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Abstract

Oscillating tableaux are certain walks in Young’s lattice of partitions; they gen-
eralize standard Young tableaux. The shape of an oscillating tableau is the last
partition it visits and the length of an oscillating tableau is the number of steps it
takes. We define a new statistic for oscillating tableaux that we call weight: the
weight of an oscillating tableau is the sum of the sizes of all the partitions that it
visits. We show that the average weight of all oscillating tableaux of shape λ and
length |λ|+ 2n (where |λ| denotes the size of λ and n ∈ N) has a surprisingly simple
formula: it is a quadratic polynomial in |λ| and n. Our proof via the theory of dif-
ferential posets is largely computational. We suggest how the homomesy paradigm
of Propp and Roby may lead to a more conceptual proof of this result and reveal a
hidden symmetry in the set of perfect matchings.
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1 Introduction

In this note, we follow the standard notation for partitions as laid out in [14, §7.2]. Recall
that Young’s lattice is the poset of all partitions partially ordered by inclusion of Young
diagrams. We write µ ⊆· λ to mean that λ covers µ in Young’s lattice; that is, we
write µ ⊆· λ to mean that the Young diagram of λ is obtained from that of µ by the
addition of a box. A walk in (the Hasse diagram of) Young’s lattice is a sequence of
partitions (λ0, λ1, . . . , λl) such that for all 1 6 i 6 l we have λi−1 ⊆· λi or λi ⊆· λi−1. An
oscillating tableau of shape λ and length l is a walk T = (λ0, λ1, . . . , λl) in Young’s lattice
such that λ0 = ∅ and λl = λ. We use OT (λ, l) to denote the set of oscillating tableaux of
shape λ and length l. Recall that |λ| denotes the size of λ.
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Oscillating tableaux are a generalization of standard Young tableaux (SYT): it is not
hard to see that #OT (λ, |λ|) = fλ, the number of SYT of shape λ. The numbers fλ

are easily computed thanks to the famous hook-length formula [14, Corollary 7.21.6]. In
fact, the number of oscillating tableaux of arbitrary shape and length may be expressed
in terms of these fλ.

Theorem 1.1. Let |λ| = k. Then for all n ∈ N,

#OT (λ, k + 2n) =

(
2n+ k

k

)
(2n− 1)!!fλ.

On the other hand, if l 6= k + 2n for some n ∈ N then #OT (λ, l) = 0.

Above, (2n − 1)!! := 1 · 3 · 5 · · · (2n − 1), which is 1 if n = 0. The last sentence in
Theorem 1.1 is clear because if (λ0, . . . , λl) is a walk in Young’s lattice then |λl| 6 |λ0|+ l
and |λl| − |λ0| ≡ l mod 2. Several different approaches have been developed to prove this
theorem. A bijective proof is given in [16, Lemma 8.7]. Roby [9, §4.2] explains how the
theory of growth diagrams, initiated by Fomin [6], also yields a bijective proof. Another
elegant approach to this formula is via the theory of differential posets developed by
Stanley [13] [15, Theorem 8.7]; this is the approach we will follow in investigating certain
statistical averages for oscillating tableaux.

To some extent, oscillating tableaux have been studied in the context of combinatorial
statistics; for example, Chen et. al. [3] used tableaux to prove the symmetry of maximal
crossing number and maximal nesting number in set partitions. Here we are interested
in a statistic on tableaux that we term weight. To our knowledge this statistic has
not been explored in previous research. It turns out that there is a surprisingly simple
formula for the average weight across all oscillating tableaux of given shape and length.
For T ∈ OT (λ, l), define the weight of T , denoted wt(T ), to be the sum of the sizes of all
partitions that T visits; that is, if T = (λ0, . . . , λl) then we set wt(T ) :=

∑l
i=0 |λi|.

Theorem 1.2. Let |λ| = k. Then for all n ∈ N,

1

#OT (λ, k + 2n)

∑
T∈OT (λ,k+2n)

wt(T ) =
1

6
(4n2 + 3k2 + 8kn+ 2n+ 3k).

If we instead calculate the average size of a partition in a uniformly random oscillating
tableau of given shape and length, we arrive at the following extremely simple formula.

Corollary 1.3. Let |λ| = k. Then for all n ∈ N,

1

#OT (λ, k + 2n) · (2n+ k + 1)

∑
T∈OT (λ,k+2n)

wt(T ) =
n

3
+
k

2
.

