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Abstract

For a finite abelian group G and positive integers m and h, we let
p(G,m,h) =min{|hA| : ACG,|A=m}

and

p+(G,m,h) = min{|hi A| : ACG,|A| =m},
where hA and h4 A denote the h-fold sumset and the h-fold signed sumset of A,
respectively. The study of p(G,m,h) has a 200-year-old history and is now known
for all G, m, and h. Here we prove that pi (G, m,h) equals p(G,m,h) when G is
cyclic, and establish an upper bound for p4 (G, m, h) that we believe gives the exact
value for all G, m, and h.

1 Introduction

Let GG be a finite abelian group written with additive notation. For a nonnegative integer
h and a nonempty subset A of GG, we let hA and hyA denote the h-fold sumset and the
h-fold signed sumset of A, respectively; that is, for an m-subset A = {a4,...,a,} of G,

we let
hA = {Eln;lAZCLz : ()\1, ey )\m) € Ngn, 2;21& = h}

and

hiA = {Eﬁl)\laz . ()\1, N >\m> € Zm, E:’llp\zl = h}

While signed sumsets are less well-studied in the literature than sumsets are, they come
up naturally: For example, in [4], the first author and Ruzsa investigated the independence
number of a subset A of GG, defined as the maximum value of ¢ € N for which

0¢g U _hiA
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(see also [1] and [2]); and in [12], Klopsch and Lev discussed the diameter of G with
respect to A, defined as the minimum value of s € N for which

U _hed =G

(see also [13]). The independence number of A in G quantifies the “degree” to which A is

linearly independent in G (no subset is “completely” independent), while the diameter of

G with respect to A measures how “effectively” A generates G (if at all). Note that hoeA

is always contained in h(A U —A), but this may be a proper containment when h > 2.
For a positive integer m < |G|, we let

p(G,m,h) =min{|hA| : ACG,|A| =m}

and
p+(G,m,h) =min{|h.A| : ACG,|A| =m}

(as usual, |S| denotes the size of the finite set S). The value of p(G,m,h) has a long
and distinguished history and has been determined for all G, m, and h; in this paper we
attempt to find p (G, m, h).

We start by a brief review of the case of sumsets. In 1813, for prime values of p,
Cauchy [5] found the minimum possible size of

A+B={a+b:a€c A be B}

among subsets A and B of given sizes in the cyclic group Z,. In 1935, Davenport [6]
rediscovered Cauchy’s result, which is now known as the Cauchy—Davenport Theorem.
(Davenport was unaware of Cauchy’s work until twelve years later; see [7].)

Theorem 1 (Cauchy—Davenport Theorem) If A and B are nonempty subsets of the
group Z, of prime order p, then

|A+ B| > min{p, |A| + |B| — 1}.
It can easily be seen that the bound is tight for all values of |A| and |B|, and thus
p(Zy, m,2) = min{p,2m — 1}.

After various partial results, the general case was finally solved in 2006 by Plagne [15]
(see also [14], [9], and [10]). To state the result, we introduce the function

u(n,m,h) = min{ fy(m,h) : d € D(n)},
where n, m, and h are positive integers, D(n) is the set of positive divisors of n, and
fa(m,h) = (h[m/d] —h+1)-d.

(Here u(n, m, h) is a relative of the Hopf-Stiefel function used also in topology and bilinear
algebra; see, for example, [8], [11], [14], and [16].)
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Theorem 2 (Plagne; cf. [15]) Let n, m, and h be positive integers with m < n. For
any abelian group G of order n we have

p(G,m,h) = u(n,m,h).
Turning now to p+(G,m,h), we start by observing that
p+(G,m,0) =1

and
p+(G,m,1) =m

for all G and m. To see the latter equality, it suffices to verify that one can always find
a symmetric subset of size m in G, that is, an m-subset A of G for which A = —A.
Therefore, from now on, we assume that h > 2.

