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Abstract

For a finite abelian group G and positive integers m and h, we let

ρ(G,m, h) = min{|hA| : A ⊆ G, |A| = m}

and
ρ±(G,m, h) = min{|h±A| : A ⊆ G, |A| = m},

where hA and h±A denote the h-fold sumset and the h-fold signed sumset of A,
respectively. The study of ρ(G,m, h) has a 200-year-old history and is now known
for all G, m, and h. Here we prove that ρ±(G,m, h) equals ρ(G,m, h) when G is
cyclic, and establish an upper bound for ρ±(G,m, h) that we believe gives the exact
value for all G, m, and h.

1 Introduction

Let G be a finite abelian group written with additive notation. For a nonnegative integer
h and a nonempty subset A of G, we let hA and h±A denote the h-fold sumset and the
h-fold signed sumset of A, respectively; that is, for an m-subset A = {a1, . . . , am} of G,
we let

hA = {Σm
i=1λiai : (λ1, . . . , λm) ∈ Nm

0 , Σm
i=1λi = h}

and
h±A = {Σm

i=1λiai : (λ1, . . . , λm) ∈ Zm, Σm
i=1|λi| = h}.

While signed sumsets are less well-studied in the literature than sumsets are, they come
up naturally: For example, in [4], the first author and Ruzsa investigated the independence
number of a subset A of G, defined as the maximum value of t ∈ N for which

0 6∈ ∪th=1h±A
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(see also [1] and [2]); and in [12], Klopsch and Lev discussed the diameter of G with
respect to A, defined as the minimum value of s ∈ N for which

∪sh=0h±A = G

(see also [13]). The independence number of A in G quantifies the “degree” to which A is
linearly independent in G (no subset is “completely” independent), while the diameter of
G with respect to A measures how “effectively” A generates G (if at all). Note that h±A
is always contained in h(A ∪ −A), but this may be a proper containment when h > 2.

For a positive integer m 6 |G|, we let

ρ(G,m, h) = min{|hA| : A ⊆ G, |A| = m}

and
ρ±(G,m, h) = min{|h±A| : A ⊆ G, |A| = m}

(as usual, |S| denotes the size of the finite set S). The value of ρ(G,m, h) has a long
and distinguished history and has been determined for all G, m, and h; in this paper we
attempt to find ρ±(G,m, h).

We start by a brief review of the case of sumsets. In 1813, for prime values of p,
Cauchy [5] found the minimum possible size of

A+B = {a+ b : a ∈ A, b ∈ B}

among subsets A and B of given sizes in the cyclic group Zp. In 1935, Davenport [6]
rediscovered Cauchy’s result, which is now known as the Cauchy–Davenport Theorem.
(Davenport was unaware of Cauchy’s work until twelve years later; see [7].)

Theorem 1 (Cauchy–Davenport Theorem) If A and B are nonempty subsets of the
group Zp of prime order p, then

|A+B| > min{p, |A|+ |B| − 1}.

It can easily be seen that the bound is tight for all values of |A| and |B|, and thus

ρ(Zp,m, 2) = min{p, 2m− 1}.

After various partial results, the general case was finally solved in 2006 by Plagne [15]
(see also [14], [9], and [10]). To state the result, we introduce the function

u(n,m, h) = min{fd(m,h) : d ∈ D(n)},

where n, m, and h are positive integers, D(n) is the set of positive divisors of n, and

fd(m,h) = (h dm/de − h+ 1) · d.

(Here u(n,m, h) is a relative of the Hopf–Stiefel function used also in topology and bilinear
algebra; see, for example, [8], [11], [14], and [16].)
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Theorem 2 (Plagne; cf. [15]) Let n, m, and h be positive integers with m 6 n. For
any abelian group G of order n we have

ρ(G,m, h) = u(n,m, h).

Turning now to ρ±(G,m, h), we start by observing that

ρ±(G,m, 0) = 1

and
ρ±(G,m, 1) = m

for all G and m. To see the latter equality, it suffices to verify that one can always find
a symmetric subset of size m in G, that is, an m-subset A of G for which A = −A.
Therefore, from now on, we assume that h > 2.

