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Abstract

A cross-intersecting Erdős-Ko-Rado set of generators of a finite classical polar
space is a pair (Y,Z) of sets of generators such that all y ∈ Y and z ∈ Z intersect
in at least a point. We provide upper bounds on |Y | · |Z| and classify the cross-
intersecting Erdős-Ko-Rado sets of maximum size with respect to |Y | · |Z| for all
polar spaces except some Hermitian polar spaces.
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1 Introduction

Erdős-Ko-Rado sets (EKR sets) were introduced by Erdős, Ko, and Rado [6] as a family of
k-element subsets of {1, . . . , n} such that the elements of the family pairwise intersect non-
trivially. In particular, Erdős, Ko, and Rado partially classified all such Y of maximum
size.

Theorem 1 (Theorem of Erdős, Ko, and Rado). Let be n > 2k. Let Y be an EKR set of
k-element subsets of {1, . . . , n}. Then

|Y | 6
(
n− 1

k − 1

)
with equality for n > 2k if and only if Y is set of all k-elemental sets containing a fixed
element.
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Stronger versions of this theorem were later proven by several authors including the
famous works by Wilson [23], and by Ahlswede and Khachatrian [1].

This theorem for EKR sets was generalized to many structures, including subspaces of
projective spaces [3, 7, 12] and generators (maximal totally isotropic, respectively, singular
subspaces) of polar spaces [3, 4, 18, 19]. In polar spaces the problem is partially open,
since the maximum size of EKR sets of generators of H(2d − 1, q2), d > 3 odd, is still
unknown. To the knowledge of the author the best known upper bound is given in [13].

There exists the following modification of the original problem which generated a lot of
interest: a cross-intersecting EKR set is a pair (Y, Z) of sets of subsets with k elements of
{1, . . . , n} such that all y ∈ Y and z ∈ Z intersect non-trivially. If one wants to generalize
the theorem of Erdős, Ko, and Rado to this structure, then the following question arises:
how do we measure the size of (Y, Z)? There are at least two natural choices. Either one
goes for an upper bound for |Y | + |Z| or one tries to find an upper bound for |Y | · |Z|.
In the set case the first project was pursued in [9], while the second one was completed
in [15]. Results for vectors spaces are due to Tokushige [21]. Again this problem can be
generalized to polar spaces, where a cross-intersecting EKR set of generators is a pair
(Y, Z) of sets of generators such that all y ∈ Y and z ∈ Z intersect in at least a point.
In this setting this paper is only concerned with an upper bound for |Y | · |Z| and a
classification of all cross-intersecting EKR sets reaching this bound.

One additional motivation for this problem is the following: as mentioned before the
problem of EKR sets of maximum size in H(2d− 1, q2) is still open for d > 3 odd. Let p
be a point of H(2d− 1, q2) and let X be an EKR set of H(2d− 1, q2). Furthermore, let Y
be the set of generators of X on p and Z the set of generators of X not on p. Now in the
quotient geometry of p isomorphic to H(2d− 3, q2) the projection of the generators of Y
and Z onto the quotient geometry is a cross-intersecting EKR set. So both problems are
related.

One last thing to point out is that this work does not provide tight upper bounds for
cross-intersecting EKR sets in H(2d− 1, q2) for all d > 2. The problem is very similar to
the open problem of the maximum size of EKR sets in H(9, q2). Therefore, it could be
reasonable to first solve the problem of the maximum size of cross-intersecting EKR sets
in H(7, q2) and then generalize the technique to EKR sets in H(9, q2).

2 Projective Spaces & Polar Spaces

We refer to [10] for details on projective spaces. A projective space PG(n−1, q) of projective
dimension n − 1 (respectively vector space dimension n) over the field with q elements
has exactly [

n

k

]
q

:=
k∏
i=1

qn−i+1 − 1

qi − 1

subspaces of (vector space) dimension k.
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Remark 2. All the used eigenvalue formulas are more convenient if we use vector space
dimensions and not projective dimensions. Consequently, the word dimension will always
refer to the vector space dimension of a subspace.

We call 1-dimensional subspaces points, 2-dimensional subspaces lines, 3-dimensional
subspaces planes, and (n − 1)-dimensional subspaces of an n-dimensional space hyper-
planes. We denote the number of points in PG(n− 1, q) by

[n]q :=

[
n

1

]
q

.

So we have [
n

k

]
q

=
k∏
i=1

[n− i+ 1]q
[i]q

.

We shall write
[
n
k

]
instead of

[
n
k

]
q

whenever the choice for q is clear. We will often use the

following analog of the recursive definition of binomial coefficients.[
n+ 1

k + 1

]
=

[
n

k + 1

]
+ q(n−k)

[
n

k

]
(1)

A polar space of rank d is an incidence geometry with subspaces of dimension from 0
to d defined by a non-degenerate reflexive sesquilinear form or a non-degenerate quadratic
form. The finite classical polar spaces are Q+(2d− 1, q), Q(2d, q), Q−(2d+ 1, q), W(2d−
1, q), where q is a prime power, H(2d−1, q), and H(2d, q), where q is the square of a prime
power. We refer to [11] for details. Denote the maximal totally isotropic, respectively,
singular subspaces of (vector space) dimension d as generators. We denote the tangent
space of a totally isotropic subspace s of a polar space by s⊥. Each subspace of (vector
space) dimension d− 1 of a polar space is incident with exactly qe + 1 generators, where
e = 0 for Q+(2d − 1, q), e = 1/2 for H(2d − 1, q), e = 1 for Q(2d, q) and W(2d − 1, q),
e = 3/2 for H(2d, q), and e = 2 for Q−(2d + 1, q). It is well known that a polar space
possesses exactly

d−1∏
i=0

(qi+e + 1)

generators and (qd+e−1 + 1)[d] points.

3 The Association Scheme of a Polar Space

We need some basic properties of an association scheme of generators on a dual polar
space of rank d and type e. A complete introduction to association schemes can be found
in [2, Ch. 2].
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Definition 3. Let X be a finite set. A d-class association scheme is a pair (X,R),
where R = {R0, . . . , Rd} is a set of symmetric binary relations on X with the following
properties:

1. {R0, . . . , Rd} is a partition of X ×X.

2. R0 is the identity relation.

3. There are numbers pkij such that for x, y ∈ X with xRky there are exactly pkij
elements z with xRiz and zRjy.

The number ni := p0ii is called the i-valency of Ri. The total number of elements of X
is

n := |X| =
d∑
i=0

ni.

The relations Ri are described by their adjacency matrices Ai ∈ Cn×n defined by

(Ai)xy =

{
1 if xRiy

0 otherwise.

There exist (e.g. in [2, p. 45]) idempotent Hermitian matrices Ej ∈ Cn×n (hence they are
positive semidefinite) with the properties

d∑
j=0

Ej = I, E0 = n−1J,

Aj =
d∑
i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi,

where P = (Pij) ∈ C(d+1)×(d+1) and Q = (Qij) ∈ C(d+1)×(d+1) are the so-called eigenma-
trices of the association scheme. Notice that this implies that the matrices Aj have d+ 1
common eigenspaces Vi, where Vi is the eigenspace of Aj with eigenvalue Pij. We will use
the fact that the matrices Aj have common eigenspaces without further notice.

