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Abstract

Given a linear form C1X1 + · · · + CnXn, with coefficients in the integers, we
characterize exactly the countably infinite abelian groups G for which there exists a
permutation f that maps all solutions (α1, . . . , αn) ∈ Gn (with the αi not all equal)
to the equation C1X1+ · · ·+CnXn = 0 to non-solutions. This generalises a result of
Hegarty about permutations of an abelian group avoiding arithmetic progressions.
We also study the finite version of the problem suggested by Hegarty. We show that
the number of permutations of Z/pZ that map all 4-term arithmetic progressions
to non-progressions, is asymptotically e−1p!.

Keywords: Pattern Avoidance; Additive Combinatorics

1 Introduction

Hegarty [8] characterized the countably infinite abelian groups for which there exists a
bijection mapping arithmetic progressions to non-arithmetic progressions. He also con-
sidered other problems regarding permutations f of an abelian group that ruin arithmetic
structures. In particular, for large enough N , he gave a construction of a permutation of
Z/NZ that mapped all 4-term progressions to non-progressions.

In the sequel we address the following problem. If G is a countably infinite abelian
group and C1, C2, . . . , Cn ∈ Z, under what conditions does there exist a bijection f : G→
G such that, for any (α1, α2, . . . , αn) ∈ Gn, with the αi not all equal, if

∑n
i=1Ciαi = 0

then
∑n

i=1Cif(αi) 6= 0? We obtain Hegarty’s result as a special case of our result for
C1 = C2 = 1 and C3 = −2.

We also continue Hegarty’s investigations in the finite setting. We show that the
number of permutations that map 4-term progressions to non-progressions in Z/pZ, (p a
prime) is asymptotically e−1p!
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2 Breaking linear forms in countably infinite abelian groups

For this section we take G to be a countably infinite abelian group and L(X1, . . . , Xn) =
C1X1 + · · ·CnXn to be a linear form with integer coefficients.

Before stating our main result, Theorem 1, we introduce the following terms. We say
that (α1, . . . αn) ∈ G is a proper solution to the linear equation C1X1 + · · ·+CnXn = 0 if
the C1α1 + · · · + Cnαn = 0 and the elements α1, α2, . . . , αn are not all equal. A solution
is called improper otherwise. We say that a permutation f of G breaks the linear form
L(X1, . . . , Xn) over G if all proper solutions to L(X1, . . . , Xn) = 0 over G get mapped
to non-solutions of L(X1, . . . , Xn) = 0. That is, f breaks L over G if f is a permutation
of G such that if (α1, . . . , αn) ∈ Gn is a proper solution to L(X1, . . . , Xn) = 0 then
(f(α1), . . . , f(αn)) is not a solution. We call a linear form L = C1X1 + · · · + CnXn

minimal if
∑

i∈[n]Ci = 0 and
∑

i∈B Ci 6= 0 for any nonempty proper subset B of [n]. For
example, the linear form X1+X2−2X3 is minimal, while the linear form X1+X2−X3−X4

is not.

We remark that, for the purposes of breaking the linear form L = C1X1 + · · ·+CnXn

over G, it is natural to assume that
∑

i∈[n]Ci = 0. For if
∑

i∈[n]Ci = A 6= 0 then for any

g ∈ G, with the order of g not dividing A, the bijection f(x) = x + g breaks the linear
form L. Also note that if L is such that

∑
i∈[n]Ci = 0 but L is not minimal then, for some

nonempty proper subset B of [n],∑
i∈B

Ci =
∑

i∈[n]\B

Ci = 0.

It follows that for any bijection f : G→ G and any t, t′ ∈ G,

t
∑
i∈B

Ci + t′
∑

i∈[n]\B

Ci = f(t)
∑
i∈B

Ci + f(t′)
∑

i∈[n]\B

Ci = 0

and f does not break L. Hence the question of what groups have a permutation breaking
L is only interesting for minimal linear forms.