We must admit that our study of ρ±(G,m, h) resulted in quite a few surprises. For
a start, we noticed that, in spite of the fact that h±A is usually much larger than hA is,
the equality

ρ±(G,m, h) = ρ(G,m, h)

holds quite often; it is an easy exercise to verify that, among groups of order 24 or less,
equality holds with only one exception: ρ±(Z2

3, 4, 2) = 8 while ρ(Z2
3, 4, 2) = 7. In fact, we

can prove that ρ±(G,m, h) agrees with ρ(G,m, h) for all cyclic groups G and all m and h
(see Theorem 4 below).

However, in contrast to ρ(G,m, h), the value of ρ±(G,m, h) depends on the structure
of G rather than just the order n of G. Suppose that G is of type (n1, . . . , nr), that is,

G ∼= Zn1 × · · · × Znr ,

where n1 > 2 and ni divides ni+1 for each i ∈ {1, . . . , r− 1}. We exhibit a specific subset
D(G,m) of D(n) with which the quantity

u±(G,m, h) = min{fd(m,h) : d ∈ D(G,m)}

provides an upper bound for ρ±(G,m, h) (see Theorem 5 below). Therefore, to get lower
and upper bounds for ρ±(G,m, h), we minimize fd(m,h) for all d ∈ D(n) and for d ∈
D(G,m), respectively:

min{fd(m,h) : d ∈ D(n)} 6 ρ±(G,m, h) 6 min{fd(m,h) : d ∈ D(G,m)}.

In fact, we also conjecture that

ρ±(G,m, h) = u±(G,m, h)

holds always except for one very special situation (see Conjecture 10 below).
Further surprises come from the inverse problem of trying to classify subsets that

yield the minimum signed sumset size. To start with, we point out that it is not always
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symmetric sets that work best. As an example, consider ρ±(Z2
5, 9, 2). One can see that

for any 9 elements of ±a+H, where H is any subgroup of size 5 and a 6∈ H, we have

2±A = H ∪ (±2a+H),

so
ρ±(Z2

5, 9, 2) = ρ(Z2
5, 9, 2) = 15.

Here A is not symmetric but is near-symmetric: it becomes symmetric once one of its
elements is removed. However, we can verify that for any symmetric subset A of size 9,
2±A must have size 17 or more, as follows: If A contains a subgroup H of size 5, then
with any a ∈ A \H, the 2-fold signed sumset of A will contain the 17 distinct elements
of H, ±a+H, and {±2a}; while if A contains no subgroup of size 5, then

A ∩ {2a : a ∈ A} = {0},

so
|2±A| > |A|+ |{2a : a ∈ A}| − 1 = 17.

And that is not all: sometimes it is best to take an asymmetric set, a set A where
A and −A are disjoint. It is easy to check that, in the example of ρ±(Z2

3, 4, 2) = 8
mentioned above, with a 4-subset A of Z2

3 we get 2±A = Z2
3 \ {0} when A is asymmetric,

and 2±A = Z2
3 in all other cases.

We have thus seen that sets that minimize signed sumset size may be symmetric,
near-symmetric, or asymmetric—we can prove, however, that there is always a set that
is of one of these three types (see Theorem 3 below).

With this paper we aim to introduce the question of finding the minimum size of
signed sumsets. Our approach here is entirely elementary. In the follow-up paper [3], we
investigate the question in elementary abelian groups, where, using deeper results from
additive combinatorics, we are able to assert more.

2 The role of symmetry

Given a group G and a positive integer m 6 |G|, we define a certain collection A(G,m)
of m-subsets of G. We let

• Sym(G,m) be the collection of symmetric m-subsets of G, that is, m-subsets A of
G for which A = −A;

• Nsym(G,m) be the collection of near-symmetric m-subsets of G, that is, m-subsets
A of G that are not symmetric, but for which A \ {a} is symmetric for some a ∈ A;

• Asym(G,m) be the collection of asymmetric m-subsets of G, that is, m-subsets A
of G for which A ∩ (−A) = ∅.
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We then let
A(G,m) = Sym(G,m) ∪ Nsym(G,m) ∪ Asym(G,m).