We must admit that our study of pi(G,m,h) resulted in quite a few surprises. For
a start, we noticed that, in spite of the fact that hi A is usually much larger than hA is,

the equality
p+(G,m,h) = p(G,m,h)

holds quite often; it is an easy exercise to verify that, among groups of order 24 or less,
equality holds with only one exception: pi(Z3,4,2) = 8 while p(Z2%,4,2) = 7. In fact, we
can prove that pL(G, m, h) agrees with p(G, m, h) for all cyclic groups G and all m and h
(see Theorem 4 below).

However, in contrast to p(G,m, h), the value of p+(G,m,h) depends on the structure
of G rather than just the order n of G. Suppose that G is of type (ni,...,n,), that is,

G2 L, X X Lo,

where ny > 2 and n; divides n;,; for each i € {1,...,7 —1}. We exhibit a specific subset
D(G,m) of D(n) with which the quantity

us(G,m,h) = min{ fy(m,h) : d € D(G,m)}

provides an upper bound for p. (G, m, h) (see Theorem 5 below). Therefore, to get lower
and upper bounds for pL(G,m,h), we minimize f;(m,h) for all d € D(n) and for d €
D(G,m), respectively:

min{ fz(m,h) : d € D(n)} < px(G,m,h) < min{fys(m,h) : d € D(G,m)}.
In fact, we also conjecture that
p+(G,m,h) =uys(G,m,h)

holds always except for one very special situation (see Conjecture 10 below).
Further surprises come from the inverse problem of trying to classify subsets that
yield the minimum signed sumset size. To start with, we point out that it is not always
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symmetric sets that work best. As an example, consider p+(Z2,9,2). One can see that
for any 9 elements of +a + H, where H is any subgroup of size 5 and a ¢ H, we have

2,A=HU (+2a+ H),

SO
p+(Z2,9,2) = p(Z2,9,2) = 15.

Here A is not symmetric but is near-symmetric: it becomes symmetric once one of its
elements is removed. However, we can verify that for any symmetric subset A of size 9,
2+ A must have size 17 or more, as follows: If A contains a subgroup H of size 5, then
with any a € A\ H, the 2-fold signed sumset of A will contain the 17 distinct elements
of H, £a+ H, and {£2a}; while if A contains no subgroup of size 5, then

AN{2a : a e A} = {0},

S0
2. A] > |A| +1{2a : a€ A} —1=1T.

And that is not all: sometimes it is best to take an asymmetric set, a set A where
A and —A are disjoint. It is easy to check that, in the example of pi(Z3,4,2) = 8
mentioned above, with a 4-subset A of Z2 we get 2, A = Z32 \ {0} when A is asymmetric,
and 24 A = 73 in all other cases.

We have thus seen that sets that minimize signed sumset size may be symmetric,
near-symmetric, or asymmetric—we can prove, however, that there is always a set that
is of one of these three types (see Theorem 3 below).

With this paper we aim to introduce the question of finding the minimum size of
signed sumsets. Our approach here is entirely elementary. In the follow-up paper [3], we
investigate the question in elementary abelian groups, where, using deeper results from
additive combinatorics, we are able to assert more.

2 The role of symmetry

Given a group G and a positive integer m < |G|, we define a certain collection A(G,m)
of m-subsets of G. We let

e Sym(G,m) be the collection of symmetric m-subsets of G, that is, m-subsets A of
G for which A = —A;

e Nsym(G,m) be the collection of near-symmetric m-subsets of G, that is, m-subsets
A of G that are not symmetric, but for which A\ {a} is symmetric for some a € A;

e Asym(G,m) be the collection of asymmetric m-subsets of G, that is, m-subsets A
of G for which AN (—=A) = 0.
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We then let
A(G,;m) = Sym(G, m) U Nsym(G, m) U Asym(G,m).
In other words, A(G, m) consists of those m-subsets of G that have exactly m, m — 1, or

0 elements whose inverse is also in the set.

Theorem 3 For every G, m, and h, we have
p+(G,m,h) =min{|h A| : A€ A(G,m)}.

Proof: Since our claim is trivial when m < 2, we assume that m > 3.