The generators of a polar space define an association scheme if we say that two gener-
ators a and b are in relation Ri if and only if codim(a∩ b) = i. Hence a cross-intersecting
EKR set (Y, Z) is a set of vertices such that there are no edges between Y and Z in the
(distance-regular) graph associated with Ad. This scheme is cometric, so there exists a
natural ordering of its Ej’s and its associated eigenspaces Vj [2, Sec. 2.7, Sec. 9.4]. The
matrix P can be found in the literature (for example in [20] or [22, Theorem 4.3.6]). In
particular, the eigenvalues of Ad are

(−1)rq(
d−r
2 )+(r

2)+e(d−r) (2)

for r ∈ {0, 1, . . . , d}. Here V0 = 〈j〉, where j is the all-ones vector. Furthermore, notice
that all eigenspaces Vi of an association scheme are pairwise orthogonal (see [2, Ch. 2]).
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4 An Algebraic Bound

We shall apply a technique that was, to the knowledge of the author, first used by Haemers
in [8]. The author learned about this technique from a paper by Tokushige [21], where
he uses a variant of the result based on the work of Ellis, Friedgut, and Pipel [5]. In this
section we use the names d and Ei slightly differently compared to the previous section
on association schemes. We do so for two reasons:

• For all the cases, which we consider, the d and Ei of the previous section is the same
as in this section.

• We want to provide a complete version of Lemma 7, which is best given for regular
graphs.

Let G be a graph with n vertices {1, . . . , n}. A matrix A = (axy) ∈ Cn×n is called
extended weight adjacency matrix of G if A is symmetric, and

1. axy 6 0 if x and y are non-adjacent,

2. axx = 0,

3. the all-ones vector j is an eigenvector of A.

4. axy > 0 for one (x, y) with x and y adjacent.

Let V0, V1, . . . , Vd be eigenspaces or subspaces of eigenspaces of A such that

1. V0 = 〈j〉,

2. Cn = V0 ⊥ V1 ⊥ . . . ⊥ Vd.

Let λi be the eigenvalue corresponding to Vi. Denote the eigenvalue of j by k. Denote
the smallest eigenvalue with eigenvectors in V1 ⊥ . . . ⊥ Vd by λ−. Denote the intersection
of the eigenspace of λ− with V1 ⊥ . . . ⊥ Vd by V−. Denote the largest eigenvalue with
eigenvectors in V1 ⊥ . . . ⊥ Vd by λ+. Denote the intersection of the eigenspace of λ+ with
V1 ⊥ . . . ⊥ Vd by V+. Denote max{−λ−, λ+} by λb. We say that λb is the second largest
absolute eigenvalue of A. Notice that this actually does not mean that λb is smaller than
k. The last condition (axy > 0) on extended weight adjacency matrices is merely technical
and simplifies some of the stated results as it guarantees λ− < 0 < λ+.

A characteristic vector χY of a subset Y ⊆ {1, . . . , n} is defined by

χi =

{
1 if i ∈ Y
0 if i /∈ Y

.

Let E0 be the projection operator onto 〈j〉, i.e. E0 = J/n, where J is the all-ones
matrix. More generally, let Ei be the projection operator onto the eigenspace of λi for
0 < i 6 d. Let I− be the subset of {1, . . . , d} with λi = λ− and let I+ be the subset of
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{1, . . . , d} with λi = λ+. Then V− =⊥i∈I− Vi and V+ =⊥i∈I+ Vi, so we can define the
projections E−, receptively, E+ onto V−, receptively, V+ by

E− =
∑
i∈I−

Ei, respectively, E+ =
∑
i∈I+

Ei.

We can write any vector of χ ∈ V as

χ =
χᵀj

n
j +

d∑
i=1

Eiχ.

As the λi are the eigenvalues of A, we can write

A =
k

n
J +

d∑
i=1

λiEi.

An independent set is a set of pairwise non-adjacent vertices of a graph. Ellis, Friedgut,
and Pipel [5] used the following result, a generalization of the Hoffman bound for inde-
pendent sets in graphs. In this paper we say that a cross-intersecting independent set is a
pair (Y, Z) such that there are no edges between Y and Z. In particular cross-intersecting
sets are cross-intersecting independent sets for the appropriate graphs.

Lemma 4. Let A be an extended weight adjacency matrix of a regular graph G with n
vertices. Let k be the eigenvalue of the all-ones vector j, and let λb the second largest
absolute eigenvalue of A. Let (Y, Z) be a cross-intersecting independent set. If k+λb > 0,
then √

|Y | · |Z| 6 λb
k + λb

n.

Remark 5. In [5] Lemma 4 is restricted to weight adjacency matrices or pseudo adjacency
matrices where aij is zero if i and j are non-adjacent and aij > 0 if i and j are adjacent.
Our more general definition does not change anything and will turn out to be more
convenient in Section 6 where we shall not bother to calculate the exact minimum of the
Hoffman bound.

Tokushige reformulates Lemma 4 in a more detailed way in [21, Lemma 2]. Unfor-
tunately, his reformulation does not point out some details which are necessary for the
special case handled in this paper. Furthermore, our notation differs significantly, so we
shall prove Lemma 4 again as well as our version of Tokoshige’s result, Lemma 7. First
recall the inequality between the geometric and the arithmetic mean.

Lemma 6 (Inequality of Arithmetic and Geometric Means). Let 0 6 α, β 6 1. Then we
have

√
1− α

√
1− β 6 1−

√
αβ

with equality if and only if α = β.
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Our variant of Tokoshige’s lemma is as follows.

Lemma 7. If equality holds in Lemma 4, then |Y | = |Z| = αn for some α ∈ R. Further-
more, one of the following cases occurs.

(a) We have λ+ = λb > −λ−, χY = αj + v+, and χZ = αj− v+ for some vector v+ ∈ V+.

(b) We have λ+ < λb = −λ−, χY = αj + v−, and χZ = αj + v− for some vector v− ∈ V−.
In this case Y = Z, and Y is an independent set of maximum size.

(c) We have λ+ = λb = −λ−, χY = αj+v−+v+, and χZ = αj+v−−v+ for some vectors
v− ∈ V− and v+ ∈ V+.

Proof. Let χ = χY be the characteristic vector of Y . Let ψ = χZ be the characteristic
vector of Z. We suppose that (Y, Z) is a cross-intersecting independent set. Since A is
an extended weight adjacency matrix, we have χᵀAψ 6 0

Put y = |Y | and z = |Z|. Suppose without loss of generality y > z > 0. Recall the
definitions of Ei, E+ and E− at the beginning of the chapter on page 5. Write χ and ψ as

χ =
y

n
j +

d∑
i=1

Eiχ,

ψ =
z

n
j +

d∑
i=1

Eiψ.