In other words, A(G,m) consists of those m-subsets of G that have exactly m, m− 1, or
0 elements whose inverse is also in the set.

Theorem 3 For every G, m, and h, we have

ρ±(G,m, h) = min{|h±A| : A ∈ A(G,m)}.

Proof: Since our claim is trivial when m 6 2, we assume that m > 3.
For a subset S of G, let us define its degree of symmetry, denoted by sdeg(S), as

the number of elements of S that are also elements of −S. We shall prove that for any
m-subset B of G with

1 6 sdeg(B) 6 m− 2,

there is an m-subset B′ of G with

sdeg(B′) = sdeg(B) + 2

and |h±B′| 6 |h±B|; repeated application of this results in a subset A ∈ A(G,m) with
|h±A| 6 |h±B|, from which our result follows.

Let
B = {b1, b2, b3, . . . , bm}

be an m-subset of G, and suppose that −b1 6∈ B, −b2 6∈ B, but −b3 ∈ B. Note that we
may have b3 = −b3; furthermore, the sets {±b1}, {±b2}, and {±b3} are pairwise disjoint.
Replacing b1 by −b2 in B, we let

B′ = {−b2, b2, b3, . . . , bm}.

Then B′ has size m, and its degree of symmetry is exactly two more than that of B; we
need to show that |h±B′| 6 |h±B|. We shall, in fact, show that h±B

′ ⊆ h±B.
By definition, h±B

′ is the collection of all elements of the form

g = λ1(−b2) + λ2b2 + λ3b3 + · · ·+ λmbm

where
∑m

i=1 |λi| = h. Clearly, if λ1 and λ2 are of opposite sign or either one is zero, then

|λ2 − λ1| = |λ1|+ |λ2|,

so
g = (λ2 − λ1)b2 + λ3b3 + · · ·+ λmbm ∈ h±B.

Suppose now that λ1 and λ2 are both positive; the case when they are both negative
can be handled similarly. Furthermore, we assume that λ1 > λ2; again, the reverse case
is analogous.
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Assume first that 2b3 = 0; in this case we have λ3b3 = −λ3b3, and thus we may assume
that λ3 > 0. Observe that

g = (λ2 − λ1)b2 + (2λ1 + λ3)b3 + λ4b4 + · · ·+ λmbm,

and
|λ2 − λ1|+ |2λ1 + λ3|+ |λ4|+ · · ·+ |λm| = h,

thus g ∈ h±B.
Finally, suppose that 2b3 6= 0; since −b3 ∈ B, we must have m > 4, and without loss

of generality we can assume that b4 = −b3. We can rewrite g as follows:

g =



(λ2 − λ1)b2 + (λ1 + λ3)b3 + (λ1 + λ4)b4 + λ5b5 + · · ·+ λmbm if λ3 > 0, λ4 > 0;

(λ2 − λ1)b2 + (λ1 + λ3 − λ4)b3 + λ1b4 + λ5b5 + · · ·+ λmbm if λ3 > 0, λ4 6 0;

(λ2 − λ1)b2 + λ1b3 + (λ1 − λ3 + λ4)b4 + λ5b5 + · · ·+ λmbm if λ3 6 0, λ4 > 0;

(λ2 − λ1)b2 + (λ1 − λ4)b3 + (λ1 − λ3)b4 + λ5b5 + · · ·+ λmbm if λ3 6 0, λ4 6 0.

Since the expressions above show that g ∈ h±B in each case, our proof is complete. 2

3 Cyclic groups

In this section we prove that, when G is cyclic, then ρ±(G,m, h) agrees with ρ(G,m, h)
for all m and h.

Theorem 4 For all positive integers n, m, and h, we have

ρ±(Zn,m, h) = ρ(Zn,m, h).

Proof: Since the reverse inequality is obvious, it suffices to prove that

ρ±(Zn,m, h) 6 ρ(Zn,m, h).

Recall that
ρ(Zn,m, h) = min{fd(m,h) : d ∈ D(n)}.