The fact that the average in Theorem 1.2 depends only on k and n, and not λ, is
conceivable in light of Theorem 1.1, which says that the dependence of #OT (λ, k + 2n)
on λ is slight. Still, it is unclear why this average should be a polynomial in k and n and
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why there should be a constant κ such that κ times this average is integral for all λ and
all n. Note that

1

2
(4n2 + 3k2 + 8kn+ 2n+ 3k) = (n+ (k + 1)/2)(2n+ 3k)

is integral for all n, k ∈ N, so we may take κ = 3. It is especially unclear why such a small
choice of κ should work. The proof of Theorem 1.2 we give in Section 2, essentially a
mysterious computation using differential poset operators, is unilluminating in this regard.
In Section 3 we suggest how the recent homomesy paradigm of Propp and Roby [8] might
lead to a more explanatory proof of Theorem 1.2. Homomesy says, roughly, that “small
denominators in statistical averages of combinatorial objects should be explained by group
actions.” The possibility of such a proof points towards a hidden S3-symmetry in the
set of perfect matchings, as well as potentially the first instance of homomesy involving a
non-cyclic group. (The potential for a non-cyclic homomesy arises from the three natural
statistics for perfect matchings: number of crossings, number of nestings, and number of
alignments. These statistics are not symmetrically distributed but may nevertheless be
simultaneously homomesic under an S3-action.)

One might hope to extend Theorem 1.2 to skew oscillating tableaux. A skew oscillating
tableau of shape λ/µ and length l is a walk T = (λ0, λ1, . . . , λl) in Young’s lattice such
that λ0 = µ and λl = λ. See [9, Corollary 4.2.11] for a formula enumerating such tableaux.
However, computation carried out with Sage mathematical software [10] suggests that
there is not as simple a formula for the average weight of such tableaux for arbitrary µ;
in particular, it appears that the denominator of the average is unbounded in this case.

2 Proof of Theorem 1.2

To prove Theorem 1.2, we apply the theory of differential posets [13] [15, Chapter 8].
Let V be the vector space of linear combinations of partitions and define two linear
operators U,D : V → V by

U(µ) :=
∑
µ⊆·ν

ν;

D(µ) :=
∑
ν⊆·µ

ν.

These operators (which multiply right-to-left) satisfy the fundamental commutation iden-
tity DU − UD = I. Following Stanley [15, Chapter 8], define the numbers bij(l) ∈ Z
by (U +D)l =

∑
i,j>0 bij(l)U

iDj. Lemma 8.6 of [15] shows that bi0(l) =
(
l
i

)
(l − i − 1)!!

when l− i is even. We basically mimic the proof of Lemma 8.6, but we expand a slightly
more complicated expression that keeps track of tableaux weights. So let us similarly
define pij(l) ∈ Z[x, x−1, y, y−1] by(

yxDxxU + yxDxx−1D
)l

=
∑
i,j>0

pij(l)U
iDj
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where yxDx : Z[x, x−1] → Z[x, x−1, y, y−1] is the Z-linear map of rings yxDx(xn) := xnyn.
It is clear that the pij(l) exist and are well defined. In addition, pij(l) = xi−jqij(l) for
some unique qij(l) ∈ Z[y, y−1]. We adopt the shorter notation T := OT (λ, k + 2n).
For v ∈ V and λ a partition we use [λ]v to denote the coefficient of λ in v. Recall
that #T = [λ] (U +D)k+2n · ∅ because the coefficient of any partition µ in (U +D)k+2n · ∅
is the number of ways we can take k+2n steps (each either up or down) in Young’s lattice
from ∅ to arrive at µ. Similarly, we have∑

T∈T

wt(T ) = [λ]
∂

∂y

(
yxDxxU + yxDxx−1D

)k+2n

∣∣∣∣
x=1,y=1

· ∅.