Recall that

A =
k

n
J +

d∑
i=1

λiEi.

Let E+ the projection operator onto V+ and E− the projection operator onto V−. We
have

0 > χᵀAψ

>
k

n
χᵀJψ −

d∑
i=1

λiχ
ᵀEiψ (3)

>
kyz

n
−

d∑
i=1

|λiχᵀEiψ| (4)

>
kyz

n
− λb

d∑
i=1

|(Eiχ)ᵀEiψ| (5)

>
kyz

n
− λb

d∑
i=1

√
(Eiχ)ᵀEiχ

√
(Eiψ)ᵀEiψ (6)
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>
kyz

n
− λb

√√√√ d∑
i=1

(Eiχ)ᵀ(Eiχ) ·

√√√√ d∑
i=1

(Eiψ)ᵀ(Eiψ) (7)

Notice that we apply the Cauchy-Schwartz inequality twice when going from (5) to (7).
Furthermore χ and ψ are 0-1-vectors, so

y = χᵀχ =
y2

n
+

d∑
i=1

(Eiχ)ᵀ(Eiχ), (8)

and

z =
z2

n
+

d∑
i=1

(Eiψ)ᵀ(Eiψ). (9)

If we put this back into our previous inequality (7), then we have by Lemma 6

0 >
kyz

n
− λb
√
yz

√
1− y

n

√
1− z

n
(10)

>
kyz

n
− λb
√
yz(1−√yz/n). (11)

Rearranging yields Lemma 4.
If this bound is tight, then we have equality from (3) to (11). Equality between (4)

and (5) shows that we have (Eiχ)ᵀEiψ = 0 for all i such that |λi| 6= λb. Equality between
(5) and (6) shows that there exists a factor αi with Eiχ = αiEiψ for all i ∈ {1, . . . , d}.
Equality between (6) and (7) shows that there exist constants β with

√
(Eiχ)ᵀEiχ =

β
√

(Eiψ)ᵀEiψ for all i ∈ {1, . . . , d}. Hence, either Eiχ = Eiψ = 0 or β = |αi|. These two
observations show that there Eiχ = Eiψ = 0 if |λi| 6= λb. Hence,

χ =
y

n
j + E−χ+ E+χ

ψ =
z

n
j + E−ψ + E+ψ.

Equality between (10) and (11) shows y = z (see Lemma 6). By

d∑
i=1

(Eiψ)ᵀ(Eiψ) = z − z2

n
= y − y2

n
=

d∑
i=1

(Eiχ)ᵀ(Eiχ) = β

d∑
i=1

(Eiψ)ᵀ(Eiψ)

we derive β = 1. Then equality between (3) and (4) shows that αi = 1 if λi < 0 and that
αi = −1 if λi > 0. Hence, E−χ = E−ψ and E+χ = −E+ψ. This proves Lemma 7.
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5 Cross-intersecting EKR Sets of Maximum Size

In this section we shall calculate tight upper bounds for all polar spaces except H(2d −
1, q2), and classify all examples in case of equality. For all polar spaces except H(2d−1, q2)
we can imitate the approach of Pepe, Storme, and Vanhove [18]. Recall from Section 3
that we have a natural ordering of the eigenspaces V0(= 〈j〉), V1, . . . , Vd of the association
scheme which we defined on generators of a polar space of rank d.

Lemma 8. Let P be a polar space over Fq with parameter e and let Ad be the adjacency
matrix matrix of the disjointness graph of generators of P. Let V0, V1, . . . , Vd the common

eigenspaces of the corresponding association scheme. Then k = q(
d
2)+de. Additionally, we

have the following.

• If P ∈ {Q+(2d − 1, q),H(2d − 1, q)}, then λb = q(
d
2). Moreover, if d is even, then

λb = λ+ > −λ− and V+ = Vd; if d is odd, then λb = −λ− > λ+ and V− = Vd.

• If P ∈ {Q(2d, q),W(2d − 1, q)}, then λb = q(
d
2). Moreover, if d is even, then

λb = −λ− = λ+, V− = V1 and V+ = Vd; if d is odd, then λb = −λ− > λ+ and
V− = V1 ⊥ Vd.

• If P ∈ {H(2d, q),Q−(2d + 1, q)}, then λb = q(
d−1
2 )+de. Moreover, λb = −λ− > λ+

and V− = V1.

Proof. The eigenvalues of Ad are given in (2) as

(−1)rq(
d−r
2 )+(r

2)+e(d−r).

For r = 0 this is the eigenvalue that belongs to the all-ones vector j, so with k defined as
in Lemma 4 we have

k = q(
d
2)+de.

For e = 0 note that the absolute eigenvalues for r = 0 and r = d are equal. Therefore,
the eigenspace belonging to k has dimension at least 2 which make k also the second
largest absolute eigenvalue. Hence, we have the following for the different polar spaces.
For e ∈ {0, 1/2} (i.e. P ∈ {Q+(2d − 1, q),H(2d − 1, q)}) the second largest absolute
eigenvalue occurs if and only if r = d, for e = 1 (i.e. P ∈ {Q(2d, q),W(2d − 1, q)}) the
second largest absolute eigenvalue occurs if and only if r ∈ {1, d}, for e ∈ {3/2, 2} (i.e.
P ∈ {H(2d, q),Q−(2d+ 1, q)}) the second largest absolute eigenvalue occurs if and only if
r = 1.

Recall that a cross-intersecting EKR set (Y, Z) is a set of vertices of the disjointness
graph such that there are no edges between Y and Z. Hence, using Lemma 7 and the
classification of EKR sets of generators given in [18] we get the following result.
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Corollary 9. Let (Y, Z) be a cross-intersecting EKR set of maximum size of a finite
classical polar space P not isomorphic to Q(2d, q) with d even, W(2d− 1, q) with d even,
Q+(2d − 1, q) with d even, or H(2d − 1, q2), where |Y | · |Z| reaches the bound in Lemma
4. Then Y = Z, and Y is an EKR set of maximum size.

Proof. By Lemma 7 and Lemma 8, all cross-intersecting EKR, which reach the bound,
are EKR sets of maximum size. These EKR sets exist as shown in [18].

The following cases besides H(2d− 1, q2) remain.

Theorem 10. Let (Y, Z) be a cross-intersecting EKR set of generators of maximum
size of a polar space P, with P isomorphic to Q(2d, q), d even, W(2d − 1, q), d even,
or Q+(2d − 1, q), d even. Let n be the number of generators of P. Then we have the
following:

• If P = Q+(2d − 1, q), then
√
|Y | · |Z| is at most n/2, and if this bound is reached,

then there is a v+ ∈ Vd such that χY = j/2 + v+ and χZ = j/2− v+.

• If P ∈ {Q(2d, q),W(2d− 1, q)}, then
√
|Y | · |Z| is at most the number of generators

on a fixed point, and if this bound is reached, then there are v− ∈ V1 and v+ ∈ Vd
such that χY = αj + v− + v+ and χZ = αj + v− − v+, with α = 1

qd+1
.

