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Abstract

The random permutation is the Fräıssé limit of the class of finite structures with
two linear orders. Answering a problem stated by Peter Cameron in 2002, we use
a recent Ramsey-theoretic technique to show that there exist precisely 39 closed
supergroups of the automorphism group of the random permutation, and thereby
expose all symmetries of this structure. Equivalently, we classify all structures which
have a first-order definition in the random permutation.

1 Introduction

1.1 Homogeneous permutations and the random permutation.

In a paper in 2002, Peter Cameron regarded finite permutations as two linear orders on
a finite set, thereby taking a more “passive” perspective on permutations than the one
which views them as bijections [10]. He showed that there exist precisely four Fräıssé
classes (in the sense of [11]) of finite permutations in this sense, one of which is the class
of all finite structures with two linear orders. The Fräıssé limit of the latter class, which
is called the random permutation and which we denote by Π = (D;<1, <2), therefore is
the (up to isomorphism) unique countable homogeneous structure with two linear orders
which contains all finite permutations as induced substructures. Both linear orders of
the random permutation are isomorphic to the order of the rational numbers, and the
random permutation is the result that appears with probability one in the natural random
process that constructs both orders independently. From this it becomes clear that the
random permutation cannot correspond to a single bijection on its domain D: indeed, it

∗The research of Michael Pinsker has been funded through project I836-N23 of the Austrian Science
Fund (FWF).

the electronic journal of combinatorics 22(2) (2015), #P2.54 1



represents a double coset Aut(D;<2)◦π◦Aut(D;<1) in the full symmetric group Sym(D)
on D, where π is any isomorphism from (D;<1) to (D;<2), and Aut(D;<i) denotes the
automorphism group of (D;<i), for i = 1, 2.

1.2 Symmetries of the random permutation.

The random permutation possesses two kinds of obvious symmetries. Firstly, it inherits
symmetries of the order of the rational numbers: for example, the structure (D;>1) is
obviously isomorphic to (D;<1), and it is easy to see that likewise (D;>1, <2) is iso-
morphic to Π = (D;<1, <2). The symmetries of the order of the rational numbers have
been classified by Cameron in a famous paper in 1976 [9]; they are basically composed
of two non-trivial symmetries, one of which is reversing the order, and the other one
is turning the order cyclically. The second obvious symmetry of Π is the fact that not
only the orders (D;<1) and (D;<2) are isomorphic, but also (D;<2, <1) is isomorphic to
Π = (D;<1, <2).

The symmetries in the above sense of a structure correspond to those subgroups of the
full symmetric group of its domain which contain the automorphism group of the structure
and which are closed in the topology of pointwise convergence. Combining the two kinds
of obvious symmetries of Π mentioned above, Cameron counted 37 closed supergroups of
Aut(Π), and asked whether there were any others, stating the following problem:

Problem 1.1 (Problem 2 in [10], rephrased). Determine the closed subgroups of Sym(D)
which contain Aut(Π).

In this paper, we solve this problem, showing that there exist precisely 39 closed super-
groups of Aut(Π). While there turn out be a few groups which had not been considered
in [10], some of those counted in that paper actually coincide.

1.3 Reducts and Thomas’ conjecture.

For structures Γ,∆ on the same domain, we call Γ a reduct of ∆ iff all of its relations and
functions have first-order definitions in ∆ without parameters. It follows from the theorem
of Ryll-Nardzewski, Engeler, and Svenonius (see e.g. [11] for all standard model-theoretic
notions and theorems) that if we consider two reducts equivalent iff they are reducts of
one another, then the reducts of an ω-categorical structure ∆ correspond precisely to the
closed supergroups of the automorphism group Aut(∆). In this correspondence, every
reduct Γ of ∆ is sent to Aut(Γ), defining a surjective map onto the closed supergroups of
Aut(∆) whose kernel is the above-mentioned equivalence. Since the closed supergroups
of Aut(∆) form a complete lattice, so do the reducts of ∆ up to equivalence, the order
being provided by first-order definability.

In 1991, Simon Thomas conjectured that every countable structure which is homoge-
neous in a finite relational language has only finitely many reducts up to equivalence [17].
At the time, the reducts of only two interesting structures which fall into the scope of the
conjecture had been classified: those of the order of the rational numbers (5 reducts) [9]
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and those of the random graph (5 reducts) [17]. Since then the reducts of the random hy-
pergraphs [18], the random tournament [1], the order of the rationals with a constant [12],
and more recently those of the random partial order [13], the Kn-free graphs with a con-
stant [14] and the random ordered graph [6] have been determined, in all cases confirming
Thomas’ conjecture. Our classification verifies the conjecture for the random permutation.

1.4 Superpositions of homogeneous structures.

Let C1,C2 be Fräıssé classes of finite structures in disjoint signatures σ1 and σ2, respec-
tively, and assume moreover that both classes have strong amalgamation. Then the class
of finite structures with signature σ1 ∪ σ2 whose restriction to the signature σi is an ele-
ment of Ci for i = 1, 2 is a Fräıssé class as well. Moreover, the restriction of its Fräıssé
limit ∆ to the signature σi is the Fräıssé limit of Ci for i = 1, 2. In this situation, we say
that ∆ is the free superposition of the Fräıssé limits of C1 and C2. Using this terminology,
the random permutation is the free superposition of two copies of the order of the rational
numbers.

It was only very recently that the reducts of a freely superposed structure, namely
the superposition of the random graph and the order of the rational numbers called the
random ordered graph, were classified up to equivalence [6]. Our result is the second such
classification. One notable contrast between the situation in [6] and our situation is that
the two relations of the random ordered graph are very different, the graph relation being
a quite “free” binary relation as opposed to the order relation, which gives rise to some
asymmetry; in particular, the two relations cannot be flipped.

In the case of the random permutation, another kind of rather surprising asymmetry
appears with respect to possible combinations of the reducts of the two orders. As implied
above, one closed supergroup of Aut(D;<1) is the one consisting of all order preserving
and all order reversing permutations; another one is the one consisting of all permuta-
tions which turn the order cyclically. While the first group can be combined with the
corresponding group above Aut(D;<2) to the group consisting of all permutations which
either reverse or preserve both orders simultaneously, the groups of cyclic turns have no
similar “simultaneous” action – see the discussion in Section 5 for more details.

1.5 Canonical functions and Ramsey theory.

We prove our result using a method originally invented in the context of constraint satis-
faction [3, 5] and further developed in [4, 7]. Based on so-called canonical functions, this
method turned out to be very effective in reduct classifications of homogeneous structures
with a Ramsey expansion. First applied to this kind of problem in 2011 to determine the
reducts of the random partial order [13], it has since served to find the reducts of the
Kn-free graphs with a constant [14] and the random ordered graph [6]. As in the case of
the latter structure, we take the approach of first identifying the join irreducible elements
of the lattice of closed supergroups of Aut(Π) with the help of canonical functions. We
then use canonical functions again to prove that every closed supergroup of Aut(Π) is a
join of these groups, exploiting the fact that Π is itself a Ramsey structure (cf. Section 3).
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1.6 A model of the random permutation.