For a subset S of G, let us define its degree of symmetry, denoted by sdeg(S), as
the number of elements of S that are also elements of —S. We shall prove that for any
m-subset B of G with

1 <sdeg(B) <m—2,

there is an m-subset B’ of G with
sdeg(B') = sdeg(B) + 2

and |hyB'| < |hyB|; repeated application of this results in a subset A € A(G,m) with
|h+A| < |heB|, from which our result follows.
Let
B ={by,bs,b3,...,bn}

be an m-subset of GG, and suppose that —b; € B, —bs € B, but —b3 € B. Note that we
may have by = —bs; furthermore, the sets {£b;}, {2}, and {£b3} are pairwise disjoint.
Replacing b; by —bs in B, we let

B' = {~by, by, by, ... by}

Then B’ has size m, and its degree of symmetry is exactly two more than that of B; we
need to show that |hyeB’| < |he B|. We shall, in fact, show that ho B’ C hyB.
By definition, hy B’ is the collection of all elements of the form

g = )\1(—62) + )\sz + )\31)3 + -+ )\mbm
where Y7 |\;| = h. Clearly, if A; and Ay are of opposite sign or either one is zero, then
A2 = Al = [Ar] + [ A,

SO
qg= ()\2 — )\1)[)2 4+ A3bs + - + Apby, € ha B.

Suppose now that A\; and Ay are both positive; the case when they are both negative
can be handled similarly. Furthermore, we assume that A\; > \o; again, the reverse case
is analogous.
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Assume first that 2b3 = 0; in this case we have A3bs = —\3b3, and thus we may assume
that Az > 0. Observe that

g = (A2 — A1)y + (2A1 + A3)b3 + Agbs + - - + Ao,

and
Mo — M| + 201 + Ag| + [ha| -+ [A| = A

thus g € hoB.
Finally, suppose that 2b3 # 0; since —b3 € B, we must have m > 4, and without loss
of generality we can assume that by = —b3. We can rewrite g as follows:

[ (A2 — A)ba + (A1 4+ X3)b3 + (A1 4+ )by + Asbs + -+ + Apby i A3 = 0,04 = 0;
(Ao — A)ba + (A1 + A3 — Ag)bg + Aiby + Asbs + - -+ + Abi if A3 >0, <0;

()\2 - )\1)b2 + )\1b3 + ()\1 - )\3 + )\4)b4 + )\5b5 + tee + )\mbm lf )\3 < 0, )\4 2 O,

[ (A2 = A)ba 4+ (A1 = Ag)bs + (A — Ag)by + Asbs + - -+ Apbyy i A3 < 0,04 < 0.

Since the expressions above show that g € hy B in each case, our proof is complete. O

3 Cyclic groups

In this section we prove that, when G is cyclic, then pi (G, m,h) agrees with p(G,m,h)
for all m and h.

Theorem 4 For all positive integers n, m, and h, we have
p+(Zy, m,h) = p(Zy,,,m, h).
Proof: Since the reverse inequality is obvious, it suffices to prove that
p+(Zy, m, h) < p(Zp, m, h).
Recall that
p(Zy, m,h) = min{ fy(m,h) : d € D(n)}.

Observe that, for any symmetric subset R of G (that is, for every subset R for which
R = —R), we have ho R = hR. Our strategy is to find, for each d € D(n), a symmetric
subset R = Ry(n,m) of Z, so that |R| > m and |hR| < fq(m,h); this will then imply
that

p+(Zp,m,h) <min{ fy(m,h) : d € D(n)} = p(Z,,m,h).

We introduce some notations. We write n = 2%ng, d = 2%y, and [m/d] = 2°my,
where a, b, and ¢ are nonnegative integers and ng, dy, and mq are odd positive integers.
Our explicit construction of R depends on whether b + ¢ < a or not.
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Suppose first that b + ¢ < a. In this case, let H be the subgroup of G that has order
2¢d, and set
lmo/2]

R= |J G+H).

i=—|mo/2)

Clearly, R is symmetric; to see that R has size at least m, note that for the index of H
in G we have

G2 H| = n/(2d) > [m/d] /2 = my = 2 |mo/2] + 1,

hence
IR = (2[mo/2) +1) - [H| = d [m/d] > m.