Let L = C1X1+ · · ·+CnXn be a minimal linear form, let B be the set of all non-empty
proper subsets of [n], and let

∑
B = {

∑
i∈B Ci : B ∈ B}. For m ∈ N, let Ωm denote the

m-torsion subgroup of G, i.e., the subgroup of G consisting of all elements that have order
that divides m. We can now state the main result of this section.

Theorem 1. The minimal linear form L is breakable over a countably infinite abelian
group G if and only if for any β ∈

∑
B the quotient group G/Ω|β| is infinite.

We need the following definition in the course of the proof of Theorem 1. We say that a
group G has the (q1, . . . , qn)-property, where the qi are integers, if for any finite set A ⊂ G
there exists some g ∈ G so that qig 6∈ A for all i = 1, . . . , n. The following four lemmas
give some sufficient conditions under which a group G has the (q1, . . . , qn)-property.
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Lemma 2. If H1 has the (q1, . . . , qn)-property and H2 has the (r1, . . . , rm)-property then
G = H1 ×H2 has the (q1, . . . , qn, r1, . . . rm)-property.

Proof. Suppose thatH1 has the (q1, . . . , qn)-property andH2 has the (r1, . . . , rm)-property.
Let A be a finite subset of G = H1 × H2 and let A1 and A2 denote the projections of
A onto H1, H2 respectively. Since H1 has the (q1, . . . , qn)-property there is g1 ∈ H1 so
that qig1 6∈ A1 for i = 1, . . . , n. Similarly, there is g2 ∈ H2 so that rig2 6∈ A2 for all
i = 1, . . . ,m. Hence qi(g1 × g2) = qig1 × qig2 6∈ A for i = 1, . . . , n and ri(g1 × g2) 6∈ A for
i = 1, . . . ,m.

Lemma 3. If |lcm(q1, . . . , qn)G| =∞ then G has the (q1, . . . , qn)-property.

Proof. Suppose, for a contradiction, that there exists a finite set A so that for every
g ∈ G we have qig ∈ A for some i ∈ [n]. Now write lcm(q1, . . . , qn) = kqi so we have
lcm(q1, . . . , qn)g = kqig = ka for some a ∈ A. Hence |lcm(q1, . . . , qn)G| <∞, a contradic-
tion.

Lemma 4. If G has an element of infinite order then G has the (q1, . . . , qn)-property for
any non-zero integers q1, . . . qn.

Proof. Suppose that G has an element of infinite order. Then G has a subgroup H ∼= Z.
Since lcm(q1, . . . , qn)H is a subgroup of lcm(g1, · · · , gn)G, from |lcm(q1 · · · qn)H| = ∞ it
follows that |lcm(g1, . . . , gn)G| =∞, and we appeal to Lemma 3.

In the proof of the next lemma we will use the following notation. For a positive
integer n and a prime p, let νp(n) denote the largest integer k for which pk|n.

Lemma 5. Let G be an abelian group and let q1, . . . , qn be integers. If |G/Ωqi | = ∞ for
all i ∈ [n] then G has the (q1, . . . , qn)-property.

Proof. We argue by induction on n. If n = 1, assume for a contradiction that for every
g ∈ G we have q1g ∈ A, for some finite set A. Thus, it follows that qG ⊆ A. But, since
A is finite and qG ∼= G/Ω|q1|, a contradiction follows.

Now assume that n > 1. By Lemma 4, we may assume that every element of G has
finite order. Thus G admits the decomposition

G ∼=
⊕

p prime

Tp,

where Tp denotes the subgroup of elements of G that have order a power of p.
Note that

qi

( ⊕
p prime

Tp

)
=
⊕

p prime

qiTp,

for all i ∈ [n]. We remark that, for all i ∈ [n], |qiG| = |G/Ωqi | =∞.
If there are infinitely many primes p such that Tp is non-trivial, then we may write

G ∼= H1×H2, with H1 =
⊕

p Tp , where p ranges over all primes p that divide at least one
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of the qi’s and H2 =
⊕

p Tp, where p ranges over all primes that divide none of the qi’s.
Since |H2| = ∞ and since lcm(q1, . . . qn)H2

∼= H2 it follows that |lcm(q1, . . . qn)H2| = ∞.
By Lemma 3, H2 has the (q1, . . . , qn)-property and consequently G has the (q1, . . . , qn)-
property.