It is helpful to visualize Π by means of the following concrete representation of this
structure. Let Q be the rational numbers with the usual order <. Call a subset S of Q2

independent iff for all distinct x, y ∈ S we have x1 6= y1 and x2 6= y2. Then the following
is easily verified using the fact that Π is, up to isomorphism, uniquely determined by the
extension property [11].

Fact 1.2. Let D be any dense and independent subset of Q2, where Q2 is equipped with
the product topology obtained from the order topology on Q. Then setting x <i y iff xi < yi
for i = 1, 2, we have that (D;<1, <2) is a model of (the theory of) Π.

2 The Reducts of Π

2.1 Generators of closed supergroups of Aut(Π).

With the aim of listing the closed supergroups of Aut(Π), we shall now provide a finite
set of permutations on D such that every closed supergroup of Aut(Π) is generated by a
subset of that set, in the following sense.

Definition 2.1. Let F be a set of permutations on D, and let G be a closed permutation
group on D. We say that F generates G (over Aut(Π)) iff G is the smallest closed
permutation group that contains F ∪ Aut(Π); in that case, we write G = 〈F 〉. We
always assume Aut(Π) to be present in the generating process, and will not mention it
explicitly. When F = {f1, . . . , fn}, then we also write 〈f1, . . . , fn〉 for 〈F 〉.

The elements of 〈F 〉 are precisely those permutations g of D with the property that
for all finite A ⊆ D there exists a term function over the set F ∪ Aut(Π) which agrees
with g on A. Here, terms are composites of elements of F ∪ Aut(Π) and of inverses of
such elements.

As noted before, the structures (D;>1, <2), (D;<1, >2), and (D;>1, >2) are all iso-
morphic to Π. Let

(
rev
id

)
,
(

id
rev

)
and

(
rev
rev

)
be isomorphisms from Π to these structures: that

is,
(

rev
id

)
reverses <1 while preserving <2,

(
id
rev

)
does the same with the roles of the two

orders interchanged, and
(

rev
rev

)
reverses both orders. Moreover, (D;<2, <1) is isomorphic

to Π; let sw be an isomorphism.
In the model of Π provided in Fact 1.2, we can visualize these permutations as follows.

Observe that if D′ ⊆ Q2 is dense and independent, then there exist automorphisms α1, α2

of (Q;<) such that α := (α1, α2) : Q2 → Q2 maps D′ bijectively onto D. Moreover, if
automorphisms β1, β2 of (Q;<) are so that β := (β1, β2) : Q2 → Q2 maps D′ bijectively
onto D, then there exists γ ∈ Aut(Π) such that α = γ ◦ β. Hence, every function
f : Q2 → Q2 with the property that it sends D bijectively onto a set D′ which is dense and
independent induces permutations on D of the form α ◦ f �D, and any two permutations
of this form are equivalent for our purposes since they generate the same closed groups.

In this construction,
(

rev
id

)
is induced by the mapping from Q2 to Q2 which sends any

(x1, x2) to (−x1, x2); we may thus say that geometrically,
(

rev
id

)
corresponds to the mapping
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(x1, x2) 7→ (−x1, x2) on Q2. Similarly,
(

id
rev

)
corresponds to (x1, x2) 7→ (x1,−x2), and

(
rev
rev

)
to (x1, x2) 7→ (−x1,−x2), which is just the composite of the preceding two functions. The
function sw is geometrically nothing else but (x1, x2) 7→ (x2, x1).

We use our model of Π in order to define more permutations. Let r ∈ R \ Q be
an irrational number, and let fr be any function which sends the interval (−∞, r) ∩ Q
bijectively onto (r,∞) ∩ Q whilst preserving the order on (−∞, r) ∩ Q and (r,∞) ∩ Q.
Then (x1, x2) 7→ (fr(x1), x2) is a permutation of Q2 which induces a permutation on Π as
described above – we denote this permutation by

(
tr
id

)
. It is straightforward to see that

the closed group generated by such a function is independent of r, and we will thus write(
t
id

)
whenever there is no need to refer to r explicitly. Similarly, we define functions

(
id
tr

)
and

(
id
t

)
.

2.2 Closed supergroups of Aut(D;<i).

Recall that (D;<i) is isomorphic to the order of the rational numbers, and that the
closed supergroups of the automorphism group of that order have been classified [9]. In
our context, that classification can be stated as follows.

Theorem 2.2 (Cameron [9]). The closed supergroups of Aut(D;<1) are precisely the
following:

1. Aut(D;<1);

2. 〈{
(

rev
id

)
} ∪ Aut(D;<1)〉;

3. 〈{
(
t
id

)
} ∪ Aut(D;<1)〉;

4. 〈{
(

rev
id

)
,
(
t
id

)
} ∪ Aut(D;<1)〉;

5. Sym(D).

Of course, the theorem for (D;<2) is similar. If we wish to see these groups as
automorphism groups of reducts of (D;<i), then the following relations on D are suitable.
For i ∈ {1, 2}, set

• Btwi(x, y, z)⇔ (x < y < z) ∨ (z < y < x);

• Cyci(x, y, z)⇔ (x < y < z) ∨ (y < z < x) ∨ (z < x < y);

• Sepi(w, x, y, z)⇔ (Cyci(w, x, y) ∧ Cyci(w, z, x)) ∨ (Cyci(w, y, x) ∧ Cyci(w, x, z)).

Corollary 2.3 (Cameron [9]). The closed supergroups of Aut(D;<1) are precisely the
following:

1. Aut(D;<1);

2. Aut(D; Btw1);
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3. Aut(D; Cyc1);

4. Aut(D; Sep1).

5. Aut(D; =).

Aut(D;<i)

Aut(D; Btwi) Aut(D; Cyci)

Aut(D; Sepi)

Sym(D)

Figure 1: Closed supergroups of Aut(D;<i).

The groups in Theorem 2.2 and Corollary 2.3 are listed in the same order.

2.3 Join irreducible closed supergroups of Aut(Π).

Arbitrary intersections and joins of closed permutations groups on D yield closed permu-
tation groups, where the join of two closed groups G1 and G2 is the closed group 〈G1∪G2〉.
Therefore, the closed permutation groups on D form a complete lattice with respect to
inclusion, and the closed supergroups of Aut(Π) form an interval L therein. We now pro-
vide the set of all completely join irreducible elements of the lattice L, i.e., of all elements
of L which are not the (in theory, possibly infinite) join of other groups in L.