Observe that, for any symmetric subset R of G (that is, for every subset R for which
R = −R), we have h±R = hR. Our strategy is to find, for each d ∈ D(n), a symmetric
subset R = Rd(n,m) of Zn so that |R| > m and |hR| 6 fd(m,h); this will then imply
that

ρ±(Zn,m, h) 6 min{fd(m,h) : d ∈ D(n)} = ρ(Zn,m, h).

We introduce some notations. We write n = 2an0, d = 2bd0, and dm/de = 2cm0,
where a, b, and c are nonnegative integers and n0, d0, and m0 are odd positive integers.
Our explicit construction of R depends on whether b+ c 6 a or not.
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Suppose first that b + c 6 a. In this case, let H be the subgroup of G that has order
2cd, and set

R =

bm0/2c⋃
i=−bm0/2c

(i+H).

Clearly, R is symmetric; to see that R has size at least m, note that for the index of H
in G we have

|G : H| = n/(2cd) > dm/de /2c = m0 = 2 bm0/2c+ 1,

hence
|R| = (2 bm0/2c+ 1) · |H| = d dm/de > m.

To verify that |hR| 6 fd(m,h), note that

hR =

hbm0/2c⋃
i=−hbm0/2c

(i+H),

so

|hR| = min{n, (2h bm0/2c+ 1) · |H|}
6 (2h bm0/2c+ 1) · |H|
= (hm0 − h+ 1) · 2cd
6 (2chm0 − h+ 1)d

= fd(m,h).

In the case when b + c > a + 1, we let H be the subgroup of G that has order 2ad0,
and set

R =

2b+c−a−1m0⋃
i=1

(be/2c+ i+H) ∪ (−be/2c − i+H) ,

where e = n0/d0. We see that R is symmetric; in order to estimate |R| and |hR|, we
rewrite R as follows.

Note that e is an odd integer, and thus

−be/2c = be/2c+ 1− e;

furthermore, e = n/|H| and thus e is an element (in fact, a generator) of H, and so

−be/2c − i+H = be/2c+ 1− i+H

for every integer i. With this, we have

R =

2b+c−a−1m0⋃
i=−2b+c−a−1m0+1

(be/2c+ i+H) .
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To show that R has size at least m, we see that, for the index of H in G, we have

|G : H| = n/(2ad0) = 2b−an/d > 2b−a dm/de = 2b+c−am0,

hence
|R| =

(
2b+c−am0

)
· |H| = d dm/de > m.

Finally,

hR =

2b+c−a−1hm0⋃
i=−2b+c−a−1hm0+h

(H + h be/2c+ i) ,

so for |hR| we get

|hR| = min{n,
(
2b+c−ahm0 − h+ 1

)
· |H|}

6
(
2b+c−ahm0 − h+ 1

)
· |H|

=
(
2b+c−ahm0 − h+ 1

)
· 2ad0

6 (2chm0 − h+ 1)d

= fd(m,h),

with which our proof is complete. 2

4 Noncyclic groups

Let us now turn to noncyclic groups. We say that a finite abelian group G has type
(n1, . . . , nr) if it is isomorphic to the invariant product

Zn1 × · · · × Znr ,

where n1 > 2 and ni divides ni+1 for each i ∈ {1, . . . , r − 1}. Here r is the rank of G, nr
is the exponent of G, and we still use the notation n = Πr

i=1ni for the order of G.
Recall that for the minimum size of the h-fold sumset of an m-subset of a group of

order n we have
ρ(G,m, h) = min{fd(m,h) : d ∈ D(n)}.

This, of course, implies that for signed sumsets we have the lower bound

ρ±(G,m, h) > min{fd(m,h) : d ∈ D(n)}.

It turns out that we can get an upper bound for ρ±(G,m, h) by minimizing fd(m,h) for
a certain subset of D(n); more precisely, we establish the following result:

Theorem 5 The minimum size of the h-fold signed sumset of an m-subset of a group G
of type (n1, . . . , nr) satisfies

ρ±(G,m, h) 6 min{fd(m,h) : d ∈ D(G,m)},

where

D(G,m) = {d ∈ D(n) : d = d1 · · · dr, d1 ∈ D(n1), . . . , dr ∈ D(nr), dnr > drm}.
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Observe that, for cyclic groups of order n, D(G,m) is simply D(n).
Theorem 5 will be the immediate consequence of Propositions 6 and 7 below.