Suppose that there are only finitely many primes p such that Tp 6= {e}. Then G ∼=⊕k
j=1 Tpj , for some primes p1, . . . , pk, and qiG ∼=

⊕k
j=1 qiTpj for all i ∈ [n]. This together

with |qiG| =∞ implies that for each qi there is some prime pj for which |qiTpj | =∞. Let
f : {q1, . . . , qn} → {p1, . . . , pk} be a function such that |qiTf(qi)| =∞ for all i ∈ [n].

We distinguish two cases.
If f is not a constant function we partition {p1, . . . , pk} = R∪S so that f({q1, . . . , qn})∩

R 6= ∅ and f({q1, . . . , qn}) ∩ S 6= ∅. Next we define H1 =
⊕

pj∈R Tpj and H2 =
⊕

pj∈S Tpj
and note that |qiH1| =∞ for f(qi) ∈ R and |qiH2| =∞ for f(qi) ∈ S. By induction, H1

has the (qi)f(qi)∈R-property and H2 has the (qi)f(qi)∈S-property. By Lemma 2 it follows
that G has the (q1, . . . , qn)-property.

If f is a constant function then there is a prime p for which |qiTp| =∞ for all i ∈ [n].
We write G ∼= Tp×H and assume that q1 is such that νp(q1) is maximum over {q1, . . . , qn}.
From lcm(q1, . . . , qn)Tp ∼= q1Tp it follows that |lcm(q1, . . . , qn)Tp| = ∞. By Lemma 3, Tp
has the (q1, . . . , qn) property and therefore G has the (q1, . . . , qn) property.

The proof of Theorem 1 follows.

Proof. We define a permutation f : G → G in a “back-and-forth” manner. Let G =
{x1, x2, . . .} be an enumeration of G. We start the recursion by setting f(x1) = x1. We
now define f in stages. At stage t we have the following:

1. The function f has been defined on a finite set Dt that contains x1, . . . , xt.

2. The function f−1 has been defined on a finite set D′t that contains x1, . . . , xt.

3. There are no proper pairs of solutions (α1, . . . , αn), (f(α1), . . . , f(αn)), with αi ∈ Dt.

4. f is a bijection f : Dt → D′t.

Assuming inductively, that the above hold for the first t stages we proceed to stage t+ 1
and show that we can preserve the above properties. At stage t+1 we choose the smallest
value in the enumeration of G \ Dt, say xk, for which the function f has not yet been
defined. We want to choose a value for f(xk) among G \ f(Dt) such that no proper
solutions are mapped to solutions. To this end, for each I ∈ B we define

AI =

{
−
∑
i∈I

Ciai : ai ∈ f(Dt)

}
and then set

A =
⋃
I∈B

AI
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It is clear that A is a finite set. Thus A ∪ f(Dt) is a finite set. By Lemma 5, G has
the (q : q ∈

∑
B)-property and, consequently, has the (q : q ∈

∑
B ∪{1})-property. It

follows that we can find a g ∈ G such that qg 6∈ A ∪ f(Dt) for every q ∈
∑
B ∪{1}. We

define f(xk) = g. We now check the desired properties. First observe that f(xk) 6∈ f(Dt).
Now suppose that there is some proper solution (α1, α2, . . . , αn) to the linear equation
L(X1, . . . , Xn) = 0 for which f(αi) is defined for i = 1, . . . , n. We may assume that
x appears among α1, . . . , αn as previous elements are left unaltered by the choice of
f(xk). Hence we may define S ⊂ [n] to be the non-empty, proper subset of indices i
for which αi = x. Now suppose that (f(α1), . . . , f(αn)) is a solution to the equation
L(X1, . . . , Xn) = 0. In this case we have

0 =
n∑
i=1

Cif(αi) =
∑
i∈S

Cig +
∑
i 6∈S

Cif(αi)

and hence

g

(∑
i∈S

Ci

)
= −

∑
i 6∈S

Cif(αi) ∈ A,

a contradiction.
We now take the smallest element of G \ (Dt ∪ {g}) for which the value of f−1 is not

yet defined and then argue exactly as above with the role of f−1 taking the place of f .
Notice that since f breaks L if and only f−1 breaks L the argument is indeed identical.