Proof. Apply Lemma 7 and Lemma 8.

Similar to [18] we shall continue by classifying the more complicated cases.

5.1 The Hyperbolic Quadric of Even Rank

The generators of Q+(2d− 1, q) can be partitioned into two sets X1 and X2 of generators
(commonly known as latins and greeks) with |X1| = |X2| = n/2. For x1 ∈ X1 and x2 ∈ X2

the codimension of the intersection of x1 ∩ x2 is odd. For x1, x2 ∈ X1 the codimension
of the intersection of x1 ∩ x2 is even. This implies for d even that (X1, X2) is a cross-
intersecting EKR set of maximum size according to Theorem 10. There exist x1, x2 ∈ X1

with dim(x1 ∩ x2) = 0 if d is even, so (X1, X1) is not a cross-intersecting EKR set.

Theorem 11. Let (Y, Z) be a cross-intersecting EKR set of maximum size of Q+(2d−1, q)
with d even. Then Y = Xi and Z = Xj for {i, j} = {1, 2}.

Proof. By Theorem 10, we have χY = j/2 + v+ and χZ = j/2− v+. As in Theorem 16 of
[18] V0 = 〈j〉 is spanned by χX1 +χX2 , and Vd is spanned by χX1−χX2 . Recall χY +χZ = j
and χY −χZ = 2v+ ∈ Vd. Hence, χY = χXi

and χZ = χXj
for some {i, j} = {1, 2}. Hence

{Y, Z} = {X1, X2}.
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5.2 The Parabolic Quadric and the Symplectic Polar Space of Even Rank

Before we classify cross-intersecting EKR sets of generators of maximum size in parabolic
quadrics and symplectic polar spaces, we mention a few simple, most likely well-known
lemmas. We include their proofs to make this article more self-contained.

Lemma 12. Let χ ∈ 〈j〉 ⊥ V for some eigenspace V of an (extended weight) adjacency
matrix A of a k-regular graph with n vertices associated with eigenvalue λ. Then the
characteristic vector ei of the i-th vertex satisfies

eᵀiAχ =
χᵀj

n
(k − λ) + λeᵀiχ.

Proof. As χ ∈ 〈j〉 ⊥ V , we can write χ = αj + v for some v ∈ V and α = χᵀj
n

. Then

eᵀiAχ = eᵀiA(αj + v)

= eᵀi (αkj + λv)

= eᵀi (α(k − λ)j + λχ)

=
χᵀj

n
(k − λ) + λeᵀiχ.

Corollary 13. Let χ, ψ ∈ 〈j〉 ⊥ V− ⊥ V+ for some eigenspaces V− and V+ of a (weighted)
adjacency matrix A of a k-regular graph with n vertices, where λ− is the eigenvalue as-
sociated with V− and λ+ is the eigenvalue associated with V+. If χ = αj + v− + v+ and
ψ = αj + v− − v+ for some α ∈ R, v− ∈ V−, and v+ ∈ V+, then

eᵀiAχ = α(k − λ−) +
(λ− + λ+)

2
eᵀiχ+

(λ− − λ+)

2
eᵀiψ,

eᵀiAψ = α(k − λ−) +
(λ− + λ+)

2
eᵀiψ +

(λ− − λ+)

2
eᵀiχ.

Proof. We have χ+ ψ ∈ 〈j〉 ⊥ V− and χ− ψ ∈ V+. By Lemma 12 and jᵀv− = 0 = jᵀv+,

eᵀiA(χ+ ψ) =
(χ+ ψ)ᵀj

n
(k − λ−) + λ−e

ᵀ
i (χ+ ψ)

eᵀiA(χ− ψ) = λ+e
ᵀ
i (χ− ψ).

Now the equations 2eᵀiAχ = eᵀiA(χ+ψ) + eᵀiA(χ−ψ), 2eᵀiAψ = eᵀiA(χ+ψ)− eᵀiA(χ−ψ)
and (χ+ ψ)ᵀj = 2αn yield the assertion.

Recall for this section that all matrices Ai of a given association scheme have the
common eigenspaces Vj.

Lemma 14. For the adjacency matrix Ad−s, 0 < s < d, of the dual polar graph of Q(2d, q)
or W(2d− 1, q) the eigenspace V1 is associated with eigenvalue

λ−,s := −
[
d− 1

s

]
q(

d−s
2 ) +

[
d− 1

s− 1

]
q(

d−s+1
2 ),
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the eigenspace Vd is associated with eigenvalue

λ+,s := (−1)d−s
[
d

s

]
q(

d−s
2 ),

and the eigenspace 〈j〉 is associated with eigenvalue

ks :=

[
d

s

]
q(

d−s+1
2 ) =

([
d− 1

s

]
+

[
d− 1

s− 1

]
qd−s

)
q(

d−s+1
2 ).

Proof. See [22, Theorem 4.3.6], where the eigenvalue of Vj for Ai is given by∑
0,j−i6u6d−i,j

(−1)j+u
[

d− j
d− i− u

][
j

u

]
q(u+i−j)(u+i−j+2e−1)/2+(j−u

2 ).

Note that e = 1 in the considered cases. For j = 0, 1, d, and i = d− s, this formula yields
the assertion. The last equality is an application of (1).

If a cross-intersecting EKR set (Y, Z) of Q(2d, q) satisfies χY , χZ ∈ V0 ⊥ V1, then
Y = Z, and Y is an EKR set as before. So only the case χY , χZ ∈ V0 ⊥ V1 ⊥ Vd remains.
In the following denote V1 by V− and Vd by V+. Furthermore, as in Lemma 7 we write

χY = αj + v− + v+ =
|Y |
n

j + v− + v+ =
λb

k + λb
j + v− + v+

and

χZ = αj + v− − v+ =
|Z|
n

j + v− − v+ =
λb

k + λb
j + v− − v+

with v− ∈ V− and v+ ∈ V+.

Proposition 15. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q) or W(2d− 1, q),
d even, of maximum size such that Y * Z. Let g ∈ Y \ Z.

(a) If d− s is even, then g meets 0 elements of Z in dimension s.

(b) If d− s is odd, then g meets 0 elements of Y in dimension s.

(c) If d− s is even, then g meets [
d

s

]
q(

d−s
2 )

elements of Y in dimension s.

(d) If d− s is odd, then g meets [
d

s

]
q(

d−s
2 )

elements of Z in dimension s.
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Proof. We can calculate these numbers with Lemma 14 and Corollary 13 by choosing χ{g}
as ei. For Ad−s the parameters are given by

ks − λ−,s =

([
d− 1

s

]
+

[
d− 1

s− 1

]
qd−s

)
q(

d−s+1
2 )

+

[
d− 1

s

]
q(

d−s
2 ) −

[
d− 1

s− 1

]
q(

d−s+1
2 )

= q(
d−s
2 )
[
d− 1

s

] (
qd−s + 1

)
+ q(

d−s+1
2 )
[
d− 1

s− 1

] (
qd−s − 1

)
Def.
= q(

d−s
2 )
[
d− 1

s

] (
qd−s + 1

)
+ qd−s · q(

d−s
2 )
[
d− 1

s

]
(qs − 1)

= q(
d−s
2 )
[
d− 1

s

] (
qd + 1

)
,

for d− s even

λ−,s + λ+,s
(1)
= 2

[
d− 1

s− 1

]
q(

d−s+1
2 ),

λ−,s − λ+,s
(1)
= −2

[
d− 1

s

]
q(

d−s
2 ),

for d− s odd

λ−,s + λ+,s
(1)
= −2

[
d− 1

s

]
q(

d−s
2 ),

λ−,s − λ+,s
(1)
= 2

[
d− 1

s− 1

]
q(

d−s+1
2 ).