Proposition 6 For every group G of type (n1, . . . , nr) and order n, m 6 n, and h ∈ N
we have

ρ± (G,m, h) 6 u±(G,m, h),

where

u±(G,m, h) = min {Πr
i=1u(ni,mi, h) : m1 6 n1, . . . ,mr 6 nr,Π

r
i=1mi > m} .

Proof: For each i = 1, 2, . . . , r, let mi be an integer so that mi 6 ni but m1 · · ·mr > m.
According to the proof of Theorem 4, for each i we can find symmetric sets Ai ⊆ Zni

of
size at least mi for which

|h±Ai| = |hAi| = u(ni,mi, h).

Therefore, A1×· · ·×Ar is a symmetric subset of Zn1×· · ·×Znr of size at least m1 · · ·mr,
so we have

ρ± (Zn1 × · · · × Znr ,m, h) 6 ρ± (Zn1 × · · · × Znr ,m1 · · ·mr, h)

6 |h±(A1 × · · · × Ar)|
= |h(A1 × · · · × Ar)|
6 |hA1 × · · · × hAr|
= u(n1,m1, h) · · ·u(nr,mr, h),

as claimed. 2

Proposition 7 With the notations as introduced above, we have

u±(G,m, h) = min{fd(m,h) : d ∈ D(G,m)}.

Proof: First, we prove that

u±(G,m, h) 6 min{fd(m,h) : d ∈ D(G,m)}.

Suppose that d1, . . . , dr are positive integers so that d1 ∈ D(n1), . . . , dr ∈ D(nr), and
dnr > drm, where d = d1 · · · dr. Let m1 = d1, . . . ,mr−1 = dr−1, and mr = ddrm/de. By
assumption, mi 6 ni for all 1 6 i 6 r, and we also have m1 · · ·mr > m; we will establish
our claim by showing that

u±(G,m, h) 6 fd(m,h).

Observe that, for each 1 6 i 6 r − 1,

fdi(mi, h) = fdi(di, h) = (h ddi/die − h+ 1) di = di,
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and
fdr(mr, h) = fdr(ddrm/de , h) = (h dddrm/de /dre − h+ 1) dr,

which, according to an identity for the ceiling function, equals

(h dm/de − h+ 1) dr.

Therefore,
fd1(m1, h) · · · fdr(mr, h) = (h dm/de − h+ 1) d = fd(m,h).

Our claim now follows, since

u±(G,m, h) 6 u(n1,m1, h) · · ·u(nr,mr, h) 6 fd1(m1, h) · · · fdr(mr, h).

Conversely, we need to prove that

u±(G,m, h) > min{fd(m,h) : d ∈ D(G,m)}. (1)

As we have already mentioned, this holds for cyclic groups. We will now prove that the
inequality also holds for r = 2; that is, for a group of type (n1, n2) we have

u±(G,m, h) > min{fd1d2(m,h) : d1 ∈ D(n1), d2 ∈ D(n2), d1n2 > m}. (2)

Suppose that positive integers m1 and m2 are selected so that m1 6 n1, m2 6 n2,
m1m2 > m, and

u±(G,m, h) = u(n1,m1, h) · u(n2,m2, h);

furthermore, suppose that integers δ1 and δ2 are chosen so that δ1 ∈ D(n1), δ2 ∈ D(n2),
u(n1,m1, h) = fδ1(m1, h), and u(m2, h) = fδ2(m2, h). We need to prove that there are
integers d1 and d2, so that d1 ∈ D(n1), d2 ∈ D(n2), d1n2 > m, and

fd1d2(m,h) 6 fδ1(m1, h) · fδ2(m2, h). (3)

We will separate two cases depending on whether δ1n2 > m or not.
In the case when δ1n2 > m, we show that d1 = δ1 and d2 = δ2 are appropriate choices.

