisfies the following assertions:

(1) X has uncountably many path-components each of which consists of one end only;

(2) X has infinitely many path-components that contain a vertex; and

(3) every path-component of X contains an end.

Theorem 15. Let G be a 2-connected locally finite infinite graph and GC be the subgraph
induced by all the contractible edges in G. Then GC is 2-arc-connected.

Proof. Suppose GC is not 2-arc-connected. Then there exists a point x in GC such that
GC\x is not arc-connected. Note that GC\x is connected by Theorem 13. By Theorem 14,
GC\x has uncountably many path-components each of which consists of one end only. Let
ω and ω′ be two such path-components of GC \x. Since GC is arc-connected by Theorem
11, there exists an arc A joining ω and ω′ in GC . Now, x must lie in A for otherwise
ω and ω′ would lie in the same path-component of GC \ x. But the path-component of
GC \ x containing ω also contains [ωAx), a contradiction. �

5 Outerplanarity of 2-connected locally finite graphs

As mentioned in the introduction, in order to extend Theorem 2 to locally finite infinite
graphs, we would like to prove that for any 2-connected locally finite infinite graph G, if
every vertex is incident to exactly two contractible edges, then GC is a Hamilton circle.
This requires several lemmas listed below.

Lemma 16. Let G be a locally finite graph. Then every arc in |G| whose two endpoints
are ends contains a vertex.

Proof. Suppose A is an arc in |G| whose two endpoints are ends ω1 and ω2. Then there
exists a finite set S of vertices such that Ĉ(S, ω1) and Ĉ(S, ω2) are distinct. By the
connectedness of A, A contains a vertex of S. �

Lemma 17. Let G be a locally finite graph and ω be an end in |G|. Then every ω-arc A
in |G| contains a vertex, say z, and zA contains a ray starting with z.

Proof. Denote the starting point of A by a. First, we show that A contains a vertex. If
a is a vertex, then we are done. If a is an end, then it is true by Lemma 16. If a is an
interior point of an edge xy, then by the connectedness of A, A contains x or y.

Let z be a vertex in A. By the connectedness of zA, zA contains an interior point
of an edge incident to z, say zz1. Then the connectedness of zA implies zz1 lies in zA.
Repeat the above argument for z1A and so on. We obtain a ray that starts with z and
lies in zA. �
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Lemma 18. Let G be a locally finite graph and ω be an end in |G|. Let A1 and A2 be two
ω-arcs in |G| that are disjoint except at ω. Then, for all finite subset S of V (G), Ĉ(S, ω)
contains a subarc A′1ωA

′
2 of A1ωA2 and there is an A′1-A

′
2 path in C(S, ω).

Proof. Let x1 be the last point of A1 that lies in S and x2 be the last point of A2 that lies
in S. By Lemma 17, x1A contains a ray R1 starting with x1 and x2A contains a ray R2

starting with x2. Let y1 be the neighbor of x1 in R1 and y2 be the neighbor of x2 in R2.
Then y1A1ωA2y2 lies in Ĉ(S, ω). Also there is a y1-y2 path in C(S, ω) which automatically
contains a y1A1-y2A2 path. �

We also need a result on the characterization of a topological circle in |G| in terms of
its vertex and end degrees.

Lemma 19 (Bruhn and Stein [1]). Let C be a subgraph of a locally finite graph G. Then
C is a circle if and only if C is connected and every vertex and end of |G| in C has degree
two in C.

Now, we can proceed with the proof.

Theorem 20. Let G be a 2-connected locally finite infinite graph and GC be the subgraph
induced by all the contractible edges in G. If every vertex of G is incident to exactly two
contractible edges, then GC is a Hamilton circle.

Proof. Since GC is spanning, GC contains all vertices and ends of |G|. By Theorem 11,
GC is arc-connected. Obviously, every vertex of G has degree two in GC . Therefore, it
remains to prove that every end of |G| has degree two in GC .

Claim 21. Let A be an arc in GC and x be a vertex in A. Suppose that both x− and x+

exist in A. Let y be any neighbor of x other than x− and x+. Then every x−-x+ arc in
|G| intersects {x, y}.

Proof. Since xx− and xx+ are the only contractible edges incident to x, xy is non-
contractible. Lemma 6 implies that G− x− y has exactly two components, and x− and
x+ lie in different components. By the connectedness of an arc, every x−-x+ arc in |G|
intersects {x, y}. �

Claim 22. Let ω be an end in |G|. Suppose A1 and A2 are two edge-disjoint ω-arcs in
GC. Then A1 and A2 can intersect only at the ends of |G| with the only possible exception
being that the starting points of A1 and A2 are the same vertex.