Definition 2.4. Let JI consist of the following groups:

1. 〈
(

id
rev

)
〉;

2. 〈
(

id
t

)
〉;

3. 〈
(

rev
id

)
〉;

4. 〈
(
t
id

)
〉;

5. 〈
(

rev
rev

)
〉;

6. 〈sw〉;

7. 〈sw ◦
(

rev
rev

)
〉;

8. 〈sw ◦
(

id
rev

)
〉;
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9. Aut(D;<1);

10. Aut(D;<2).

We are going to prove the following theorem, which implies that the closed permutation
groups which properly contain Aut(Π) are precisely the joins of groups in JI. As a
consequence, it follows that there are at most 2| JI | + 1 = 210 + 1 closed supergroups of
Aut(Π).

Theorem 2.5. Let G ⊇ Aut(Π) be a closed group and let f ∈ Sym(D) be such that
f /∈ G . Then there exists a group H ∈ JI such that H ⊆ 〈{f} ∪ G 〉 and H * G .

Corollary 2.6. Let G ) Aut(Π) be a closed group. Then G is the join of elements of JI.
In particular, L is finite.

By systematically investigating the joins of elements of JI, we then obtain that there
exist precisely 39 distinct closed supergroups of Aut(Π), and determine the exact shape
of L. In order to show a compact picture of L, we name the elements of JI as follows.
First those which we know from the classification of the symmetries of the order of the
rational numbers. . .

Letter a b c d e

Group 〈
(

id
rev

)
〉 〈

(
id
t

)
〉 〈

(
rev
id

)
〉 〈

(
t
id

)
〉 〈

(
rev
rev

)
〉

. . . and then those which we get by switching the orders, or by completely ignoring one
of the orders. In Figure 2, each group in L is labeled by a minimal set of elements of JI
whose join it equals.

f g h i j

〈sw〉 〈sw ◦
(

rev
rev

)
〉 〈sw ◦

(
id
rev

)
〉 Aut(<1) Aut(<2)

Theorem 2.7. The lattice L of closed supergroups of Aut(Π) has 39 elements, and the
shape as represented in Figure 2.

2.4 Organization of the paper.

In the following section (Section 3), we provide the Ramsey-theoretic preliminaries for
the proof of Theorem 2.5, consisting of a Ramsey-type statement for the class of finite
permutations, and the method of canonical functions. After that, in Section 4, we give
the proof of Theorem 2.5. In the final section (Section 5), we show which joins of element
in JI actually coincide, from which we obtain the precise size and shape of L, proving
Theorem 2.7. It is also there that we discuss the shape of L in more detail, and compare
it with Peter Cameron’s count from [10].
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Aut(Π)

efab g c d

acbeefadab bd de h bc cd

bdeabcabd acd bcd

bfbg af

i j

abcdbef bhdi bj ajci

abf abjcdi

Sym(D)

Figure 2: The lattice L of closed supergroups of Aut(Π).

3 Ramsey-theoretic Preliminaries.

3.1 Ramsey structures.

Our proof exploits a Ramsey-type property of Π, as in the following definition.

Definition 3.1. Let ∆ be a countable relational structure. For any structure Γ in the
language of ∆, write

(
∆
Γ

)
for the set of all induced substructures of ∆ which are isomorphic

to Γ. Then ∆ is called a Ramsey structure iff for all finite induced substructures Ω of ∆,
all induced substructures Γ of Ω, and all χ :

(
∆
Γ

)
→ 2 there exists Ω′ ∈

(
∆
Ω

)
such that the

restriction of χ to
(

Ω′

Γ

)
is constant.

For example, the order of the rational numbers is Ramsey: this fact is easily seen to be
equivalent to Ramsey’s theorem. It follows that Π is Ramsey, since it is the free superposi-
tion of two copies of a homogeneous relational Ramsey structure whose finite substructures
are rigid and have strong amalgamation. That such superpositions are Ramsey has been
proven in [2] using infinitary methods, and later in [16] using finite combinatorics. The
fact that Π is Ramsey was, however, proven before in [8] and independently in [15].
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Fact 3.2. Π is a Ramsey structure.

3.2 Canonical functions.

The fact that Π is a relational homogeneous Ramsey structure implies that distinct closed
supergroups of Aut(Π) can be distinguished by so-called canonical functions. This has
been observed in [4, 7], and will be our method for proving our main result.

Definition 3.3. Let ∆ be a structure, and let a be an n-tuple of elements in ∆. The type
of a in ∆ is the set of first-order formulas with free variables x1, . . . , xn that hold for a in
∆.

Definition 3.4. Let ∆ and Γ be structures. A type condition between ∆ and Γ is a pair
(t, s), such that t is the type on an n-tuple in ∆ and s is the type of an n-tuple in Γ, for
some n > 1. A function f : ∆→ Γ satisfies a type condition (t, s) iff the type of f(a) in
Γ equals s for all n-tuples a in ∆ of type t.

A behavior B is a set of type conditions between ∆ and Γ, and a function f : ∆→ Γ
has behavior B iff it satisfies all type conditions in B.

Definition 3.5. Let ∆ and Γ be structures. A function f : ∆ → Γ is canonical iff for
every type t of an n-tuple in ∆ there is a type s of an n-tuple in Γ such that f satisfies
the type condition (t, s). That is, canonical functions send n-tuples of the same type to
n-tuples of the same type, for all n > 1.

Note that any canonical function induces a function from the types over ∆ to the
types over Γ. The canonical functions that are needed are in general not permutations:
they fail to be surjective. In fact, we obtain our classification of the closed supergroups
of Aut(Π) by an analysis of the closed transformation monoids of injective functions on
D which contain Aut(Π). Here, just as for permutation groups, “closed” means closed in
the topology of pointwise convergence, i.e., the topology of the product space DD, where
D is taken to be discrete. The fact that we have to leave the realm of permutation groups
necessitates the following definition.

Definition 3.6. Let F ⊆ DD. We say that F mon-generates a function g : D → D
(over Aut(Π)) iff g is contained in the smallest closed submonoid of DD which contains
F ∪ Aut(Π). In other words, this is the case iff for every finite subset A ⊆ D there
exist n > 1 and f1, . . . , fn ∈ F ∪ Aut(Π) such that f1 ◦ · · · ◦ fn agrees with g on A. In
this paper, when we write that F mon-generates a function then we always mean “over
Aut(Π)”. For functions f, g : D → D we shall say that f mon-generates g rather than
{f} mon-generates g.

Our proof relies on the following proposition which is a consequence of [4, 7] and
the fact that Π is a Ramsey structure. For c1, . . . , cn ∈ D, let (Π, c1, . . . , cn) denote the
structure obtained from Π by adding the constants c1, . . . , cn to the language.

Proposition 3.7. Let f : D → D be any injective function, and let c1, . . . , cn ∈ D. Then
f mon-generates an injective function g : D → D such that

the electronic journal of combinatorics 22(2) (2015), #P2.54 9



• g agrees with f on {c1, . . . , cn};

• g is canonical as a function from (Π, c1, . . . , cn) to Π.