Clearly, d1 ∈ D(n1), d2 ∈ D(n2), and d1n2 > m, so we just need to show that

fd1d2(m,h) 6 fd1(m1, h) · fd2(m2, h).

Since m 6 m1m2 and the function f is nondecreasing in m, it suffices to prove that

fd1d2(m1m2, h) 6 fd1(m1, h) · fd2(m2, h),

or, equivalently, that

h d(m1m2)/(d1d2)e − h+ 1 6 (h dm1/d1e − h+ 1) · (h dm2/d2e − h+ 1) .

Note that
d(m1m2)/(d1d2)e 6 dm1/d1e · dm2/d2e,
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so our inequality will follow once we prove that

h dm1/d1e · dm2/d2e − h+ 1 6 (h dm1/d1e − h+ 1) · (h dm2/d2e − h+ 1) .

But this indeed holds as subtracting the left-hand side from the right-hand side yields

h(h− 1) (dm1/d1e − 1) (dm2/d2e − 1) ,

which is clearly nonnegative.
Suppose now that δ1n2 < m; we consider two subcases: when m2 6 δ2 and when

m2 > δ2.
When δ1n2 < m and m2 6 δ2, we set d1 = gcd(n1, δ2) and d2 = δ1δ2/ gcd(n1, δ2).

Then, clearly, d1 ∈ D(n1); to see that d2 ∈ D(n2), note that n1/d1 and δ2/d1 are relatively
prime integers that both divide n2/d1, so their product n1δ2/d

2
1 divides n2/d1 as well, and

therefore n1δ2/d1, and thus its divisor d2, divide n2. Furthermore, since n1δ2/d1 divides
n2, we have

d1n2 > n1δ2 > m1m2 > m.

It remains to be shown that (3) holds, but since d1d2 = δ1δ2, this follows as in the previous
case.

Finally, suppose that δ1n2 < m and m2 > δ2; we now set d1 = n1 and d2 = δ1n2/n1.
We see that d1 ∈ D(n1), d2 ∈ D(n2), and d1n2 > m; we need to show that (3) holds.

Let us denote dm1/δ1e and dm2/δ2e by k1 and k2, respectively; note that m2 > δ2
implies that k2 > 2, and δ1n2 < m implies that k1 > 2 as well, since

m1 > m/m2 > δ1n2/m2 > δ1.

Therefore,

2(k1 − 1)(k2 − 1) = (k1 − 2)(k2 − 2) + (k1k2 − 2) > k1k2 − 2,

so, since h > 2, we get

h(h− 1)(k1 − 1)(k2 − 1) > k1k2 − 2,

or, equivalently,

(hk1 − h+ 1) · (hk2 − h+ 1) > (h+ 1)(k1k2 − 1).

Multiplying by δ1δ2 yields exactly

fδ1(m1, h) · fδ2(m2, h)

on the left hand side; therefore, to prove (3), it is enough to verify that

fd1d2(m,h) 6 (h+ 1)(k1k2 − 1)δ1δ2. (4)
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By definition,

fd1d2(m,h) = fδ1n2(m,h) = (h dm/(δ1n2)e − h+ 1) δ1n2.

But ⌈
m

δ1n2

⌉
6

⌈
m1m2

δ1n2

⌉
6

⌈
k1k2δ1δ2
δ1n2

⌉
=

⌈
k1k2
n2/δ2

⌉
6
k1k2 + n2/δ2 − 1

n2/δ2
,

hence

fd1d2(m,h) 6 (h(k1k2 − 1) + n2/δ2) δ1δ2. (5)

Since we are under the assumption that δ1n2 < m, we have

n2

δ2
<

m

δ1δ2
6
m1m2

δ1δ2
6 k1k2,

so the integer n2/δ2 can be at most k1k2 − 1, and thus (5) implies (4), completing the
proof of (2).

In order to prove that (1) holds for any fixed r > 2, we suppose that positive integers
m1, . . . ,mr are selected so that mi 6 ni for each 1 6 i 6 r, m1 · · ·mr > m, and

u±(G,m, h) = u(n1,m1, h) · · ·u(nr,mr, h).