The above defines a bijection on G that satisfies the desired properties. This proves
one direction of the argument.

Conversely suppose that for some B ∈ B and β =
∑

i∈B Ci the factor group G/Ω|β| is
finite. Let f : G → G be a bijection. Since G is infinite, the cosets of Ω|β| are infinite.
This, together with the fact that G/Ω|β| is finite, implies that there are t, t′ ∈ G, t 6= t′,
such that t and t′ belong to the same coset of Ω|β| and that f(t) and f(t′) belong to the
same coset of Ω|β|. For each i ∈ [n] we define

αi =

{
t if i ∈ B
t′ if i ∈ [n]\B

and observe that ∑
i∈[n]

Ciαi = t
∑
i∈B

Ci + t′
∑

i∈[n]\B

Ci = β(t− t′) = 0

and
∑

i∈[n]Cif(αi) = β(f(t) − f(t′)) = 0. Therefore, the bijection f does not break the
linear form L = C1X1 + · · ·+ CnXn.

We obtain the result of Hegarty [8] as a special case of Theorem 1.

Corollary 6. (Hegarty) Let G be a countably infinite abelian group, then there exists a
3-term arithmetic progression avoiding permutation of G if and only if G/Ω2 is infinite.
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3 Permutations avoiding 4-term arithmetic progressions

In what follows, we restrict ourselves to the study of the groups Z/pZ where p is a prime.
We also assume that p > 3 in all that follows. We are interested in the problem of
estimating the number of permutations of Z/pZ that map 4-term progressions to non-
progressions. Let α(p) denote the number of such permutations. We show that

lim
p→∞

α(p)

p!
= e−1.

To show this we note that the quantity α(p)
p!

is the same as the probability that a

permutation of f ∈ Z/pZ, sampled uniformly at random, maps all 4-term progressions to
non-progressions. We then estimate this probability by showing that the random variable
that counts the number of 4-term progression preserved by f is asymptotically Poisson.
This is done by the “method of moments”.

In what follows, we consider all 4-term progressions as ordered quadruples (x, x+d, x+
2d, x+ 3d) and define

Ap = {(x, x+ d, x+ 2d, x+ 3d) : x, d ∈ Z/pZ, d 6= 0}.

For a permutation f of Z/pZ, we abuse notation slightly and define f((a, b, c, d)) =
(f(a), f(b), f(c), f(d)). We are interested in permutations f for which

(a, b, c, d) ∈ Ap ⇒ (f(a), f(b), f(c), f(d)) 6∈ Ap.

It is easy to check that this agrees with the equational definition of a permutation that
avoids 4-term progressions given by Hegarty [8].

We now sample a permutation f ∈ Z/pZ uniformly at random and consider the ran-
dom variable X, that counts the number of progressions that are mapped to a progression
by f . More precisely,

X =
∑
P∈Ap

1 (f(P ) ∈ Ap) .

Following standard notation, for k ∈ N we write (X)k = X(X − 1) · · · (X − k+ 1) and
call E((X)k) the kth factorial moment of X. In what follows, we show that the random
variable X is asymptotically Poisson by way of the following well-known lemma. See, for
example, Theorem 1.22 in [3].