Note that any two canonical functions from (Π, c1, . . . , cn) to Π with equal behavior,
i.e., which satisfy the same type conditions, mon-generate one another: this is a conse-
quence of the homogeneity of Π. Thus, for a fixed choice of c1, . . . , cn, there are essentially
only finitely many distinct canonical functions, and they are essentially finite objects since
they are determined by their behavior.

Our proof of Theorem 2.5 uses the following idea: if G ∈ JI and f ∈ Sym(D) \ G ,
then there exist c1, . . . , cn ∈ D such that no function in G agrees with f on {c1, . . . , cn}.
Let g be the canonical function mon-generated by f by virtue of Proposition 3.7; then
g is not mon-generated by G . By analyzing the possible behaviors of g, we deduce that
g mon-generates all functions of some H ∈ JI which is not contained in G . But then
〈{f} ∪ G 〉 contains H , and hence a new element of JI.

4 The Proof

4.1 All canonical functions from Π to Π.

We start by investigating all behaviors of canonical injections from Π to Π. As a matter
of fact, this will make us rediscover many of the functions presented in Section 2.

Definition 4.1. Let g, h : Π → Π be canonical. We say that g behaves like h iff for all
x, x′ ∈ D we have that the type of (g(x), g(x′)) equals the type of (h(x), h(x′)) in Π.

Definition 4.2. Define the following binary relations on D:

• Up(x, y)⇔ x <1 y ∧ x <2 y;

• St(x, y)⇔ Up(x, y) ∨ Up(y, x);

• Tw(x, y)⇔ ¬ St(x, y);

• Do(x, y)⇔ x <1 y ∧ y <2 x.

We call a subset S ⊆ D diagonal iff either St(x, y) for all distinct x, y ∈ S, or Tw(x, y)
for all distinct x, y ∈ S.

Proposition 4.3. Let G be a closed supergroup of Aut(Π) and let g : Π→ Π be a canonical
function mon-generated by G . Then either the image of g is diagonal and Aut(D;<i) ⊆ G
for some i ∈ {1, 2}, or g behaves like one of the following functions:

1. the identity function id on D;

2.
(

id
rev

)
;

3.
(

rev
id

)
;
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4.
(

rev
rev

)
;

5. sw;

6. sw ◦
(

rev
rev

)
;

7. sw ◦
(

id
rev

)
;

8. sw ◦
(

rev
id

)
.

Proof. There are precisely four types of pairs of distinct elements in Π. Let t1, t2, t3 and t4
be the types of a pair (x, y) with Up(x, y), Do(x, y), Up(y, x), and Do(y, x), respectively.
The behavior of g is fully specified by how it behaves on pairs of types t1 and t2. This
gives 16 possible canonical behaviors.

Take any x, y, u, v ∈ D such that the types of (x, y) and (u, v) in Π are t1 and t2,
respectively. Suppose first that (g(x), g(y)) and (g(u), g(v)) both have type t1. Then g
sends D to a diagonal set while preserving <1. Take any a1, . . . , an, b1, . . . , bn ∈ D with
ai <1 ai+1 and bi <1 bi+1 for all 1 6 i 6 n− 1. In order to show that Aut(D;<1) ⊆ G , it
suffices to show that there is a function f mon-generated by G such that f(ai) = bi for
all 1 6 i 6 n.

Since g is canonical, for all 1 6 i 6 n− 1, the pairs (g(ai), g(ai+1)) and (g(bi), g(bi+1))
have type t1. Therefore, the tuples (g(a1), . . . , g(an)) and (g(b1), . . . , g(bn)) have the same
type in Π. Since Π is ω-categorical, there exists α ∈ Aut(Π) such that α(g(ai)) = g(bi)
for all 1 6 i 6 n. Moreover, since g is mon-generated by G , there exists h ∈ G which
agrees with g on {b1, . . . , bn}. Let f = h−1 ◦ α ◦ g. Then f is a function mon-generated
by G such that f(ai) = bi for all 1 6 i 6 n, giving that Aut(D;<1) ⊆ G .

If (g(x), g(y)) and (g(u), g(v)) both have type t2, then g also sends D to a diagonal
set while preserving <1. Similarly, if (g(x), g(y)) and (g(u), g(v)) both have type t3 or t4,
then g sends D to a diagonal set while reversing <1. By the same argument as above,
Aut(D;<1) ⊆ G holds in these cases as well.

Now suppose (g(x), g(y)) has type t1 and (g(u), g(v)) has type t3. Then g sends D to
a diagonal set while preserving <2. This is also the case if (g(x), g(y)) has type t4 and
(g(u), g(v)) has type t2. Similarly, if (g(x), g(y)) has type t3 and (g(u), g(v)) has type t1,
or if (g(x), g(y)) has type t2 and (g(u), g(v)) has type t4, then g sends D to a diagonal set
while reversing <2. Using a similar argument as above, in each of these cases we see that
Aut(D;<2) ⊆ G .

This leaves 8 remaining canonical behaviors, corresponding to the behaviors of the 8
functions listed above.

4.2 Canonical behaviors with constants.

Definition 4.4. Let c1, . . . , cn ∈ D be distinct. For 0 6 i 6 n, define the i-th column of
(Π, c1, . . . , cn), denoted Ci, to be the set of all d ∈ D \ {c1, . . . , cn} such that exactly i of
{c1, . . . , cn} are less than d with respect to the order <1. Similarly, define the i-th row of
(Π, c1, . . . , cn), denoted Ri, to be the set of all d ∈ D \ {c1, . . . , cn} such that exactly i of
{c1, . . . , cn} are less than d with respect to the order <2.
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For distinct c1, . . . , cn ∈ D, the infinite orbits of Aut(Π, c1, . . . , cn) are precisely the
sets Ri ∩Cj, for all 0 6 i, j 6 n. From our model of Π in Fact 1.2, the following becomes
evident.

Fact 4.5. Each infinite orbit of Aut(Π, c1, . . . , cn) is isomorphic to Π.

By Proposition 3.7, we know that closed groups containing Aut(Π) can be distin-
guished by functions which are canonical from (Π, c1, . . . , cn) to Π, for some c1, . . . , cn ∈ D.
Every such function behaves like a canonical function from Π to Π on each infinite orbit
of Aut(Π, c1, . . . , cn), in the following sense.

Definition 4.6. Let h : Π→ Π be canonical, let X, Y ⊆ D be disjoint, and let g : D → D
be a function. We say that g behaves like h on X iff for all x, x′ ∈ X we have that the
type of (g(x), g(x′)) equals the type of (h(x), h(x′)) in Π. We say that g behaves like h
between X, Y iff for all x ∈ X, y ∈ Y we have that the type of (g(x), g(y)) equals the type
of (h(x), h(y)) in Π.