Furthermore, we suppose that integers δ1, . . . , δr are chosen so that for each 1 6 i 6 r,
δi ∈ D(ni) and u(ni,mi, h) = fδi(mi, h). We will prove that there are integers d1, . . . , dr,
so that, for each 1 6 i 6 r, di ∈ D(ni),

d1 · · · dr−1nr > m, (6)

and

fd1···dr(m,h) 6 u±(G,m, h) = fδ1(m1, h) · · · fδr(mr, h). (7)

We proceed by induction, and assume that (1) holds for r − 1 terms and for m′ =
m2 · · ·mr; in particular, for a group G of rank r − 1 and of type (n2, . . . , nr) we have

u±(G,m′, h) > min{fd(m′, h) : d ∈ D(G,m′)}.

Therefore, we are able to find integers µ2, . . . , µr so that µi ∈ D(ni) for each 2 6 i 6 r,

µ2 · · ·µr−1nr > m′, (8)

and

fµ2···µr(m
′, h) 6 u±(G,m′, h) 6 fδ2(m2, h) · · · fδr(mr, h). (9)

Furthermore, observing that by (8), m′′ = dm′/(µ2 · · ·µr−1)e is at most nr, from (2),
for a group of rank 2 and of type (n1, nr) we have

u±(G,m1m
′′, h) > min{fd(m1m

′′, h) : d ∈ D(G,m1m
′′)},
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and so there are integers ν1 ∈ D(n1) and νr ∈ D(nr) for which

ν1nr > m1m
′′, (10)

and

fν1νr(m1m
′′, h) 6 u±(G,m1m

′′, h) 6 fδ1(m1, h) · fµr(m′′, h). (11)

Now let d1 = ν1, dr = νr, and di = µi for 2 6 i 6 r − 1. We immediately see that,
with these notations, (6) holds, since, by (10),

d1 · · · dr−1nr = ν1µ2 · · ·µr−1nr > m1µ2 · · ·µr−1m′′ > m1m
′ = m1 · · ·mr > m.

To see that (7) holds, note that, for the left-hand side we have

fd1···dr(m,h) = fν1νrµ2···µr−1(m,h)

6 fν1νrµ2···µr−1(m1m
′′µ2 · · ·µr−1, h)

= (h d(m1m
′′)/(ν1νr)e − h+ 1) ν1νrµ2 · · ·µr−1

= fν1νr(m1m
′′, h)µ2 · · ·µr−1;

and, for the right-hand side of (7), using (9), we see that

fδ1(m1, h) · · · fδr(mr, h) > fδ1(m1, h)fµ2···µr(m
′, h)

= fδ1(m1, h) (h dm′/(µ2 · · ·µr)e − h+ 1)µ2 · · ·µr
= fδ1(m1, h) (h dm′′/µre − h+ 1)µ2 · · ·µr
= fδ1(m1, h)fµr(m

′′, h)µ2 · · ·µr−1.

Therefore, (7) follows from (11). With this, the proof of (1), and thus of Proposition 7,
is complete. 2

Our next result exhibits a situation where the upper bound of Proposition 6, and thus
of Theorem 5, is not tight:

Proposition 8 If G is a noncyclic group of odd order n and type (n1, . . . , nr), then

ρ± (G, (n− 1)/2, 2) 6 n− 1,

but
u±(G, (n− 1)/2, 2) = n.

Proof: Note that every element of G \ {0} has order at least 3, thus there is a subset
A of G \ {0} with which G \ {0} can be partitioned into A and −A. Since |A| = (n− 1)/2
and 0 6∈ 2±A, we have

ρ± (G, (n− 1)/2, 2) 6 n− 1.