Lemma 7. Suppose that Xn is a sequence of non-negative, integer valued, random vari-
ables and that λ is a real number. If for each k we have E((Xn)k)→ λk as n→∞ then
Xn weakly converges to a random variable X̃ that is Poisson distributed with parameter
λ. In other words, for every non-negative integer l

P (Xn = l)→ P
(
X̃ = l

)
= e−λ

λl

l!

as n→∞.
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To estimate the moments we require the following simple lemma. Let Q be a non-
empty set of 4-tuples (a, b, c, d) where a, b, c, d are distinct elements of a finite ground set
V . For some fixed ordering of the ground set V = {x1, . . . , xn} of Q, we say that an
element xi ∈ V is fixed with respect to Q (or if it clear that we are speaking of Q we shall
simply say fixed) if there is a quadruple (a, b, c, d) ∈ Q with one of a, b, c, d equal to xi and
two more of a, b, c, d among {x1, . . . , xi−1}. We call an element xi ∈ V free with respect to
Q (or simply free) if it is not fixed.

Lemma 8. If Q is a non-empty set of 4-tuples of distinct elements of a finite ground set
V such that every element of V appears in some quadruple of Q then one of the following
holds.

1. There exists an ordering of the ground set V = {x1, . . . , xn} so that the number of
fixed elements of V is strictly greater than the number of free elements

2. Every element of V is contained in at most one quadruple of Q.

Proof. Choose a linear ordering π of the ground set uniformly at random over all possible
orderings. Define the random variable Y as the number of xi that are fixed by Q, with
respect to the ordering. We write

Y =
n∑
i=1

1 (xi is fixed in the ordering π) .

Now if qi ∈ Q is an arbitrarily chosen quadruple that xi appears in, we have

P (xi is fixed in the ordering π) > P (at least 2 coordinates of qi appear before xi) =
1

2

where the last equality holds by symmetry and the fact that

P (> 2 coordinates of qi appear before xi)+P (> 2 coordinates of qi appear after xi) = 1.

Now assume that there exists some xi that appears in more than one quadruple (i.e. we
have excluded alternative 1 of the Lemma). In this case, it is easy to check that

P (xi is fixed) >
1

2
.

Thus we have the strict inequality

E(Y ) =
n∑
i=1

P (xi is fixed in the ordering ) >
n

2
.

Since Y is integer-valued there must be some choice of π for which the number of fixed xi
exceeds the number of free xi by at least 1. This completes the proof of the lemma.
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We define the notion of isomorphism between two sets of quadruples in a natural way.
We say that Q,Q′ are isomorphic if there exists a bijection φ between the grounds sets of
Q,Q′ so that φ((a, b, c, d)) ∈ Q′ if and only if (a, b, c, d) ∈ Q. We will also use the notation
Q ∼= Q′ if Q,Q′ are isomorphic.

We are now in a position to estimate the kth factorial moment of X.

Lemma 9. Let k ∈ N and suppose that X is the random variable, as defined above, that
counts the number of 4-term progressions that are mapped to 4-term progressions by f , a
permutation sampled uniformly at random over all permutations of Z/pZ, then

E((X)k) = 1 + o(1).

Proof. Let f be a permutation of Z/pZ, sampled uniformly at random over all permuta-
tions of Z/pZ. For a progression P ∈ Ap we define E(P ) to be the event “f(P ) ∈ Ap”.
Hence we may express the kth factorial moment as

E((X)k) = k!
∑

{Pi1
,...,Pik

}∈A(k)
p

P{E(Pi1) ∩ · · · ∩ E(Pik)}.

To estimate the value of E((X)k) we split the sum up according to isomorphism classes
of the {Pi1 , . . . , Pik} and then estimate the probability that a given configuration of pro-
gressions {Pi1 , . . . , Pik} gets mapped to a collection of progressions by f .

We have
E((X)k) = k!

∑
Q

∑
{Pi1

,...,Pik
}∼=Q

P{E(Pi1) ∩ · · · ∩ E(Pik)}

where the outer sum runs over a collection of representatives from each isomorphism class.
Crucially, we note that there are only finitely many such isomorphism classes. Our main
contribution will come from configurations where every point is contained in at most one
quadruple. We call this configuration Q0. Hence the above is equal to

k!
∑
Q6=Q0

∑
{Pi1

,...,Pik
}∼=Q

P{E(Pi1) ∩ · · · ∩ E(Pik)}+ k!
∑

{Pi1
,...,Pik

}∼=Q0

P{E(Pi1) ∩ · · · ∩ E(Pik)}.