Here x marks the size of the partition and y marks the accumulated weight of the tableaux.
Thus, defining cij(l) ∈ Z by cij(l) := ∂

∂y
(qij(l))

∣∣
y=1

, we have #T = bk,0(k + 2n)fλ

and
∑

T∈T wt(T ) = ck,0(k + 2n)fλ. Theorem 1.2 is therefore equivalent to

ck0(k + 2n)

bk0(k + 2n)
=

1

3

(
n+

k + 1

2

)
(2n+ 3k) (2.1)

for all k, n > 0. Note that DU − UD = I implies that DU i = U iD + iU i−1 for all i > 0
(see [15, (8.6)]). From this it follows that∑
i,j>0

xi−jqij(l + 1)U iDj =
(
yxDxxU + yxDxx−1D

)∑
i,j>0

xi−jqij(l)U
iDj

=
∑
i,j>0

xi−j+1yi−j+1qij(l)U
i+1Dj + xi−j−1yi−j−1qij(l)DU

iDj

=
∑
i,j>0

xi−jyi−j(qi−1,j(l) + qi,j−1(l − 1) + (i+ 1)qi+1,j(l − 1))U iDj.

Equating the coefficients of U iDj on both sides shows that the polynomials qij(l) satisfy
the recurrence

qij(l + 1) = yi−j(qi−1,j(l) + qi,j−1(l) + (i+ 1)qi+1,j(l)).

In particular, qi0(l + 1) = yi(qi−1,0(l) + (i + 1)qi+1,j(l)). Since qij(l)
∣∣
y=1

= bij(l), we also

have the following recurrence in the c numbers:

ci0(l + 1) = ci−1,0(l) + (i+ 1)ci+1,0(l) + ibi−1,0(l) + i(i+ 1)bi+1,0(l). (2.2)

We will now prove that (2.1) holds by induction on k+2n. The base case of this induction
is when k = n = 0. In this case, (2.1) holds because c00(0) = 0. So now assume that
at least one of k or n is strictly greater than zero and that (2.1) holds for smaller values
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of k + 2n. Then by (2.2), our inductive hypothesis, and [15, Lemma 8.6] we have

ck0(k + 2n) = ck−1,0(k − 1 + 2n) + kbk−1,0(k − 1 + 2n)

+ (k + 1)ck+1,0(k + 1 + 2(n− 1)) + k(k + 1)bk+1,0(k − 1 + 2n)

=

(
(n+ k

2
)(2n+ 3(k − 1))

3
+ k

)
bk−1,0(k − 1 + 2n)

+

(
(n− 1 + k+2

2
)(2(n− 1) + 3(k + 1))

3
+ k

)
(k + 1)bk+1,0(k − 1 + 2n)

=

(
(n+ k+1

2
)(2n+ 3k)

3
− 4

3
n

)
bk−1,0(k − 1 + 2n)

+

(
(n+ k+1

2
)(2n+ 3k)

3
+

2

3
k

)
(k + 1)bk+1,0(k − 1 + 2n)

=

(
(n+ k+1

2
)(2n+ 3k)

3

)
(bk−1,0(k − 1 + 2n) + (k + 1)bk+1,0(k − 1 + 2n))

+
2

3

(
k(k + 1)bk+1,0(k − 1 + 2n)− 2nbk−1,0(k − 1 + 2n)

)
=

(
(n+ k+1

2
)(2n+ 3k)

3

)
bk,0(k + 2n)

+
2

3

(
k(k + 1)

(
k − 1 + 2n

k + 1

)
(2n− 3)!!− 2n

(
k − 1 + 2n

k − 1

)
(2n− 1)!!

)
=

(
(n+ k+1

2
)(2n+ 3k)

3

)
bk,0(k + 2n).

So (2.1) holds for k and n. This completes the proof.

3 A better proof through homomesy?

In the study of statistics on combinatorial objects, Propp and Roby [8] recently introduced
the paradigm of homomesy.

Definition 3.1. Let k be a field of characteristic zero. We say that the statistic f : S → k
on a set of combinatorial objects S is homomesic with respect to the action of a group G
on S if there is some c ∈ k such that 1

#O
∑

s∈O f(s) = c for each G-orbit O. In other
words, we say the statistic is homomesic with respect to G if the average of f is the same
for each G-orbit. In this case we also say the triple (S, G, f) exhibits homomesy.