To prove our second claim, note that for each i ∈ {1, . . . , r},

n/ni · (ni − 1)/2 < (n− 1)/2.
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Therefore, if positive integers m1, . . . ,mr satisfy mi 6 ni for each i ∈ {1, . . . , r} and

m1 · · ·mr > (n− 1)/2,

then we must have mi > (ni + 1)/2, and thus u(ni,mi, 2) = ni, for each i ∈ {1, . . . , r},
from which our claim follows. 2

A bit more generally, if d is an odd element of D(n) so that d > 2m + 1, then the
same argument yields

ρ± (G,m, 2) 6 d− 1,

and therefore we have the following:

Corollary 9 Suppose that G is an abelian group of order n and type (n1, . . . , nr). Let
m 6 n, and let dm be the smallest odd element of D(n) that is at least 2m+ 1; if no such
element exists, set dm =∞. We then have

ρ± (G,m, 2) 6 min{u±(G,m, 2), dm − 1}.

We are not aware of any subsets with smaller signed sumset size, and we believe that
the following holds:

Conjecture 10 Suppose that G is an abelian group of order n and type (n1, . . . , nr). Let
m 6 n and h > 2.

If h > 3, then
ρ± (G,m, h) = u±(G,m, h).

If each odd divisor of n is less than 2m, then

ρ± (G,m, 2) = u±(G,m, 2).

If there are odd divisors of n greater than 2m, let dm be the smallest one. We then
have

ρ± (G,m, 2) = min{u±(G,m, 2), dm − 1}.

5 An example

Trivially, if G is an elementary abelian 2-group, then ρ± (G,m, h) agrees with ρ (G,m, h),
and it is not hard to see that this is also true if G is any 2-group. More generally still, as
an application to Theorem 5, we prove the following:

Proposition 11 If there is no odd prime p for which Z2
p is isomorphic to a subgroup of

G, then
ρ± (G,m, h) = ρ (G,m, h) .
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Proof: Suppose that G is of order n and of type (n1, . . . , nr); by Theorem 4, we may
assume that r > 2.

Let d ∈ D(n) be such that

ρ (G,m, h) = u(n,m, h) = fd(m,h).

By Theorem 5, it suffices to prove that d ∈ D(G,m).
Our assumption that there is no odd prime p for which Z2

p is isomorphic to a subgroup
of G is equivalent to saying that n1 · · ·nr−1 is a power of 2; let

n1 · · ·nr−1 = 2k1 .

Furthermore, we write
nr = 2k2 · c2

and
d = 2k3 · c3,

where k2 and k3 are nonnegative integers, and c2 and c3 are odd. Note that

k1 + k2 > k3, (12)

and c2 must be divisible by c3.
Now if m 6 nr, then clearly d ∈ D(G,m), so assume that m > nr + 1, and thus there

is a nonnegative integer k for which

2k · nr + 1 6 m 6 2k+1 · nr.

Note that we must then have

k1 > k + 1. (13)

We claim that we also have

k3 > k2 + k + 1. (14)

Indeed,

u(n,m, h) = fd(m,h)

= (h · dm/de − h+ 1) · d

>

(
h ·
⌈

2k · nr + 1

d

⌉
− h+ 1

)
· d.

On the other hand, from (13) we see that G contains a subgroup of order 2k+1 · nr, and
thus

u(n,m, h) 6 2k+1 · nr
< h · 2k · nr + d

=

(
h · 2k · nr + d

d
− h+ 1

)
· d.
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Therefore, ⌈
2k · nr + 1

d

⌉
<

2k · nr + d

d
,

which yields that 2k · nr cannot be divisible by d, that is, 2k+k2 · c2 cannot be divisible by
2k3 · c3, proving (14).

Now let
dr = 2k2 · c3.

Then dr is a divisor of nr; furthermore, by (14), d/dr = 2k3−k2 is an integer, and by (12),
it is a divisor of n1 · · ·nr−1. Using (14) again, we have

d · nr = 2k3 · c3 · nr > 2k2+k+1 · c3 · nr = dr · 2k+1 · nr > dr ·m,

so d ∈ D(G,m), as claimed. 2

Having a subgroup that is isomorphic to Z2
p for an odd prime p is thus a necessary con-

dition for ρ± (G,m, h) to be greater than ρ (G,m, h). We study Z2
p, and, more generally,

elementary abelian groups, in the upcoming paper [3].
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