In this subsection we will show that in a sense, there are only few relevant canonical
functions from (Π, c1, . . . , cn) to Π. More precisely, we will prove Lemma 4.14 which states
that if g is a canonical injection from (Π, c1, . . . , cn) to Π which behaves like id on some
infinite orbit of Aut(Π, c1, . . . , cn), then either g is mon-generated by 〈

(
id
t

)
,
(
t
id

)
〉, or else

any closed group which mon-generates g contains Aut(D;<i) for some i ∈ {1, 2}. From
this the proof of Theorem 2.5 quickly follows.

Definition 4.7. Let R ⊆ Dk be a relation, and let X1, . . . , Xk ⊆ D. We say that
R(X1, . . . , Xk) holds iff R(x1, . . . , xk) holds for all xi ∈ Xi.

Definition 4.8. Let X, Y ⊆ D be disjoint. We say that X, Y are in diagonal position iff
either St(X, Y ) or Tw(X, Y ) holds. For a function g : D → D, we say that g diagonalizes
X, Y iff g[X], g[Y ] are in diagonal position.

Definition 4.9. Let X, Y be subsets of D, i ∈ {1, 2}, and let g : D → D be a function.
We say that g

1. preserves <i on X iff x1 <i x2 implies g(x1) <i g(x2), for all x1, x2 ∈ X;

2. reverses <i on X iff x1 <i x2 implies g(x2) <i g(x1), for all x1, x2 ∈ X;

3. preserves <i between X and Y iff x <i y implies g(x) <i g(y), for all x ∈ X, y ∈ Y ;

4. reverses <i between X and Y iff x <i y implies g(y) <i g(x), for all x ∈ X, y ∈ Y .

Lemma 4.10. Let c1, . . . , cn ∈ D and let g : (Π, c1, . . . , cn) → Π be canonical. Let i, j ∈
{1, 2} with i 6= j, and let X, Y be infinite orbits of Aut(Π, c1 . . . , cn) with X <i Y . If g
behaves like id on X or on Y , then

1. g either preserves or reverses <i between X and Y ;
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2. g either preserves <j on X ∪ Y or g diagonalizes X and Y .

Proof. Without loss of generality, suppose i = 1 and that g behaves like id on X. If X
and Y are in diagonal position, then all pairs (x, y) with x ∈ X and y ∈ Y have the same
type in Π. Therefore, all pairs (x′, y′) with x′ ∈ g[X] and y′ ∈ g[Y ] have the same type in
Π. It follows that g[X] and g[Y ] are in diagonal position, verifying (2), and moreover (1)
holds. We may thus henceforth assume that X and Y are not in diagonal position.

We first show (1). If g does not preserve <1 between X and Y , then there exist x ∈ X
and y ∈ Y such that g(y) <1 g(x); without loss of generality we may assume Up(x, y).
Pick z ∈ X such that Do(z, y) and x <1 z. Since g preserves <1 on X, g(x) <1 g(z). So,
by transitivity, g(y) <1 g(z). Since g is canonical it follows that g reverses <1 between X
and Y . Hence, g either preserves or reverses <1 between X and Y .

To see (2), suppose first that g violates <2 between X and Y . Without loss of gener-
ality, there exist x ∈ X, y ∈ Y with x <2 y and g(y) <2 g(x). Take any u ∈ X, v ∈ Y . If
u <2 v, then since g is canonical, g(v) <2 g(u). If v <2 u, pick w ∈ X with w <2 v. Then
by the above, g(v) <2 g(w). Moreover, since g preserves <2 on X, g(w) <2 g(u). So, by
transitivity, g(v) <2 g(u). Hence, g[Y ] <2 g[X]. This together with (1) shows that g[X]
and g[Y ] are in diagonal position.

Now assume that g preserves <2 between X and Y . Take any x, x′ ∈ X, y, y′ ∈ Y
such that x <2 y <2 x

′ <2 y
′. Since g preserves <2 between X and Y , g(x) <2 g(y) <2

g(x′) <2 g(y′). Hence, g preserves <2 on X ∪ Y .

Lemma 4.11. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D and let g be a
function mon-generated by G which is canonical as a function from (Π, c1, . . . , cn) to Π.
Suppose g diagonalizes infinite orbits X, Y of Aut(Π, c1, . . . , cn) which are not in diagonal
position. Then Aut(D;<i) ⊆ G , for some i ∈ {1, 2}.

Proof. Without loss of generality, suppose that X <1 Y and g[X] <2 g[Y ]. We claim
that g mon-generates a function g′ which behaves like id on X and Y , and such that
Up(g′[X], g′[Y ]) holds.

Since g is canonical as a function (Π, c1, . . . , cn) → Π, it behaves like a canonical
function from Π to Π on each of X and Y . Say g behaves like h : Π → Π on X and
k : Π→ Π on Y . Then h (and similarly k) is mon-generated by G : any self-embedding ι
of Π whose range is contained in X is mon-generated by Aut(Π), and g ◦ ι behaves like
h. Therefore, by Proposition 4.3, either Aut(D;<i) ⊆ G for some i ∈ {1, 2}, or else g
behaves like one of id,

(
id
rev

)
,
(

rev
id

)
,
(

rev
rev

)
, sw, sw ◦

(
rev
rev

)
, sw ◦

(
id
rev

)
, or sw ◦

(
rev
id

)
on X. We may

thus assume the latter holds, for both X and Y . Note that each of h4, k4, (h ◦ k)4, and
(k ◦ h)4 behaves like id on D.

Let S, T ⊆ D be such that S <1 T . Then there is a self-embedding of Π which
sends S and T into X and Y , respectively. To see this, let H be a <1-downward closed
subset of D without a <1-largest element which contains S and is disjoint from T . Let
(Π, H) denote the structure obtained from Π by adding the unary relation H to the
language. Let Π �X∪Y be the structure induced by X ∪Y , and let (Π �X∪Y , X) denote the
structure obtained from Π �X∪Y by adding the unary relation X to the language. Then
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the structures (Π, H) and (Π �X∪Y , X) are isomorphic, and any isomorphism from the
first to the latter is an embedding of Π as desired.

If g[X] <1 g[Y ], then by the above there exists an embedding ι of Π such that ι◦g[X] ⊆
X and ι ◦ g[Y ] ⊆ Y . Let g′ = (ι ◦ g)4. Then since h4 and k4 behave like id on D, g′

is a function mon-generated by g which behaves like id on X and Y , and such that
Up(g′[X], g′[Y ]) holds.

If on the other hand g[Y ] <1 g[X], then pick an embedding ι of Π such that ι◦g[Y ] ⊆ X
and ι ◦ g[X] ⊆ Y . Let g′ = (i ◦ g)8. Since (h ◦ k)4 and (k ◦ h)4 both behave like id on
D, g′ is a function mon-generated by g which behaves like id on X and Y , and such that
Up(g′[X], g′[Y ]) holds, thus proving our claim.