To verify that |hR| < fq(m, h), note that
hlmo /2]

hR= | J (i+H),
i=—h|mo/2)

SO

IhR| = min{n, (2h |mo/2) +1) - |H|}

< (2h[mo/2] +1) - |H|
= (hmo—h+1)-2%d
< (2%hmg — h+1)d

fd(m, h)

In the case when b+ ¢ > a + 1, we let H be the subgroup of G that has order 2%dy,

and set

2b+c—a—1m0

R= |J (le/2l+i+H)U(-|e/2] —i+H),

=1

where e = ng/dy. We see that R is symmetric; in order to estimate |R| and |hR|, we
rewrite R as follows.
Note that e is an odd integer, and thus

—le/2] =le/2| +1—¢;
furthermore, e = n/|H| and thus e is an element (in fact, a generator) of H, and so
—le/2] —i+H=|e/2]+1—i+H
for every integer ¢. With this, we have

2b+cfa71m0

R= U (le/2) +i+ H).

i=—2btc—a—1lmgyt1
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To show that R has size at least m, we see that, for the index of H in GG, we have
|G H| =n/(2°d) = 2"""n/d > 2"~ [m/d] = 2"~ *my,
hence
|R| = (2b+67am0) “|H|=d[m/d] = m.
Finally,

2b+cfu,7 1 hmo
hR = U (H+hle/2] +1),
j=—2btc—a—1pmoth

so for |hR| we get

\hR| = min{n, (2"*“ “hmo—h+1) - |H|}
< (2" "hmo—h+1) - |H|
= (2" ®hmg — h+1) - 2%y
< (2°hmo — h+ 1)d

fd(mv h)?

with which our proof is complete. O

4 Noncyclic groups

Let us now turn to noncyclic groups. We say that a finite abelian group G has type

(nq,...,n,) if it is isomorphic to the invariant product
Ly X -+ X Loy,
where ny > 2 and n; divides n;,1 for each i € {1,...,r — 1}. Here r is the rank of G, n,

is the exponent of GG, and we still use the notation n = II}_;n; for the order of G.
Recall that for the minimum size of the h-fold sumset of an m-subset of a group of
order n we have

p(G,m,h) = min{fy(m,h) : d € D(n)}.
This, of course, implies that for signed sumsets we have the lower bound

p+(G,m,h) = min{ fy(m,h) : d € D(n)}.

It turns out that we can get an upper bound for pi (G, m,h) by minimizing fs(m,h) for
a certain subset of D(n); more precisely, we establish the following result:

Theorem 5 The minimum size of the h-fold signed sumset of an m-subset of a group G
of type (nq,...,n,) satisfies

p+(G,m,h) < min{fy(m,h) : d € D(G,m)},
where

D(G,m)={de D(n) : d=dy---d,,dy € D(ny),...,d, € D(n,),dn, > d,m}.
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Observe that, for cyclic groups of order n, D(G,m) is simply D(n).
Theorem 5 will be the immediate consequence of Propositions 6 and 7 below.

Proposition 6 For every group G of type (ny,...,n,.) and order n, m < n, and h € N

we have
+ (G7 m, h) < U’:I:(Gv m, h)a
where
ur(G,myh) = min {I1]_ u(n;, m;, h) : my <ng,...,m, <n., 1 m; >m}.
Proof: Foreach: =1,2,...,r, let m; be an integer so that m; < n; but my ---m, > m.

According to the proof of Theorem 4, for each ¢ we can find symmetric sets A; C Z,,, of
size at least m; for which

Therefore, Ay X --- x A, is a symmetric subset of Z,,, X ---x Z, of size at least my - - - m,.,
so we have

px (L, X -+ X L, myh) < py (Zipy X -+ X L,y -+ -my, h)
< Jhe(Ap x - x A
= |h(A; x - x A,
< |hAL X -+ X hA,|

u(ny, my, h) - uln,., m., h),
as claimed. O
Proposition 7 With the notations as introduced above, we have

us(G,m,h) = min{ fa(m,h) : d € D(G,m)}.

Proof: First, we prove that
us(G,m,h) < min{fq(m,h) : d € D(G,m)}.