Recall that

(χY + χZ)ᵀj

2n
=

λ+
k + λ+

=
q(

d
2)

q(
d+1
2 ) + q(

d
2)

=
1

qd + 1
.

Hence by Corollary 13 and g /∈ Z (i.e. eTi ψ = 0),

eᵀiAd−sχY =
ks − λ−,s
qd + 1

+
(λ− + λ+)

2
eᵀiχ

= q(
d−s
2 )
[
d− 1

s

]
+

(λ− + λ+)

2
eᵀiχ.

If d− s is even, then by (1) and eᵀiχY = 1

eᵀiAd−sχY = q(
d−s
2 )
[
d− 1

s

]
+ q(

d−s+1
2 )
[
d− 1

s− 1

]
= q(

d−s
2 )
[
d

s

]
.
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If d− s is odd, then by eᵀiχY = 1

eᵀiAd−sχY = q(
d−s
2 )
[
d− 1

s

]
− q(

d−s
2 )
[
d− 1

s

]
= 0.

All the remaining cases are either similar or trivial.

Corollary 16. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q) or W(2d− 1, q), d
even, of maximum size such that Y * Z. Then Y ∩ Z = ∅.

Proof. Let g be as in Proposition 15. By Proposition 15, no element of Y meets g in the
same dimension as an element of Z, hence Y ∩ Z = ∅.

Now we have a strong combinatorial information about cross-intersecting EKR sets
(Y, Z) of maximum size which are not EKR sets. By adding some geometrical arguments
this leads to a complete classification of cross-intersecting EKR sets of maximum size in
these parabolic and symplectic polar spaces as we shall see in the following.

Lemma 17. Let g1, g2, g3 be pairwise different generators of a polar space of rank d such
that

dim(g1 ∩ g2 ∩ g3) = d− 2 and g1 ∩ g2 6= g1 ∩ g3
and dim(g1 ∩ g2) = dim(g1 ∩ g3) = d− 1.

Then g2 ∩ g3 is a (d− 2)-dimensional subspace of g1.

Proof. We have

dim(g1 ∩ g2), dim(g1 ∩ g3) > dim(g1 ∩ g2 ∩ g3).

By dim(g1 ∩ g2) = dim(g1 ∩ g3) = d− 1,

dim(〈g1 ∩ g2, g1 ∩ g3〉) = dim(g1 ∩ g2) + dim(g1 ∩ g3)− dim(g1 ∩ g2 ∩ g3) = d = dim(g1).

Hence,

〈g1 ∩ g2, g1 ∩ g3〉 = g1. (12)

Suppose contrary to the first part of the assertion that g2 ∩ g3 * g1. By (12), we have

dim(〈g1 ∩ g2, g1 ∩ g3, g2 ∩ g3〉)
= dim(g2 ∩ g3) + dim(〈g1 ∩ g2, g1 ∩ g3〉)− dim(g2 ∩ g3 ∩ 〈g1 ∩ g2, g1 ∩ g3〉)
= dim(g2 ∩ g3) + dim(g1)− dim(g1 ∩ g2 ∩ g3)
>(d− 2) + d− (d− 2) = d.

As 〈g1 ∩ g2, g1 ∩ g3, g2 ∩ g3〉 is a totally isotropic subspace of a polar space rank d, this is
a contradiction. Hence, g2 ∩ g3 ⊆ g1. Furthermore, dim(g2 ∩ g3) = dim(g1 ∩ g2 ∩ g3) =
d− 2.
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Lemma 18. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q) or W(2d − 1, q), d
even, of maximum size with Y 6= Z. Let g, h ∈ Y disjoint. Let π1, . . . , π[d] ⊆ g be the [d]
subspaces of dimension d− 1 of g. Then the following holds:

(a) Exactly [d] elements z1, . . . , z[d] of Z meet g in dimension d− 1.

(b) We have {zi | i ∈ {1, . . . , [d]}} = {〈πi, π⊥i ∩ h〉 | i ∈ {1, . . . , [d]}}.

(c) We have that zi ∩ zj is a (d− 2)-dimensional subspace of g.

Proof. By Proposition 15 (d) and Y 6= Z, exactly [d] elements of Z meet g in dimension
d− 1. This shows (a). By Proposition 15 (b), dim(zi ∩ zj) < d− 1 for i 6= j. Hence, each
hyperplane πi of g lies in exactly one element zi, and zi satisfies zi ⊆ π⊥i . Since (Y, Z) is a
cross-intersecting EKR set, all zi meet h in at least a point. Since πi ⊆ g, dim(πi) = d−1,
and g ∩ h = ∅, we see that π⊥i ∩ h is a point. Hence,

{zi | i ∈ {1, . . . , [d]}} = {〈πi, π⊥i ∩ h〉 | i ∈ {1, . . . , [d]}}.

This shows (b). Lemma 17 (with g1 = g, g2 = zi, g3 = zj) shows (c).

5.2.1 The Parabolic Quadric Q(2d, q), d even

Let s be a subspace of PG(2d, q). We write Y ⊆ s if all elements of Y are subspaces of s,
Y ∩ s for all elements of Y in s, and Y \ s for all elements of Y not in s.

Lemma 19. Let g and h be disjoint generators of Q(2d, q). Then Q := 〈g, h〉 ∩ Q(2d, q)
is isomorphic to Q+(2d− 1, q).

Proof. The generators g and h are disjoint, hence Q is not degenerate. The hyperplane
〈g, h〉 obviously contains generators, hence Q does not have type Q−(2(d − 1) + 1, q).
Therefore, the intersection 〈g, h〉 ∩ Q(2d, q) is isomorphic to Q+(2d− 1, q).

Lemma 20. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q), d even, of maximum
size such that Y ∩ Z = ∅. Let g ∈ Y . Let Ỹ be the set of generators of Y disjoint to g.

(a) There exists a hyperplane η of type Q+(2d− 1, q) such that g, Ỹ ⊆ η.

(b) Let z ∈ Z. If z meets an element of {g} ∪ Ỹ in a subspace of dimension d− 1, then
z ∈ η and all elements of Z disjoint to z are in η.

(c) If g̃ ∈ Y and dim(g̃∩h) = d− 2 for an h ∈ Ỹ , then g̃ and the q(
d
2) generators disjoint

to g̃ are in η.