Proof. Obviously, A1 and A2 cannot intersect at an interior point of an edge. Suppose
A1 and A2 intersect at a vertex x. If x is not the starting point for both A1 and A2, then
the degree of x in GC is at least three, a contradiction. �

Claim 23. Let ω be an end in |G|. Suppose A1 and A2 are two edge-disjoint ω-arcs in
GC such that the starting points of A1 and A2 are distinct vertices. Then there exists an
end ω′ in |G| such that there are three ω′-arcs in GC that are disjoint except at ω′ unless
A1 ∩ A2 = {ω}.
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Proof. Suppose A1 ∩ A2 6= {ω}. Let ω′ be the first point of A2 that intersects A1. By
Claim 22, ω′ is an end in |G| different from ω. Then A1ω

′, A2ω
′ and ωA1ω

′ are the
required three ω′-arcs. �

Claim 24. Let ω be an end in |G|. Suppose there are three edge-disjoint ω-arcs in GC.
Then there exists an end ω′ in |G| such that there are three ω′-arcs in GC that are disjoint
except at ω′.

Proof. Let A1, A2, A3 be three edge-disjoint ω-arcs in GC . By Lemma 17, for each i ∈
{1, 2, 3}, Ai contains a ray Ri. Denote the first edge of Ri by xiyi. By Claim 22, y1, y2, y3
are all distinct. Therefore, without loss of generality, we can assume that the starting
points of A1, A2, A3 are all distinct vertices. Consider A1 and A2. If A1 ∩A2 6= {ω}, then
the claim follows from Claim 23. Suppose A1 ∩ A2 = {ω}. If A2 ∩ A3 6= {ω}, then again
the claim follows from Claim 23. Therefore, suppose A2∩A3 = {ω}. But then, A1, A2, A3

are the desired three ω-arcs. �

Claim 25. For each end ω in |G|, degGC
(ω) 6 2.

Proof. Suppose there are three edge-disjoint ω-arcs in GC . By Claim 24, there exists
an end ω′ in |G| such that there are three ω′-arcs in GC that are disjoint except at ω′.
Denote these three ω′-arcs by A1, A2, A3. By Lemma 16, without loss of generality, we
can assume A1, A2, A3 start with vertices a1, a2, a3 respectively.

By applying Lemma 18 to A1 and A2 with S = {a1, a2}, we obtain an a+1 A1-a
+
2 A2 path

P . Let x1 = P ∩ A1, x2 = P ∩ A2 and x be the neighbor of x1 in Q. If P intersects A3,
then interchange A2 and A3. Therefore, without loss of generality, there is an a+1 A1-a

+
2 A2

path P that does not intersect A3.
Now, apply Lemma 18 to x2A2 and A3 with S = V (P ). We obtain an x+2 A2-A3 path

Q not intersecting P . Let y2 = Q ∩ x+2 A2 and y3 = Q ∩ A3. By Claim 21, Q cannot
intersect A2x

−
2 , and Q cannot intersect both A1x

−
1 and x+1 A1. Suppose Q ∩ A1x

−
1 6= ∅.

Let y be the first vertex of Q that lies in A1x
−
1 . Then x−1 A1yQy2A2ω

′A1x
+
1 is an x−1 -x+1 arc

not intersecting {x1, x}, contradicting Claim 21. Suppose Q ∩ x+1 A1 6= ∅. Then there is
an x+1 A1-A3 subpath in Q not intersecting A2, and we interchange A1 and A2. Therefore,
without loss of generality, we can assume that there is an x+2 A2-A3 path Q that does not
intersect P ∪ A1 ∪ A2x

−
2 . Let u2 be the neighbor of y2 in Q and u3 be the neighbor of y3

in Q.
Finally, apply Lemma 18 to x1A1 and y2A2 with S = V (P ∪Q). We obtain an x+1 A1-

y+2 A2 path R not intersecting P ∪Q. Let z1 = R ∩ x+1 A1 and z2 = R ∩ y+2 A2. By Claim
21, R cannot intersect A1x

−
1 and R cannot intersect A2y

−
2 . Also, R cannot intersect both

A3y
−
3 and y+3 A3. Suppose R ∩ A3y

−
3 6= ∅. Let z be the last vertex of R that lies in

A3y
−
3 . Then y−3 A3zRz2A2ω

′A3y
+
3 is an y−3 -y+3 arc not intersecting {y3, u3}, contradicting

Claim 21. Suppose R ∩ y+3 A3 6= ∅. Let z′ be the first vertex of R that lies in y+3 A3.
Then y−2 A2x2Px1A1z1Rz