Suppose that dy,...,d, are positive integers so that d; € D(ny),...,d, € D(n,), and
dn, > d,m, where d = dy ---d,. Let my = dy,...,m,_1 = d,_1, and m, = [d,m/d]|. By

assumption, m; < n; for all 1 <7 < r, and we also have m; - - - m, > m; we will establish
our claim by showing that

ui(G,m,h) < falm, h).
Observe that, for each 1 <i < r —1,

fa,(ms, h) = fa,(di, h) = (h[di/d;] —h +1)d; = d;,
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and
fa.(my; h) = fa,([dvm/d] , h) = (h [[dym/d] /d,] = h + 1) d,,
which, according to an identity for the ceiling function, equals

(h[m/d] —h+1)d,.
Therefore,
Jar(ma, h) -« fa, (my, h) = (h[m/d] —h+1)d = fo(m, h).
Our claim now follows, since
Ui(G, m, h) < U(nl, mq, h) e u(nTa my, h) < fdl (m17 h’) e fdr(mT7 h)
Conversely, we need to prove that

us(G,m,h) = min{ fqy(m,h) : d € D(G,m)}. (1)

As we have already mentioned, this holds for cyclic groups. We will now prove that the
inequality also holds for r = 2; that is, for a group of type (n,ny) we have

uy(G,m,h) = min{ fg,a,(m,h) : dy € D(n1),ds € D(ng),dins = m}. (2)

Suppose that positive integers m; and msy are selected so that m; < ny, mg < ng,
mime = m, and
us(G,m, h) = u(ni, my, h) - u(ng, my, h);

furthermore, suppose that integers d; and dy are chosen so that §; € D(ny), d2 € D(na),
u(ny,my, h) = fs,(my, h), and u(mag, h) = fs,(m2,h). We need to prove that there are
integers d; and ds, so that dy € D(ny), dy € D(nsy), diny = m, and

fdldz(m>h) < f51(m17h)'f52(m27h’)' (3)

We will separate two cases depending on whether d;n5 > m or not.
In the case when d1no > m, we show that d; = §; and dy = &5 are appropriate choices.
Clearly, d; € D(nq), ds € D(n3), and diny = m, so we just need to show that

fayar(m, h) < fa, (ma, h) - fa,(ma, h).
Since m < myms and the function f is nondecreasing in m, it suffices to prove that
faya, (mama, h) < fa, (ma, h) - fa,(ma, h),
or, equivalently, that
h[(mimsg)/(dide)] —h+1< (h[my/di] —h+1)-(h][my/dy] —h+1).

Note that
[(mima)/(dida)] < [my/dy] - [ma/dy],
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so our inequality will follow once we prove that
hmy/di] - [mo/ds] —h+1< (h[my/di] —h+1)-(h[my/dy] —h+1).
But this indeed holds as subtracting the left-hand side from the right-hand side yields
h(h —1) ([my/di] = 1) (fma/dp] — 1),

which is clearly nonnegative.

Suppose now that d;no < m; we consider two subcases: when ms < d9 and when
mo > (52.

When §1ny < m and my < d2, we set di = ged(ng, d2) and dy = 6192/ ged(nq, 7).
Then, clearly, d; € D(ny); to see that dy € D(nsy), note that ny/d; and d2/d; are relatively
prime integers that both divide ny/dy, so their product nydy/d? divides ny/d; as well, and
therefore nydy/d;, and thus its divisor ds, divide ny. Furthermore, since nydy/d; divides
ng, we have

ding = nidy = mimy = m.

It remains to be shown that (3) holds, but since d;dy = 102, this follows as in the previous
case.

Finally, suppose that d1ny < m and my > d9; we now set dy = ny and dy = d1n9/n4.
We see that d; € D(ny), dy € D(n2), and dins > m; we need to show that (3) holds.