Proof. By Proposition 15 (c), a generator g ∈ Y is disjoint to q(
d
2) generators of Y . Let

h ∈ Ỹ . By Lemma 19, η := 〈g, h〉 has type Q+(2d− 1, q). We shall show Ỹ ⊆ η.
Suppose to the contrary that there exists a generator h̃ ∈ Ỹ not in η. In the notation

of Lemma 18 we write

Za = {zi | i ∈ {1, . . . , [d]}}
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= {z ∈ Z | dim(z ∩ a) = d− 1} ⊆ Z

for a ∈ Y .
Define the set of points

P := {h̃ ∩ z | z ∈ Zg}.

By Lemma 18 (c), |P| = |Zg| = [d]. Furthermore, Zg ⊆ η as the elements of Zg meet h
non-trivially, so P ⊆ h̃ ∩ η. Hence,

[d] = |P| 6 |h̃ ∩ η| = [d− 1].

This is a contradiction. Thus, Ỹ ⊆ η. This proves (a).
To prove (b), suppose without loss of generality that z meets g in a subspace of

dimension d− 1. Then z ⊆ η as z ∈ Zg and Zg ⊆ η. Let π be a (d− 1)-dimensional space
of h disjoint to z. Define z̃ as 〈π, π⊥∩ g〉. Then z̃ ∈ Zh by Lemma 18 (b) and z̃ is disjoint
to z by Proposition 15 (b). Then z̃ ⊆ η. Hence, 〈z, z̃〉 = η. By (a), all elements of Z
disjoint to z are in η. This shows (b).

Let g̃ ∈ Y with dim(h ∩ g̃) = d − 2. By Lemma 18 (c), there exists a z ∈ Zh with
h ∩ g̃ ⊆ z. By (b), g̃ ⊆ η. Let h̃ ∈ Y be disjoint to g̃. As (Y, Z) is a cross-intersecting
EKR set, z meets h̃ in a point. Let z̄ ∈ Zh̃ with z disjoint to z̄ (z̄ exists for the same
reasons as z̃ exists). By (b) and dim(h∩ z) = d− 1, 〈z, z̄〉 = η. Hence, h̃ ⊆ η. By (a), all
elements of Y disjoint to g̃ are in η. This shows (c).

Corollary 21. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q), d even, of maximum
size such that Y ∩ Z = ∅. Let g1, g2, g3 ∈ Y . Then

dim(g1 ∩ g2) ∈ {0, d− 2} and dim(g2 ∩ g3) = 0

implies that g1 ⊆ 〈g2, g3〉.

Proof. As g2 and g3 are disjoint, 〈g2, g3〉 is a hyperplane η. By Lemma 20 (a), g1 ⊆ 〈g2, g3〉
if dim(g1 ∩ g2) = 0. By Lemma 20 (c), g1 ⊆ 〈g2, g3〉 if dim(g1 ∩ g2) = d− 2.

Corollary 22. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q), d even, of maximum
size such that Y ∩ Z = ∅. Suppose that there are g, h, g̃ ∈ Y with

dim(g ∩ h) = d− 2 and dim(g ∩ g̃) > 0.

Let η be the hyperplane, which contains g and all elements of Y disjoint to g (see Propo-
sition 20 (a)). If g̃ and h are disjoint, then g̃ ∈ η or all generators h̃ ∈ Y with
dim(g̃ ∩ h̃) = d− 2 meet g non-trivially.

Proof. Suppose that g̃ and h are disjoint. By Proposition 15 (b), we have that dim(g∩ g̃)
is even. By dim(g ∩ h) = d − 2 and dim(g ∩ g̃) > 0, we have that dim(g ∩ g̃) = 2. Let
h̃ ∈ Y with dim(g̃ ∩ h̃) = d − 2. If g and h̃ are disjoint, then g̃ ⊆ η = 〈g, h̃〉. Hence, if
g̃ * η, then dim(g ∩ h̃) > 0.
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We need the following bound.

Lemma 23. Let q > 2. Let d > 1. Then

d−1∏
i=1

(qi + 1) 6
2qd

qd + 1

(
q(

d
2) − q(

d−1
2 ) + 1

)
+ q(

d−2
2 )+2(d−2).

Proof. We will prove the assertion by induction over d. It can be easily checked that the
assertion is true for d 6 4. If the assertion is true for d > 4, then

d∏
i=1

(qi + 1) 6 (qd + 1)

(
2qd

qd + 1

(
q(

d
2) − q(

d−1
2 ) + 1

)
+ q(

d−2
2 )+2(d−2)

)
(∗)
6

2qd+1

qd+1 + 1

(
q(

d+1
2 ) − q(

d
2) + 1

)
+ q(

d−1
2 )+2(d−1).

The difference between the right side of (∗) and the left side of (∗) equals

qd

qd+1 + 1

(
2q(

d
2)+2 − 2q(

d
2)+1 − 3q(

d
2) + 2q(

d−1
2 ) − q(

d−1
2 )−2 − 2qd+1 + 2q − 2

)
which is a positive expression for q > 2.

Proposition 24. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q) of maximum size
such that Y ∩ Z = ∅. Then there exists a hyperplane η such that Y, Z ⊆ η.

Proof. Let g ∈ Y . In the view of Lemma 20, we find a hyperplane η that contains g, the

set Y1 of q(
d
2) generators of Y disjoint to g, and, by Proposition 15 and Lemma 20 (c), the

set Y2 of
[
d
2

]
q(

d−2
2 ) generators of Y which meet g in dimension d− 2.

Suppose contrary to the assertion that there exists an element g̃ ∈ Y that is not in

η. Then g̃ and the set Y3 of q(
d
2) generators of Y disjoint to g̃ lie in a second hyperplane

η′ 6= η by Lemma 20. Let Y4 be the set of
[
d
2

]
q(

d−2
2 ) generators of Y which meet g̃ in

dimension d− 2.
First we show |(Y2 ∪ Y4) \ (Y1 ∪ Y3)| >

[
d
2

]
q(

d−2
2 ). If Y2 ∩ Y3 is empty, then the claim

is clear. Suppose that there exists a generator h ∈ Y2 ∩ Y3. By Corollary 22, then Y4 is
disjoint to Y1. The claim follows.

Now we want to show that Y1 ∩ Y3 is empty. Suppose that there exists a generator
h ∈ Y1∩Y3. By Corollary 21 with g1 = g̃, g2 = h, and g3 = g, we obtain the contradiction
g̃ ⊆ 〈g, h〉 = η. Hence,

|Y | > |Y1|+ |Y3|+ |(Y2 ∪ Y4) \ (Y1 ∪ Y3)|+ 2

= 2
(
q(

d
2) + 1

)
+

[
d

2

]
q(

d−2
2 ) > 2

(
q(

d
2) + 1

)
+ q(

d−2
2 )+2(d−2). (13)

According to Theorem 10,

|Y | =
d−1∏
i=1

(qi + 1).