Propp and Roby point out how, like the cyclic-sieving phenomenon, the homomesy
phenomenon is widespread in algebraic and enumerative combinatorics. Past research
on homomesy has in general restricted to the case G = 〈ϕ〉 where ϕ : S → S is some

the electronic journal of combinatorics 22(2) (2015), #P2.48 5



combinatorially-meaningful procedure such as rowmotion in order ideals of posets [8] [5]
or promotion of Young tableaux [2]. The goal in such settings is to find natural statistics
on S that are homomesic with respect to ϕ. However, we could take a different perspective
whereby we have a certain statistic f we want to understand better and search for some
groupG so that (S, f, G) exhibits homomesy. Of course, this is always possible by takingG
to be the group of all invertible maps S → S; but this is a trivial case in which there is
only one G-orbit. The goal is to find a group G of small size whose action explains an
otherwise mysteriously small denominator in the average of the statistic across all of S.
If f(S) ⊆ Z then this denominator is bounded by the order of G.

In order to give a better proof of Theorem 1.2 we would want to construct an action
of C3, the cyclic group of order 3, on OT (λ, k + 2n) such that wt(·) is homomesic with
respect to this action. We might want this action to be free so that the size of each orbit
is 3; if so, we should assume n > 2 so that #OT (λ, k + 2n) is always divisible by 3.
In this case we would want to prove that for each C3-orbit O we have

∑
T∈O wt(T ) =

1
2
(4n2+3k2+8kn+2n+3k). We can make this request for a free cyclic action more precise

via the relationship between oscillating tableaux and perfect matchings. We need to
establish some preliminaries before we can state this relationship precisely in Theorem 3.2.

A perfect matching of [2n] is a partition of the set [2n] := {1, 2, . . . , 2n} into pairs.
Denote the set of perfect matchings of [2n] by Mn. Let M ∈Mn and choose p = {α, β}
and q = {γ, δ} ∈ M . Assume that α < β, γ < δ and β < δ. Then we say that {p, q} is
a crossing of M if α < γ < β < δ. We say it is a nesting if γ < α < β < δ. Finally,
we say it is an alignment if it is neither a crossing nor a nesting. We will denote the
number of crossings, nestings, and alignments of M by cross(M), nest(M), and align(M)
respectively.

Recall that a Dyck path of semilength n is a lattice path in Z2 from (0, 0) to (n, n)
consisting of n north steps of the form (0, 1) and n east steps of the form (1, 0) that never
goes below the diagonal x = y. Let Dn denote the set of Dyck paths of semilength n.
We identify a Dyck path D ∈ Dn with its Dyck word, which is the binary word of
length 2n whose ith letter is 1 if the ith step of D is north and 0 if it is east. The
area of D ∈ Dn, denoted area(D), is the number of complete boxes of unit size below D
and above the diagonal x = y. So for instance area(101010) = 0, area(101100) = 1,
and area(111000) = 3.

For M ∈ Mn and {i, j} ∈ M , if i < j then we say i is an opener in M and j is a
closer in M . There is a natural surjection Mn � Dn given by M 7→ DM where the ith
letter of DM is 1 if i is an opener in M and 0 if i is a closer in M . There is also a natural
surjection OT (∅, 2n)� Dn given by T = (λ0, . . . , λ2n) 7→ DT where the ith letter of DT

is 1 if λi−1 ⊆· λi and 0 if λi ⊆· λi−1.
Theorem 3.2. There is a bijection RS : Mn

∼−→ OT (∅, 2n) such that DM = DRS(M) for
all M ∈Mn.

This bijection is due to Richard Stanley; but we call it RS also because it is an
extension of Robinson-Schensted insertion. A description of the bijection is given in [16,
Lemma 8.3]. See also [3, §5]. In light of Theorem 3.2 it makes sense to ask how the
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statistic weight for oscillating tableaux translates to perfect matchings. That question is
answered by the following proposition.

Proposition 3.3.

(a) For all M ∈Mn we have align(M) =
(
n
2

)
− area(DM).

(b) For all T ∈ OT (∅, 2n) we have wt(T ) = 2 · area(DT ) + n.

Thus for all M ∈Mn we have wt(RS(M)) = n+ 2
((
n
2

)
− align(M)

)
.

Proof : Let D ∈ Dn. For 1 6 i 6 2n define bi(D) to be the number of 1s minus the number
of 0s in the subword consisting of the first i letters of D. For 1 6 i 6 n define ai(D) := bj
where j is the position of the ith 0 in D. If T = (λ0, . . . , λ2n) then bi(DT ) = |λi| and
therefore wt(T ) =

∑2n
i=1 bi(DT ). We also claim that cross(M) + nest(M) =

∑n
i=1 ai(DM).