Take any a1, . . . , an ∈ D with ai <1 ai+1 for all 1 6 i 6 n − 1. By homogeneity of
Π, for each 1 6 i 6 n there exists α ∈ Aut(Π) such that α(aj) ∈ X for all 1 6 j 6 i
and α(aj) ∈ Y for all i + 1 6 j 6 n. Then g′ ◦ α diagonalizes the sets {a1, . . . , ai}
and {ai+1, . . . , an} while preserving <1 on {a1, . . . , an}. By repeated applications of such
functions, we obtain a function f mon-generated by g such that Up(f(ai), f(ai+1)) holds
for all 1 6 i 6 n − 1. It then follows by homogeneity of Π and topological closure that
g mon-generates a canonical function from Π to Π whose image is a diagonal set, and
Proposition 4.3 implies that G contains Aut(D;<i) for some i ∈ {1, 2}.

Lemma 4.12. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D be distinct and
let g be a function mon-generated by G which is canonical as a function from (Π, c1, . . . , cn)
to Π. Suppose g behaves like id on some infinite orbit of Aut(Π, c1, . . . , cn). Then g
behaves like id on all infinite orbits of Aut(Π, c1, . . . , cn), or else Aut(D;<i) ⊆ G , for
some i ∈ {1, 2}.

Proof. Let X be an infinite orbit of Aut(Π, c1, . . . , cn) on which g behaves like id. Let Y
be an orbit in the same column as X; without loss of generality, suppose X <2 Y . Then
by Lemmas 4.10 and 4.11, either Aut(D;<i) ⊆ G , for some i ∈ {1, 2}, or g preserves <1

on X ∪ Y . We may thus assume the latter holds. Therefore, g either behaves like id or(
id
rev

)
on Y , and like id or

(
id
rev

)
between X and Y .

We claim that if g behaves like
(

id
rev

)
on Y , then G contains Aut(D;<i) for some i ∈

{1, 2}. To see this, observe first that in that situation, g mon-generates
(

id
rev

)
. Therefore,

if g behaves like
(

id
rev

)
between X and Y , then we can replace g by

(
id
rev

)
◦ g, which behaves

like id on Y , like
(

id
rev

)
on X, and like id between X and Y . Hence, in any case we may

assume that g behaves like id between X and Y , like id on one of X or Y , and like
(

id
rev

)
on the other. Without loss of generality, suppose g behaves like id on X and

(
id
rev

)
on Y .

Now take any a1, . . . , am ∈ D with ai <2 ai+1 for all 1 6 i 6 m − 1. By homogeneity of
Π, for any 1 6 i 6 m there exists α ∈ Aut(Π) such that α(aj) ∈ X for all 1 6 j 6 i and
α(aj) ∈ Y for all i + 1 6 j 6 m. Then g ◦ α preserves <2 on {a1, . . . , ai} and reverses
<2 on {ai+1, . . . , am}, while preserving <1 on {a1, . . . , am}. By repeated applications of
such functions, we can change the order of {a1, . . . , am} arbitrarily with respect to <2

while preserving <1. Therefore g mon-generates a function f such that Up(f(ai), f(ai+1))
for all 1 6 i 6 m − 1. It then follows by homogeneity of Π and topological closure
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that g mon-generates a canonical function h : Π→ Π whose image is a diagonal set, and
Proposition 4.3 implies that G contains Aut(D;<i) for some i ∈ {1, 2}.

Now let Z be an infinite orbit in the same row as X. By the same argument as above,
either g behaves like id on Z or Aut(D;<i) ⊆ G for some i ∈ {1, 2}. It follows that g
behaves like id on all infinite orbits of Aut(Π, c1, . . . , cn), or else Aut(D;<i) ⊆ G , for some
i ∈ {1, 2}.

Lemma 4.13. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D be distinct
and g : (Π, c1, . . . , cn) → Π be a canonical function mon-generated by G . Suppose that g
behaves like id on and between all infinite orbits of Aut(Π, c1, . . . , cn). Then g behaves like
id everywhere, or else Aut(D;<i) ⊆ G , for some i ∈ {1, 2}.

Proof. Assume that g does not behave like id everywhere, say without loss of generality
that g does not preserve <2 on D. Since g is canonical as a function from (Π, c1, . . . , cn) to
Π and behaves like id on and between all infinite orbits of Aut(Π, c1, . . . , cn), there exist
c ∈ {c1, . . . , cn} and 0 6 j 6 n− 1 such that the rows Rj, Rj+1 satisfy Rj <2 {c} <2 Rj+1

and either {g(c)} <2 g[Rj] or g[Rj+1] <2 {g(c)}. Suppose without loss of generality the
latter holds.

Let 0 6 k 6 n− 1 be such that the columns Ck, Ck+1 satisfy Ck <1 {c} <1 Ck+1, and
let U = (Rj ∪Rj+1) ∩ (Ck ∪ Ck+1). Then g[U ] <2 {g(c)}.

First suppose that g diagonalizes U and {c}; say without loss of generality that g[U ] <1

{g(c)}. Take any a1, . . . , am ∈ D with ai <1 ai+1 for all 1 6 i 6 m− 1. By homogeneity
of Π, for each 1 6 i 6 m there exists α ∈ Aut(Π) such that α(ai) = c and α(al) ∈
U for all l 6= i. Then g ◦ α diagonalizes the sets {a1, . . . , ai−1, ai+1, . . . , am} and {ai},
while behaving like id on {a1, . . . , ai−1, ai+1, . . . , am}. By repeated applications of such
functions, we obtain a function f mon-generated by g such that Up(f(ai), f(ai+1)) holds
for all 1 6 i 6 m− 1. It follows from the homogeneity of Π and topological closure that g
mon-generates a canonical function from Π to Π whose image is a diagonal set. Therefore,
by Proposition 4.3, Aut(D;<i) ⊆ G for some i ∈ {1, 2}.

It remains to consider the case where g[Ck] <1 {g(c)} <1 g[Ck+1]. Then Aut(D;<1)
⊆ G , since by a similar argument as above, we can change the order of the elements of
any finite subset of D with respect to <2 whilst keeping their order with respect to <1 by
repeated applications of functions in {g} ∪ Aut(Π).

Lemma 4.14. Let G be a closed supergroup of Aut(Π). Let c1, . . . , cn ∈ D be distinct and
g : (Π, c1, . . . , cn) → Π be a canonical function mon-generated by G . If g behaves like id
on some infinite orbit of Aut(Π, c1, . . . , cn), then either g is mon-generated by 〈

(
id
t

)
,
(
t
id

)
〉

or Aut(D;<i) ⊆ G for some i ∈ {1, 2}.