This contradicts (13) by Lemma 23.
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Theorem 25. Let (Y, Z) be a cross-intersecting EKR set of Q(2d, q), or W(2d− 1, q), q
even, of maximum size such that Y 6= Z. Then d even and (Y, Z) is a cross-intersecting
EKR set of generators of a subgeometry Q isomorphic to Q+(2d− 1, q) (i.e. Y are latins
and Z are greeks).

Proof. First consider Q(2d, q). By Corollary 16, then Y ∩ Z = ∅. By Proposition 24,
Y, Z ⊆ η for some hyperplane η isomorphic to Q+(2d− 1, q) if not Y = Z. Hence, (Y, Z)
is a cross-intersecting set of Q+(2d− 1, q) of maximum size. These sets were classified in
Theorem 11.

The part of the assertion for W(2d−1, q), q even, follows, since Q(2d, q) and W(2d−1, q)
are isomorphic for q even.

5.2.2 The Symplectic Polar Space W(2d − 1, q), d even, q odd

Similar to [18] we use the following property of W(2d− 1, q), d even (see [17, 1.3.6, 3.2.1,
3.3.1]):

Theorem 26. Let `1, `2, `3 be three pairwise disjoint lines of W(3, q), q odd. Then the
number of lines meeting `1, `2, `3 is 0 or 2.

Theorem 27. Let (Y, Z) be a cross-intersecting EKR set of maximum size of W(2d−1, q),
d even, q odd. Then Y = Z.

Proof. Suppose to the contrary that Y 6= Z. By Corollary 16, then Y ∩ Z = ∅. By
Proposition 15 (c), we can find two disjoint generators g and h in Y . Again by Proposition
15 (c), there are exactly q[d][d− 1]/(q+ 1) generators Y ′ ⊆ Y which meet g in a subspace
of dimension d− 2. The generator g has [d][d− 1]/(q + 1) subspaces of dimension d− 2.
Hence, we find a subspace ` ⊆ g of dimension d− 2 such that ` is contained in q elements
of Y ′. Since q is odd, there are at least three elements y1, y2, y3 of Y through `.

Consider the quotient geometry W3 of ` isomorphic to W(3, q) and the projection of
the elements of Y and Z onto W3 from `. Since elements of Y do not meet each other in
dimension d−1 by Proposition 15, y1, y2, y3 are three disjoint lines inW3 after projection.
The subspace `⊥ ∩ h has dimension 2, so we find a subspace ˜̀ ⊆ h of dimension d − 2
disjoint to `⊥. Let π1, π2, π3 be subspaces of dimension d− 1 in h with ˜̀⊆ π1, π2, π3. By
Lemma 18 (b), we find z1, z2, z3 ∈ Z with πi ⊆ zi for i ∈ {1, 2, 3}. By Lemma 18 (c),
the pairwise meets of z1, z2, z3 are contained in ˜̀. As we have that ˜̀ meets `⊥ trivially,
we have that z1, z2, z3 are projected onto three disjoint lines on W3. These three lines
have to meet the projections of y1, y2, and y3, since (Y, Z) is a cross-intersecting EKR
set. This contradicts Theorem 26.

6 The Hermitian Polar Space H(2d − 1, q2)

It is well-known (see for example [14]) that the linear programming bound given in [13]
can be reformulated as a weighted Hoffman bound. Hence, Lemma 4 is applicable if d > 1.
The original bound on EKR sets on H(2d− 1, q2) is as follows.
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Theorem 28 ([13]). Let Y be an EKR set of H(2d− 1, q2) with d > 2 odd. Then

|Y | 6 nqd−1 − f1(qd−1 − 1) (1− c)
q2d−1 + qd−1 + f1(qd−1 − 1)c

≈ qd
2−2d+2,

where n =
∏d−1

i=0 (q2i+1 + 1), f1 = q2[d]q2
q2d−3+1
q+1

and c = q2−q−1+q−2d+3

q2d−1 .

The result by Luz [14] which shows that the linear programming bound is a special
case of the weighted Hoffman bound1 also holds for cross-intersecting EKR sets, but we
feel that we should show this directly, since the transition from the linear programming
technique used in [13] to the weighted Hoffman bound is not obvious. We shall prove a
cross-intersecting result similar to [13] in the following.

Theorem 29. Let (Y, Z) be a cross-intersecting EKR set of H(2d − 1, q2) with d > 2.
Then √

|Y | · |Z| 6 nλb
λb − k

≈ qd
2−2d+2,

where n =
∏d−1

i=0 (q2i+1 + 1), λb = −q(d−1)2 − α
(
1− f1 1−cn

)
, k = qd

2
+ αf1

(
c+ 1−c

n

)
,

f1 = q2[d]q2
q2d−3+1
q+1

, c = q2−q−1+q−2d+3

q2d−1 , and

α =

{
qd(d−1) − q(d−1)2 if d odd,
qd(d−1)−q(d−1)2

1−2(1−c)f1/n if d even.

Proof of Theorem 29. Let d > 1. Let Ad be the disjointness matrix as defined in Section
3. Consider the matrix A defined by

A = Ad − αE1 +
αf1c

n
J + αf1

1− c
n

I

Claim 1. Our first claim is that α is positive. For d odd, this is obvious. For d even
it is sufficient to show that 1 − 2f1/n is positive as we have c ∈ [0, 1] and f1 > 0. By
d > 4,

1 <
(q + 1)(q2 − 1)

2q2

6

(∏d−3
i=0 (q2i+1 + 1)

)
(q2d−1 + 1)

2q2[d]q2

6

(∏d−1
i=0 (q2i+1 + 1)

)
(q + 1)

2q2[d]q2 (q2d−3 + 1)
=

n

2f1
.

Claim 2. Our second claim is that A is an extended weight adjacency matrix. By
Section 3, it is clear that the entry (x, y) of E1 equals Qi,1/n if x and y meet in codimension
i. It was shown in [13, Equations (6)–(11)] that the following2 holds:

1This seems to be part of the mathematical folklore for a long time, but the author is not aware of
any source older than [14].

2 Note the following about [13]:
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(a) Q0,1 = f1,

(b) Qd−1,1 = f1c,

(c) Qs,1 > f1c if s < d,

(d) Qd,1 < 0.

Hence, the entry (x, y) of the matrix A is 0 if x = y, it is less than or equal to zero if
1 6 codim(x ∩ y) 6 d− 1, and it is larger than 1 if x and y are disjoint. This shows that
A is an extended weight adjacency matrix of the disjointness graph of generators.

Claim 3. Our third claim is that the second largest absolute eigenvalue of A is

q(d−1)
2

+ α

(
1− f1

1− c
n

)
,

and that

k = qd
2

+ αf1

(
c+

1− c
n

)
.

Recall that A is a linear combination of the Ais of the scheme, so the common eigenspaces
of the Ais are the eigenspaces of A. Notice for the following that c ∈ [0, 1] and α, f1 > 0.
By (2), the eigenvalues of A are

qd
2

+ αf1

(
c+

1− c
n

)
for 〈j〉,

− q(d−1)2 − α
(

1− f1
1− c
n

)
for V1,

(−1)rq(d−r)
2+r(r−1) + αf1

1− c
n

for Vr with 1 < r < d,

(−1)dqd(d−1) + αf1
1− c
n

for Vd.