To estimate the first sum, we fix some Q, and consider it on some fixed (abstract)
ground set V = {x1, . . . , xl}. Let Free(Q) denote the number of free xis and Fixed(Q)
denote the number of fixed xis. We start with the question: how many terms are in the
following sum? ∑

{Pi1
,...,Pik

}∼=Q

P{E(Pi1) ∩ · · · ∩ E(Pik)}

This is the same as asking for the number of subsets of Ap of size k that are isomorphic
to Q. We let Si be the number of maps φ : {x1 . . . , xi} → Z/pZ such that there exists
some isomorphism φ̃ between Q and a subset of Ap that is identical to φ when restricted
to {x1, . . . , xi}. We will call a map such as φ a partial isomorphism. Notice that Sl is an
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upper bound for the number of subsets of Ap that are isomorphic to Q - the quantity that
we want to estimate.

We now proceed to bound Sl. We do this by way of two simple observations. First we
have the trivial bound

Si 6 Si−1p

as there are at most p choices for xi once x1, . . . xi−1 have been chosen. More carefully, we
observe that if xi is a fixed element with respect to Q then we have the sharper bound.

Si 6 12Si−1

To see this, we count the number of ways of extending a fixed partial isomorphism φ on
x1, . . . , xi−1 of Q to a partial isomorphism φ′ on x1, . . . , xi. Since xi is fixed there are
two other elements xj, xk among x1, . . . , xi−1 that appear in a 4-tuple with xi. Since this
4-tuple must eventually get mapped to a member of Ap we must ensure that φ′(xi) is
contained in a progression with xj, xk. Finally, note that φ(xj), φ(xk) are are mutually
contained in

(
4
2

)
= 6 tuples of Ap. Hence there are at most 6 · 2 = 12 possible choices for

φ(xj). The claim follows.
Inductively applying these estimates, we arrive at the following estimate on Sl.

Sl 6 12lpFree(Q) 6 124kpFree(Q)

Where the last inequality follows as l 6 4k. Hence the number of terms in the sum under
consideration is at most 124kpFree(Q).

We now turn to estimate the quantity P(E(Pi1)∩ . . .∩E(Pik)) for {Pi1 , . . . , Pik} ∼= Q.
In particular, we claim that

P(E(Pi1) ∩ . . . ∩ E(Pik)) 6
64k

pFixed(Q)
(1 + o(1)).

We prove this in a way very similar to the above. We fix {Pi1 , . . . , Pik} ∼= Q on the
ground set {y1, . . . , yl} ⊆ Z/pZ. We may assume that we chose the ordering of {y1, . . . , yl}
so that the map sending xi to yi, i = 1, . . . , l, is an isomorphism of Q and {Pi1 , . . . , Pik}.

Now we define the event Ei for i = 1, . . . , l to be the event: “there exists some
isomorphism θ : Z/pZ→ Z/pZ of {Pi1 , . . . , Pik} that agrees with f on x1, . . . , xi”. Thus

P(E(P1) ∩ . . . ∩ E(Pk)) = P(El) = P(El | El−1)P(El−1 | El−2) · · ·P(E2 | E1).

We bound each term P(Ei | Ei−1) trivially by 1 if yi is free and by 6
p−i if yi is fixed. After

noting that p→∞ and l 6 4k, the claim follows.
Putting the above together, it follows that∑

{Pi1
,...,Pik

}∼=Q

P{E(Pi1) ∩ . . . ∩ E(Pik)} 6 CpFree(Q)−Fixed(Q).
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Since, by Lemma 8, we may work with some ordering on the ground set A of Q that
has more fixed elements than free elements, the above sum is bounded by C/p, for some
constant C (which depends on k). And since there are only finitely many isomorphism
classes, we have ∑

{Pi1
,...,Pik

}∼=Q

P{E(Pi1) ∩ . . . ∩ E(Pik)} 6 C ′

p
.