Proof. By Lemma 4.12, either Aut(D;<i) ⊆ G for some i ∈ {1, 2} or g behaves like id
on all infinite orbits of Aut(Π, c1, . . . , cn). We may thus assume the latter holds. Then
by Lemma 4.10, either g diagonalizes two infinite orbits in nondiagonal position, in which
case Aut(D;<i) ⊆ G for some i ∈ {1, 2} by Lemma 4.11, or g behaves like one of id or(

id
rev

)
between infinite orbits in the same column, and like id or

(
rev
id

)
between infinite orbits

in the same row. Again, we may assume the latter holds.
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Suppose there exist infinite orbits X <2 Y <2 Z in the same column of (Π, c1, . . . , cn)
such that ¬Cyc2(g[X], g[Y ], g[Z]) holds. Suppose g[X] <2 g[Z] <2 g[Y ]. The other cases
are proved similarly.

Take any a1, . . . , am ∈ D with ai <2 ai+1 for all 1 6 i 6 m− 1. By homogeneity of Π,
for each 1 6 j 6 m there exists α ∈ Aut(Π) such that α(ai) ∈ X for all 1 6 i 6 j − 1,
α(aj) ∈ Y , and α(ai) ∈ Z for all j + 1 6 i 6 m. Then g ◦ α reverses <2 between {aj}
and {aj+1, . . . , am}, while preserving <2 on {a1, . . . , aj−1, aj+1, . . . , am} and preserving <1

on {a1, . . . , am}. By repeated applications of such functions, we can change the order of
{a1, . . . , am} arbitrarily with respect to <2 while preserving <1. Thus, g mon-generates
a function f such that Up(f(ai), f(ai+1)) holds for all 1 6 i 6 m − 1. It follows from
homogeneity of Π and topological closure that g mon-generates a canonical function from
Π to Π whose image is a diagonal set. Hence, by Proposition 4.3, Aut(D;<i) ⊆ G for
some i ∈ {1, 2}.

By the same argument, if there exist infinite orbits X <1 Y <1 Z in the same row
of (Π, c1, . . . , cn) such that ¬Cyc1(g[X], g[Y ], g[Z]) holds, then Aut(D;<i) ⊆ G for some
i ∈ {1, 2}.

We may henceforth assume that for i = 1, 2 and for all infinite orbits X <i Y <i Z,
Cyci(g[X], g[Y ], g[Z]) holds. Suppose there exists 0 6 j 6 n− 1 such that g reverses <1

between the columns Cj and Cj+1. Then since Cyc1(g[X], g[Y ], g[Z]) holds for all infinite
orbits with X <1 Y <1 Z, it follows that g[Cj+1] <1 · · · <1 g[Cn] <1 g[C0] <1 · · · <1 g[Cj].
Furthermore, g mon-generates

(
t
id

)
: for any finite tuple a of elements of D, there exists an

embedding ι of Π into the structure induced by Y ∪ Z such that g ◦ ι sends a to a tuple
of equal type in Π as does

(
t
id

)
; and then we can refer to homogeneity of Π to see that g

mon-generates a function which agrees with
(
t
id

)
on a.

By definition, there are H,H ′ ⊆ D such that H <1 H ′, H ∪ H ′ = D, and such
that

(
t
id

)
[H ′] <1

(
t
id

)
[H]. We may assume that g[Cn] ⊆ H and g[C0] ⊆ H ′. Then(

t
id

)
◦ g is a function mon-generated by g which is canonical from (Π, c1, . . . , cn) to Π and

which preserves <1 on and between all infinite orbits of Aut(Π, c1, . . . , cn). By a similar
argument, we can undo a possible shuffling of rows by applying

(
id
t

)
if necessary, obtaining

a canonical function h : (Π, c1, . . . , cn) → Π which behaves like id on and between all
infinite orbits of Aut(Π, c1, . . . , cn). By Lemma 4.13, either h behaves like id everywhere
or Aut(D;<i) ⊆ G for some i ∈ {1, 2}. We may thus assume the former holds. That
means that by composing g with functions in {

(
id
t

)
,
(
t
id

)
} from the left, we have obtained a

self-embedding h of Π. But then g is itself a composite of h with functions in {
(

id
t

)
,
(
t
id

)
},

and so it is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉.

4.3 Proof of Theorem 2.5.

We are now ready to prove Theorem 2.5, from which it follows that every closed group
properly containing Aut(Π) is the join of elements of JI.

Proof of Theorem 2.5. Let c1, . . . , cn ∈ D be so that no function in G agrees with f on
{c1, . . . , cn}. Then by Proposition 3.7, there is an injection g : D → D mon-generated by
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f which is canonical as a function from (Π, c1, . . . , cn) to Π and which agrees with f on
{c1, . . . , cn}.

Case 1: First suppose that Aut(D;<i) ⊆ 〈{f} ∪ G 〉 for some i ∈ {1, 2}. Without
loss of generality, suppose i = 1. If Aut(D;<1) * G , then we are done. Otherwise
Aut(D;<1) ⊆ G and by Theorem 2.2, G and 〈{f} ∪ G 〉 are among the following groups:

• Aut(D;<1);

• 〈Aut(D;<1) ∪ {
(

rev
id

)
}〉;

• 〈Aut(D;<1) ∪ {
(
t
id

)
}〉;

• 〈Aut(D;<1) ∪ {
(

rev
id

)
,
(
t
id

)
}〉;

• Sym(D).

The result follows, since G ( 〈{f} ∪ G 〉.
Case 2: From now on suppose that Aut(D;<i) * 〈{f}∪G 〉 for i = 1, 2 and let X be an

infinite orbit of Aut(Π, c1, . . . , cn). Since g is canonical as a function from (Π, c1, . . . , cn)
to Π, g behaves like a canonical function from Π to Π on X. Say g behaves like h : Π→ Π
on X. Then 〈{f} ∪ G 〉 mon-generates h. Since Aut(D;<i) * 〈{f} ∪ G 〉 for i = 1, 2, by

Proposition 4.3 it follows that h ∈ {id,
(

id
rev

)
,
(

rev
id

)
,
(

rev
rev

)
, sw, sw ◦

(
rev
rev

)
, sw ◦

(
id
rev

)
, sw ◦

(
rev
id

)
}.

If h /∈ G , then we are done. Otherwise, h−1 ◦ g is a function which is not mon-generated
by G , is canonical as a function from (Π, c1, . . . , cn) to Π, and behaves like id on X. So,
by replacing g with h−1 ◦ g, we may assume that g behaves like id on X.

Since we are assuming that Aut(D;<i) * 〈{f} ∪ G 〉 for i = 1, 2, it follows from

Lemma 4.14 that g is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉. Since no function in G agrees with g

on {c1, . . . , cn}, g is not mon-generated by G . Therefore, 〈
(

id
t

)
,
(
t
id

)
〉 * G .