′A3ω
′A2y

+
2 is an y−2 -y+2 arc not intersecting {y2, u2}, contradicting

Claim 21. Therefore, R∩ (A1x
−
1 ∪A2y

−
2 ∪A3∪P ∪Q) = ∅. But, y−2 A2x2Px1A1z1Rz2A2y

+
2

is an y−2 -y+2 arc not intersecting {y2, u2}, contradicting Claim 21. �

Claim 26. For each end ω in |G|, degGC
(ω) = 2.
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Proof. Let x be a vertex in GC . Since GC is arc-connected, there is an ω-arc A in GC

joining x to ω. Let y be the neighbor of x in A and a be an interior point of xy. Since
GC is 2-connected, GC \ a is connected. Suppose GC − xy is not connected. Then there
exist two disjoint nonempty open sets U and V in |G| such that GC − xy ⊆ U ∪ V ,
U ∩GC − xy 6= ∅ and V ∩GC − xy 6= ∅. If x, y ∈ U , then U ∪ [x, a)∪ [y, a) and V are two
disjoint open sets in |G| both intersecting GC \ a, and their union contains GC \ a, which
is impossible. If x ∈ U and y ∈ V , then U ∪ [x, a) and V ∪ [y, a) are two disjoint open sets
in |G| both intersecting GC \ a, and their union contains GC \ a, which is also impossible.
Therefore, GC − xy is connected and is arc-connected by Lemma 10. Let A′ be an x-ω
arc in GC − xy. If yAω ∩ A′ contains a vertex u, then u has degree at least three in GC ,
a contradiction. Let ω′ be the first point in yAω ∩ A′ which is an end. If ω′ 6= ω, then
degGC

(ω′) > 3 contradicting Claim 25. Therefore, ω′ = ω and we have degGC
(ω) > 2. By

Claim 25, degGC
(ω) = 2. �

We are now ready to prove the infinite analog of Theorem 2.

Theorem 27. Let G be a 2-connected locally finite graph nonisomorphic to K3. Then the
following are equivalent:

(1) Every vertex of G is incident to exactly two contractible edges.

(2) Every finite bond of G contains exactly two contractible edges.

(3) G is outerplanar.

Proof.
(2)⇒ (1) Trivial.
(1) ⇒ (3) By Theorem 2, this is true for finite G. Therefore, assume G is infinite.

Suppose every vertex of G is incident to exactly two contractible edges. By Theorem
20, GC is a Hamilton circle. All edges in E(G) \ EC are chords of GC and are non-
contractible. Consider any chord xy of GC . Since every vertex of G is incident to exactly
two contractible edges, by Lemma 6, G − x − y consists of exactly two components C1

and C2. Without loss of generality, assume that x+GCy
− ⊆ C1 and y+GCx

− ⊆ C2. Then
there is no chord of GC between x+GCy

− and y+GCx
−. Hence, no chords of GC are

overlapping. Embed GC in a circle of R2 and denote the embedding by φ. Now, draw
every chord xy of GC as a straight line segment between φ(x) and φ(y) in R2. This shows
that G is outerplanar.

(3) ⇒ (2) Let B be a finite bond of G between two components X and Y of G − B.
By Lemma 5(a), B contains at least two contractible edges. Suppose B contains three
contractible edges x1y1, x2y2, x3y3 such that x1, x2, x3 ∈ X and y1, y2, y3 ∈ Y . Since X
and Y are connected, there exists a path P in X joining x1 to x2 and a path Q in Y
joining y1 to y2. Let C := P ∪ x1y1 ∪Q ∪ x2y2. Obviously, x3y3 /∈ E(C). Take any x3-P
path P ′ in X joining x3 to P at x and any y3-Q path Q′ in Y joining y3 to Q at y. Let
R′ := P ′ ∪ x3y3 ∪ Q′. If R′ = x3y3, then x3y3 is a chord of C. Since x3y3 is contractible,
the two components of C − x3 − y3 are joined by a path, say R. Then C ∪ R ∪ R′ is a
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K4-subdivision and G is not outerplanar. Suppose R′ 6= x3y3. If both x-y paths in C are
not edges, then C ∪ R′ is a K2,3-subdivision and G is not outerplanar. If one of the two
x-y paths in C is an edge, then without loss of generality, assume x2 = x and y2 = y.
Since x2y2 is contractible, the two components of (C ∪R′)− x2− y2 are joined by a path,
say R. Then C ∪R ∪R′ is a K4-subdivision and G is not outerplanar. �
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