Where the C ′ is a constant that depends on k, but not p. That is, the contribution from
the Q 6∼= Q0 terms in the sum that represents E((X)k) is negligible.

We now need to determine the contribution from the main term Q ∼= Q0. Let us first
count the number of ways of choosing a set of 4-term progressions of Z/pZ that have no
common elements. We claim that there are

1

k!

k∏
i=1

(p(p− 1)−O(ip)) =
p2k

k!
− o(1)

such sets. To see this, observe that there are |Ap| = p(p − 1) ways of choosing the first
set. Then after we have chosen i sets to be in our collection, there are O(ip) sets of Ap
that share an element with the previously chosen sets. Hence there are p(p− 1)− O(ip)
choices for the (i + 1)th set. We then must divide by k!, to remove the order from our
choice.

To determine P {E(Pi1) ∩ · · · ∩ E(Pik)} we use a trick. We realize the uniform prob-
ability measure on the space of permutations (henceforth Pπ) as the probability measure
uniform on all functions (henceforth Pf ) f : Z/pZ → Z/pZ conditioned on the event
“f(0), . . . , f(p− 1) are distinct” . Before we begin the calculation, note that without loss
we may assume that the elements appearing in Pi1 , . . . Pik are exactly x1, . . . , x4k. We
have

Pp {E(Pi1) ∩ · · · ∩ E(Pik)} = Pf {E(Pi1) ∩ · · · ∩ E(Pik)|f(0), . . . , f(p− 1) distinct}
= Pf {E(Pi1) ∩ · · · ∩ E(Pik)|f(x1), . . . , f(x4k) are distinct}

=
Pf {E(Pi1) ∩ · · · ∩ E(Pik)}
Pf {x1, . . . , x3k are distinct}

=
1

p2k
(1 + o(1)),

where the second equality holds by independence and the basic property of conditional
probability P(E|A ∩ B) = P(E|A) if B is independent of E. The last equality holds by
the fact that Pf {x1, . . . , x3k are distinct} = (1 − o(1)) as p tends to infinity while k is
fixed. Putting this estimate together with our earlier estimate on the number of distinct
sums gives ∑

{Pi1
,...,P

k
}∼=Q0

k!P {Pi1 ∩ · · · ∩Pik} = 1 + o(1).

Hence, we have shown
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E((X)k) = (1 + o(1)) +
C

p
= 1 + o(1),

as desired.

Our main result of this section follows.

Theorem 10. Let p be a prime and let α(k, p) be the number of permutations of Z/pZ
that avoid k-term arithmetic progressions. Then

1. limp→∞
α(k,p)
p!

= 1 if k > 4 ,

2. limp→∞
α(4,p)
p!

= e−1, and

3. limp→∞
α(3,p)
p!

= 0.

Proof. We sample a permutation f of Z/pZ uniformly at random and let Xk,p denote the
random variable that counts the number of k-term progressions that f maps to k-term
progressions. It is also useful to define for k > 2 the set Ak,p of all (ordered) arithmetic
progressions (x, x+d, x+2d, . . . , (k−1)d), where x, d ∈ Z/pZ and d 6= 0. Before proceeding
we need an easy calculation.

For 2 6 k < p, let P = (x, x + d, . . . , x + (k − 1)d) ∈ Ak,p and let E(P ) be the event
“f(P ) ∈ Ak,p”. We observe that

P {E(P )} =
1

(p− 2)(p− 3) · · · (p− k + 1)
.

To see this, first note that if P ∈ A2,p then P {E(P )} = 1. Now for k > 3 we may expand
the quantity P {E(P )} as

P
{
E(P )|f(x, . . . , x+ (k − 2)d) ∈ A(k−1),p

}
P
{
f(x, . . . , x+ (k − 2)d) ∈ A(k−1),p

}
.

Now notice that

P
{
E(P )|f(x, . . . , x+ (k − 2)d) ∈ A(k−1),p

}
= (p− (k − 1))−1,

as the values of f(x), f(x+ d) determine a unique value that f(x+ (k− 1)) must take in
order for E(P ) to hold. Since this value is not among f(x), f(x+ d), . . . , f(x+ (k− 2)d),
as k > p and p is prime and since the value is sampled uniformly among all values
Z/pZ \ {f(x), f(x + d), . . . , f(x + (k − 2)d)} the equality follows. The calculation now
follows by induction.