This is because if the position of the ith 0 in DM is β and {α, β} ∈M then

ai(DM) = #{{γ, δ} ∈M : γ < δ and γ < β} −#{{γ, δ} ∈M : γ < δ 6 β}
= #{{γ, δ} ∈M : α < γ < β < δ or γ < α < β < δ}.

Then align(M) =
(
n
2

)
−
∑n

i=1 ai(DM) because cross(M) + nest(M) + align(M) =
(
n
2

)
for any M ∈ Mn. So the proposition amounts to showing

∑n
i=1 ai(D) = area(D)

and
∑2n

i=1 bi(D) = 2area(D) + n for any D ∈ Dn. This is true because it is true
when D = 1010 · · · 10 and it remains true after replacing a consecutive subword of 01
by 10 in any Dyck word. �

Moreover, for any four fixed positions α < β < γ < δ ∈ [2n] it is equally likely that
these positions participate in a crossing, nesting, or alignment of a uniformly random
matching M ∈ Mn. Then by linearity of expectation the average number of alignments
among all matchings is given by 1

#Mn

∑
M∈Mn

align(M) = 1
3

(
n
2

)
. This fact together with

Theorem 3.2 and Proposition 3.3 yields Theorem 1.2 in the case where λ = ∅. It also
suggests that to find a C3 action on OT (λ, k+ 2n) that exhibits homomesy with wt(·) we
could start by looking for a C3 action on Mn that exhibits homomesy with align(·).

Presumably it would be easy to find such an action if the statistics cross(·), nest(·),
and align(·) were symmetrically distributed. However, this is not the case. That is, it is
not true in general that∑

M∈Mn

x
cross(M)
1 x

nest(M)
2 x

align(M)
3 =

∑
M∈Mn

x
cross(M)
ω(1) x

nest(M)
ω(2) x

align(M)
ω(3) (3.1)

for all ω ∈ S3, the symmetric group on 3 letters. Nevertheless, de Médicis and Viennot [4]
define a certain involution, let us call it σ : Mn →Mn, such that cross(M) = nest(σ(M))
and nest(M) = cross(σ(M)) for all M ∈Mn. (See [7] for a description of this involution
in English as well as a generalization to arbitrary set partitions.) As an aside, we remark
that there is another natural involution c : OT (∅, 2n)→ OT (∅, 2n) that can be transferred
to perfect matchings via RS given by c(λ0, . . . , λ2n) := ((λ0)′, (λ1)′, . . . , (λ2n)′) where λ′

denotes the conjugate of λ. It is this conjugation symmetry that Chen et. al. [3] exploit
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in studying maximal crossing and maximal nesting numbers in perfect matchings and set
partitions. Note that c is not the same as σ. One way to understand their relationship
is by restricting to permutations. The set of M ∈ Mn with DM = 11 · · · 100 · · · 0 is in
bijection with Sn by the map M 7→ ωM where ωM(j) = i if {i, j+n} ∈M . For all such M
we have ωc(M) = ω−1M while ωσ(M) = ωrev

M . At least since the fundamental work of Simion
and Schmidt [11] it has been known that inversion and reversing are symmetries of the
permutation pattern containment poset and from the work of Smith [12] it follows that
these involutions generate the group of all symmetries of this poset (which is isomorphic
to the dihedral group of order eight). Researchers such as Bloom and Elizalde [1] have
considered pattern containment among perfect matchings. It would be interesting to
describe all the symmetries of the perfect matching pattern containment poset, especially
in relation to the maps c and σ.

At any rate, the involution σ of de Médicis and Viennot [4] shows that (3.1) holds for
permutations ω ∈ S3 with ω(3) = 3. It also suggests that cross(·), nest(·), and align(·)
may posses a S3 symmetry in spite of not being symmetrically distributed because we
could find some τ : Mn → Mn of order 3 such that align(·) is homomesic with respect
to τ . If we were to set G := 〈σ, τ〉 we would get that all three of the statistics cross(·),
nest(·), and align(·) are homomesic with respect to the action of G. And if (στ)2 = id
then G ' S3. To our knowledge, such a S3 action would be the first instance of homomesy
involving a non-cyclic group. Constructing such a τ remains an open problem. But it is
useful to know, as Theorem 1.2 suggests, that τ ought to make sense at the more general
level of oscillating tableaux of arbitrary shape as well.
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