If d even, then we have that

q(d−1)
2

+ α

(
1− f1

1− c
n

)
= qd(d−1) + αf1

1− c
n

is the second largest absolute eigenvalue. If d odd, then

q(d−1)
2

+ α

(
1− f1

1− c
n

)
= qd(d−1) − αf1

1− c
n

1. The equations (6)–(11) in [13] do not depend on d odd.

2. The relations in [13] are numbered −1, 0, . . . , d for a Hermitian polar space of rank d + 1. This
implies that one has to replace an index i by i+ 1 (in particular, d by d+ 1) if one goes from the
notation of [13] to the notation of this article.

3. We use ε in [13] instead of e as in this article, so instead of type ε = −1/2 we have type e = 1/2.
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is the second largest absolute eigenvalue. This proves our claim.
Now we can apply Lemma 4 with these values. Note that k has approximately size

qd
2+d−2, the second largest absolute eigenvalue λb has approximately size qd(d−1), and n

has approximately size qd
2
. Therefore,

nλb
λb + k

has approximately size qd
2−2d+2.

Note that the normal adjacency matrix of the disjointness graph of generators of
H(2d−1, q2) only yields qd

2−d as an upper bound, so this improves the bound significantly.
For the sake of completeness we want to mention the cross-intersecting EKR sets

for d = 2 as Lemma 4 only considered the case d > 2. We will do this after providing a
general geometrical result on (maximal) cross-intersecting EKR sets, where we call a cross-
intersecting EKR set (Y, Z) maximal if there exists no generator x such that (Y ∪{x}, Z)
or (Y, Z ∪ {x}) is a cross-intersecting EKR set.

Lemma 30. Let (Y, Z) be a maximal cross-intersecting EKR set in a finite classical polar
space of rank d. If two distinct elements y1, y2 ∈ Y meet in a subspace of dimension d−1,
then all elements of Z meet this subspace in at least a point.

Proof. Assume that there exists a generator z which meets y1 and y2 in points p, r not in
y1∩y2. Then 〈p, r, y1∩y2〉 is a totally isotropic subspace of dimension d+1. Contradiction.

Theorem 31. Let (Y, Z) be a maximal cross-intersecting EKR set of H(3, q2) with |Y | >
|Z|. Then one of the following cases occurs:

(a) The set Y is the set of all lines of H(3, q2), and Z = ∅. Here |Y | · |Z| = 0.

(b) The set Y is the set of all lines meeting a fixed line ` in at least a point, and Z = {`}.
Here |Y | · |Z| = (q2 + 1)q + 1.

(c) The set Y is the set of all lines on a fixed point p, and Y = Z. Here |Y |·|Z| = (q+1)2.

(d) The set Y is the set of lines meeting two disjoint lines `1, `2, and Z = {`1, `2}. Here
|Y | · |Z| = 2(q2 + 1).

(e) The set Y is the set of lines meeting three disjoint lines `1, `2, `3, and Z is the set of
all q + 1 lines meeting the lines of Y . Here |Y | · |Z| = (q + 1)2.

Proof. Assume that (a) does not occur.
By Lemma 30, as soon as two elements of Y meet in a point p, then all elements of Z

contain p. Hence, (b) occurs or at least 2 elements of Z meet in p. Hence, all elements of
Y contain p by Lemma 30. This is case (c).

So assume that Y and vice-versa Z only consist of disjoint lines. If there are two lines
`1, `2 ⊆ Z, then there are q2 + 1 (disjoint) lines L meeting `1 and `2 in a point (hence
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|Y | 6 q2 + 1). If more than q + 1 of these lines meet `1 (hence |Y | > q + 1), then Z
contains at most two lines, since in H(3, q2) exactly q + 1 lines meet 3 pairwise disjoint
lines in a point. This yields (d). If |Z| > 3, then |Y | 6 q + 1 by the previous argument.
We may assume |Y | > 3. Then it is well-known that there are exactly q+ 1 lines meeting
the q + 1 lines of Y . Hence, we can add these lines and then Z is maximal. This yields
(e).

The author tried to prove that the maximum cross-intersecting EKR set of H(5, q2) is
the unique EKR of maximum size given in [18], but aborted this attempt after he got lost
in too many case distinctions. The EKR set Y of all generators meeting a fixed generator
in at least a line corresponds to the largest cross-intersecting EKR set (Y, Y ) known to
the author and has size q5 + q3 + q + 1. The largest example known to the author for
H(7, q2) is the following.

Example 32. Let g be a generator of H(7, q2). Let Y be the set of all generators that
meet g in at least a 2-dimensional subspace. Let Z be the set of all generators that meet
g in at least a 3-dimensional subspace. Then (Y, Z) is a cross-intersecting EKR set.

Proof. A generator of H(7, q2) is a 4-dimensional subspace. A plane and a line of a
4-dimensional subspace meet pairwise in at least a point. Hence, (Y, Z) is a cross-
intersecting EKR set.

In this example Y has

1 + q + q3 + q4 + q5 + q6 + q7 + 2q8 + q10 + q12

elements, Z has

1 + q + q3 + q5 + q7

elements, so in total the cross-intersecting EKR set has size√
|Y | · |Z| ≈ q19/2.

The bound given in Theorem 29 for this case is approximately q10. For H(2d − 1, q2),
d > 4, the largest example known to the author is the EKR set of all generators on a
fixed point. The author assumes that the largest known examples are also the largest
examples.

7 Summary

We summarize our results in the following table. We only list the cases, where cross-
intersecting EKR sets of maximum size are not necessarily EKR sets. The table includes
the size of the largest known example if it is not known if the best known bound does not
seem to be tight.
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Polar Space Maximum Size
√
|Y | · |Z| Largest (known) Examples Reference

Q+(2d− 1, q), d even n/2 Y latins, Z greeks Th. 11
Q(2d, q), d even (q + 1) · . . . · (qd−1 + 1) Y latins and Z greeks of a

Q+(2d+ 1, q), or Y = Z
EKR set

Th. 25

W(2d− 1, q), d even,
q even

(q + 1) · . . . · (qd−1 + 1) see Q(2d, q) Th. 25

H(3, q2) q3 + q + 1 Z = {`}, Y all lines meeting
`

Th. 31

H(5, q2) / q5 largest EKR set, size ≈ q5 Th. 29
H(7, q2) / q10 Example 32, size ≈ q19/2 Th. 29

H(2d− 1, q2), d > 4 / q(d−1)2+1 all generators on a point,
size ≈ q(d−1)2

Th. 29

8 Open Problems

As mentioned before, the case H(2d− 1, q2) is mostly open. The next logical step would
be to solve the problem for H(5, q2) and H(7, q2). It might be also interesting to study the
same problem for proper subspaces of generators. For classical EKR sets this was done
recently by Klaus Metsch [16] using mostly geometrical arguments.
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