To proceed with the proof of the theorem, we write

α(k, p)

p!
= P (Xk,p = 0) .
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In the case k > 4, we have

1− α(k, p)

p!
= P (Xk,p > 1) 6 E(Xk,p) 6 |Ak,p|P {E(P )} 6 C

p
→ 0.

where P ∈ Ak,p is arbitrary and we have used the formula for P {E(P )} obtained above.
In the case k = 4 we have

α(k, p)

p!
= P (Xk,p = 0)→ e−1,

by applying Lemma 7 along with our moment calculations, Lemma 9.
The third item in the theorem can be established by a standard second moment

calculation. To do this we note that E(X3,p) = 1
p−2 |Ak,p| = (1 + o(1))p and claim that

E(X2
3,p)− (E(X3,p))

2 6 Cp, where C is an absolute constant. To see this, we write

E(X2
3,p) =

∑
P,P ′∈A3,p

P {E(P ) ∩ E(P ′)} =
∑

P∈A3,p

P {E(P )}+
∑

P 6=P ′∈A3,p

P {E(P ) ∩ E(P ′)} .

We now claim that each term in the second sum is at most (p − 6)−2. To see this note
that since P, P ′ have at most two elements in common, there exists x appearing in P
and not appearing in P ′ and y appearing in P ′ and not appearing in P . To calculate
P {E(P ) ∩ E(P ′)}, first expose the elements appearing in the tuples P, P ′ that are not
x, y. As, P, P ′ are progressions, there will be at most one choice for each x, y among the
remaining 6 p − 6 elements of Z/pZ such that the event E(P ) ∩ E(P ′) holds. As this
choice is uniform, the bound follows.

Now since
E(X3,p)

2 =
∑

P,P ′∈Ak,p

P {E(P )}P {E(P ′)} ,

we may express the quantity E(X2
3,p)− E(X3,p)

2 as∑
P∈A3,p

P {E(P )} − P {E(P )}2 +
∑

P 6=P ′∈A3,p

P {E(P ) ∩ E(P ′)} − P {E(P )}P {E(P ′)} .

Now, using the observation we have just made, and the formula for P {E(P )} that we
have obtained above, we have

P {E(P ) ∩ E(P ′)} − P {E(P )}P {E(P ′)} 6 1

(p− 6)2
− 1

(p− 2)2
6
C

p3

While we may bound terms in the first sum more crudely,

P {E(P )} − P {E(P )}2 6 1

p

It follows that

E(X2
3,p)− E(X3,p)

2 6 C|Ak,p|p−1 + C|Ak,p|2p−3 6 C ′p,
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as claimed.
We now use this claim with Chebyshev’s inequality to finish the proof of Theorem 10.

We have
α(3, p)

p!
= P(X3,p = 0) 6 P(|X3,p − p/2| > p/2) 6 4

Var(X3,p)

p2

= 4

(
E(X2

3,p)− E(X3,p)
2
)

p2
6
C ′

p
→ 0,

as p→∞. This completes the proof.

4 Open questions

Perhaps the most interesting open question is whether or not there exists a permutation
f : Z/NZ → Z/NZ that avoids 3-term progressions. Hegarty [8] has conjectured that
such permutations exist for N 6= 2, 3, 5, 7.

Let us also note that the type of question explored in this paper is related to a ques-
tion about the existence of a map (not necessarily a permutation) f : N → N that maps
arithmetic progressions to non-arithmetic progressions with |f(n)− f(n+ 1)| < C, where
C has no dependence on n. This question originated in a different but equivalent formu-
lation in the setting of infinite words [2, 4, 5, 6, 7, 9]. The question of the existence of
such a map is open and appears to be quite difficult.
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[3] Béla Bollobás. Random graphs. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, second edition, 2001.
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