Let us denote [my/d1] and [mq/ds] by ki and ko, respectively; note that mg > 09
implies that ks > 2, and d;ns < m implies that k; > 2 as well, since

my = m/mg > 01ng /Mg = 1.
Therefore,
2(ky — 1) (ke — 1) = (k1 — 2) (k2 — 2) + (k1ka — 2) = kiky — 2,
so, since h > 2, we get
h(h —1)(ky — 1) (ke — 1) > k1ks — 2,
or, equivalently,
(hky —h+1)-(hks —h+1) > (h+1)(kiks — 1).
Multiplying by 01602 yields exactly
for(ma, h) - fs,(ma, h)
on the left hand side; therefore, to prove (3), it is enough to verify that

fdldz(m, h) < (h —+ 1)(1{51]{52 — 1)(51(52 (4)
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By definition,

fd1d2 (m’ h) = f61n2 (mv h) = (h (m/(51n2ﬂ —h+ 1) 01n3.

’V m -‘ < ’lemg—‘ < ’Vk’lk’gél(sg-‘ _ ’kalkfg-‘ < k1k2+n2/52— 1

(5171,2 (5172,2 51”2 n2/52 n2/52 ’

hence
fd1d2 (m, h) < (h(k?lkg — ].) + ng/ég) (5152. (5)

Since we are under the assumption that d;ns < m, we have

s m mime

UENP NP SIS
5y o0y S iy S

so the integer ny/ds can be at most k1ky — 1, and thus (5) implies (4), completing the
proof of (2).

In order to prove that (1) holds for any fixed r > 2, we suppose that positive integers
mi, ..., m, are selected so that m; < n; for each 1 <i < r, my---m, > m, and

us(G,m,h) = u(ny,my,h) - u(n., m., h).

Furthermore, we suppose that integers 01, ...,d, are chosen so that for each 1 < i < r,
d; € D(n;) and u(n;, m;, h) = f5,(m;, h). We will prove that there are integers d, ..., d,,
so that, for each 1 <i < r, d; € D(n;),

dy---dr_in, = m, (6)
and
faya,(mh) < us(Gom,h) = fs.(ma,h) - fs, (my, h). (7)
We proceed by induction, and assume that (1) holds for » — 1 terms and for m' =
ms - - - m,; in particular, for a group G of rank » — 1 and of type (ns,...,n,) we have

ug(G,m’ h) = min{fy(m',h) : d € D(G,m')}.

Therefore, we are able to find integers puo, ..., i, so that p; € D(n;) for each 2 <@ < r,

!/

Ho - o —1 1 2 m, (8)
and
fﬂz'"ur<m/7 h) < u:t(G7 m/’ h) < f§2 (m27 h) T ftsr(mﬁ h) (9>

Furthermore, observing that by (8), m” = [m//(usz- - puy—1)] is at most n,., from (2),
for a group of rank 2 and of type (n1,n,) we have

us (G, mym” h) = min{ fy(mm” h) : d € D(G,mm")},
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and so there are integers v; € D(ny) and v, € D(n,) for which
ving = mm’, (10)
and
form (mam” ) < ug(Gymam” k) < fs, (ma, h) - £, (m", h). (11)

Now let dy = 11, d, = v, and d; = p; for 2 < i < r — 1. We immediately see that,
with these notations, (6) holds, since, by (10),

dy - dpyne = vifig - flp1 N = My fly - flpym” = mam’ =my - -my > m.
To see that (7) holds, note that, for the left-hand side we have

fayd, (m, h) = fV1l/rN2"'Nr—1(m7 h)

< Sforvepgeoprr (mam” pig - - i1, )
(h [(mim”)/(v1ve)] — h+ 1) vivppio -« g
Sorwe (mam™ B) g - -+ iy

and, for the right-hand side of (7), using (9), we see that

fs.(ma,h) -+ fs,(me, h) = f,( 1,h)fuz..‘m(m’,h)
= fo(ma,h) (W [m! /(o pe)] —h+ 1) o= piy
(ma, h)
)

3

Fs.(my,h) (W [m" [ ] —h+1) pg - pin
= fo(ma, h) fu, (m" Bz -+ iy s

Therefore, (7) follows from (11). With this, the proof of (1), and thus of Proposition 7,
is complete. O

Our next result exhibits a situation where the upper bound of Proposition 6, and thus
of Theorem 5, is not tight:

Proposition 8 If G is a noncyclic group of odd order n and type (ny,...,n,), then
p+ (G,(n—1)/2,2) <n—1,

but
us(G,(n—1)/2,2) =n.

Proof: Note that every element of G\ {0} has order at least 3, thus there is a subset
A of G\ {0} with which G'\ {0} can be partitioned into A and —A. Since |A| = (n—1)/2
and 0 ¢ 24 A, we have
p+ (G, (n—1)/2,2) <n—1.

To prove our second claim, note that for each i € {1,...,r},

n/n;-(n; —1)/2 < (n—1)/2.
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Therefore, if positive integers my, ..., m, satisfy m; < n; for each ¢ € {1,...,r} and
my---m, = (n—1)/2,

then we must have m; > (n; + 1)/2, and thus u(n;, m;,2) = n;, for each i € {1,...,r},
from which our claim follows. O
A bit more generally, if d is an odd element of D(n) so that d > 2m + 1, then the
same argument yields
p+ (G,m,2) <d—1,

and therefore we have the following:
Corollary 9 Suppose that G is an abelian group of order n and type (ni,...,n,). Let

m < n, and let d,, be the smallest odd element of D(n) that is at least 2m + 1; if no such
element exists, set d,, = co. We then have

p+ (G,m,2) < min{uy (G, m,2),d,, — 1}.

We are not aware of any subsets with smaller signed sumset size, and we believe that
the following holds:

Conjecture 10 Suppose that G is an abelian group of order n and type (ny,...,n,). Let
m<nandh > 2.
If h > 3, then
p+ (G,m,h) =uys(G,m,h).

If each odd divisor of n is less than 2m, then
p+ (G,m,2) =us(G,m,2).

If there are odd divisors of n greater than 2m, let d,, be the smallest one. We then
have
p+ (G,m,2) = min{uy (G, m,2),d,, — 1}.

5 An example

Trivially, if G is an elementary abelian 2-group, then py (G, m, h) agrees with p (G, m, h),
and it is not hard to see that this is also true if G is any 2-group. More generally still, as
an application to Theorem 5, we prove the following:

Proposition 11 If there is no odd prime p for which Zg 18 1somorphic to a subgroup of

G, then
P+ (Ga m, h) =p (Ga m, h) :
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Proof: Suppose that G is of order n and of type (ni,...,n,); by Theorem 4, we may
assume that r > 2.
Let d € D(n) be such that

p(G,m,h) =u(n,m,h) = fo(m,h).

By Theorem 5, it suffices to prove that d € D(G,m).
Our assumption that there is no odd prime p for which Z;% is isomorphic to a subgroup
of G is equivalent to saying that n, ---n,_; is a power of 2; let

Ny Np_1 = okt

Furthermore, we write
ny =2k . ¢,

and
d= 2k3 - C3,

where ks and k3 are nonnegative integers, and ¢y and c3 are odd. Note that

ki + ko > ks, (12)

and ¢ must be divisible by cs.
Now if m < n,, then clearly d € D(G,m), so assume that m > n, + 1, and thus there
is a nonnegative integer k for which

2k n,+1<m<2Mon,.
Note that we must then have
kv > k+1. (13)
We claim that we also have
ks = ke+k+1. (14)
Indeed,

u(n,m,h) = fq(m,h)
= (h-[m/d] —h+1)-d

k-
(h- Fﬁ%w —h+1>-d.

On the other hand, from (13) we see that G contains a subgroup of order 2¥*! . n,, and
thus

WV

u(n,m,h) < 28 .n,
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Therefore,

d d ’

which yields that 2% - n, cannot be divisible by d, that is, 27*2 . ¢, cannot be divisible by
2ks . c3, proving (14).
Now let

Pk-nr%—l_‘ 2k . n, +d
- <—

dr = 2k2 + C3.

Then d, is a divisor of n,; furthermore, by (14), d/d, = 2*~*2 is an integer, and by (12),
it is a divisor of ny - --n,_;. Using (14) again, we have

d-n, =28 .cy-n, =202 e =d, -2, > d, - m,

so d € D(G,m), as claimed. O

Having a subgroup that is isomorphic to Zf, for an odd prime p is thus a necessary con-
dition for py (G, m,h) to be greater than p (G, m,h). We study Zi, and, more generally,
elementary abelian groups, in the upcoming paper [3].
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