Similarly, since Aut(D;<i) * 〈{f} ∪ G 〉 for i = 1, 2, by Lemma 4.12 we know that g
behaves like id on all infinite orbits of Aut(Π, c1, . . . , cn). If g behaves like id between all
infinite orbits of Aut(Π, c1, . . . , cn) as well, then Lemma 4.13 implies that g behaves like
id everywhere, a contradiction. Hence, it is not that case that g behaves like id between
all infinite orbits of Aut(Π, c1, . . . , cn). In particular, there exist infinite orbits Y, Z of
Aut(Π, c1, . . . , cn) in the same column or row such that g does not behave like id between
Y and Z. Without loss of generality, assume Y and Z are in the same row and Y <1 Z.
By Lemma 4.10, either g behaves like

(
rev
id

)
between Y and Z or g diagonalizes Y and Z.

Again, since Aut(D;<i) * 〈{f}∪G 〉 for i = 1, 2, the latter does not hold by Lemma 4.11.
Therefore, g behaves like

(
rev
id

)
between Y and Z. Hence, g mon-generates

(
t
id

)
.

If
(
t
id

)
/∈ G , then we are done. Otherwise, 〈

(
t
id

)
〉 ⊆ G . In this case, since g is not

mon-generated by G but is mon-generated by 〈
(

id
t

)
,
(
t
id

)
〉, by the same argument as above,

g must also behave like
(

id
rev

)
between two infinite orbits in the same column. Therefore,

g mon-generates
(

id
t

)
. Since 〈

(
id
t

)
,
(
t
id

)
〉 * G , it follows that

(
id
t

)
∈ 〈{f} ∪ G 〉 \ G .
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5 The 39 closed supergroups of Aut(Π)

We will now determine the precise number of closed supergroups of Aut(Π), proving
Theorem 2.7, and compare our result with the estimate from [10].

5.1 Proof of Theorem 2.7

In order to see that there are at most 39 closed supergroups of Aut(Π), we need the
following easy to verify results about the behaviors of compositions of the functions which
generate the groups in JI.

Lemma 5.1. Let G be a closed supergroup of Aut(Π). Suppose sw ∈ G . Then

• If G contains one of
(

id
rev

)
or

(
rev
id

)
, then it contains both

(
id
rev

)
and

(
rev
id

)
.

• If G contains one of
(

id
t

)
or

(
t
id

)
, then it contains both

(
id
t

)
and

(
t
id

)
.

• If sw ◦
(

rev
rev

)
∈ G , then

(
rev
rev

)
∈ G .

• If sw ◦
(

id
rev

)
∈ G , then

(
id
rev

)
∈ G .

• If Aut(D;<i) ⊆ G for some i ∈ {1, 2}, then G = Sym(D).

Lemma 5.2. Let G be a closed supergroup of Aut(Π). Suppose sw ◦
(

rev
rev

)
∈ G . Then

• If G contains
(

id
rev

)
,
(

rev
id

)
,
(

rev
rev

)
, or sw ◦

(
id
rev

)
, then it contains sw.

• If G contains one of
(

id
t

)
or

(
t
id

)
, then it contains both

(
id
t

)
and

(
t
id

)
.

• If Aut(D;<i) ⊆ G for some i ∈ {1, 2}, then G = Sym(D).

Lemma 5.3. Let G be a closed supergroup of Aut(Π). Suppose
(

rev
rev

)
∈ G . Then if G

contains one of
(

id
rev

)
or

(
rev
id

)
, then it contains both

(
id
rev

)
and

(
rev
id

)
.

Lemma 5.4. Let G be a closed supergroup of Aut(Π). If sw ◦
(

id
rev

)
∈ G , then

•
(

rev
rev

)
∈ G .

• If G contains one of
(

id
t

)
or

(
t
id

)
, then it contains both

(
id
t

)
and

(
t
id

)
.

• If Aut(D;<i) ⊆ G for some i ∈ {1, 2}, then G = Sym(D).

Proposition 5.5. There are at most 39 closed supergroups of Aut(Π).

Proof. There are at most 25 closed supergroups of Aut(Π) which arise as joins of groups
in {〈

(
id
rev

)
〉, 〈

(
id
t

)
〉, 〈

(
rev
id

)
〉, 〈

(
t
id

)
〉,Aut(D;<1),Aut(D;<2)}: by Theorem 2.2, there are 5

closed supergroups of Aut(Π) which contain Aut(D;<1) and 4 additional groups con-
taining Aut(D;<2); the remaining 16 groups are all of the possible joins of groups in
{〈
(

id
rev

)
〉, 〈

(
id
t

)
〉, 〈

(
rev
id

)
〉, 〈

(
t
id

)
〉}. We remark that these are precisely the intersections of
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closed supergroups of Aut(D;<1) with closed supergroups of Aut(D;<2), as follows from
Figure 3.

The remaining closed groups must contain one of sw, sw ◦
(

rev
rev

)
, or

(
rev
rev

)
. By Lemma 5.1,

there are at most 6 additional closed groups containing 〈sw〉:

26. 〈sw〉;

27. 〈sw,
(

rev
rev

)
〉;

28. 〈sw,
(

id
rev

)
〉;

29. 〈sw,
(

id
t

)
〉;

30. 〈sw,
(

rev
rev

)
,
(

id
t

)
〉;

31. 〈sw,
(

id
rev

)
,
(

id
t

)
〉.

By Lemma 5.2, there are at most 2 additional groups containing 〈sw ◦
(

rev
rev

)
〉:

32. 〈sw ◦
(

rev
rev

)
〉;

33. 〈sw ◦
(

rev
rev

)
,
(

id
t

)
〉;

Last, by lemmas 5.3 and 5.4, there are at most 6 more groups containing 〈
(

rev
rev

)
〉:

34. 〈
(

rev
rev

)
〉;

35. 〈sw ◦
(

id
rev

)
〉;

36. 〈
(

rev
rev

)
,
(

id
t

)
〉;

37. 〈
(

rev
rev

)
,
(
t
id

)
〉;

38. 〈sw ◦
(

id
rev

)
,
(

id
t

)
〉;

39. 〈
(

rev
rev

)
,
(

id
t

)
,
(
t
id

)
〉.

To see that these groups all are distinct, we need to define some more relations on D.

• R1(x, y, z)⇔ (Up(x, y) ∧Do(y, z) ∧ Up(x, z)) ∨ (Do(x, y) ∧ Up(z, y) ∧Do(x, z))
∨ (Up(y, x) ∧Do(z, y) ∧ Up(z, x)) ∨ (Do(y, x) ∧ Up(y, z) ∧Do(z, x));

• R2(x, y, z)⇔ Btw1(x, y, z) ∨ Btw2(x, y, z);

• R3(x, y, z)⇔ Cyc1(x, y, z) ∨ Cyc2(x, y, z);

• R4(x, y, z)⇔ Sep1(x, y, z) ∨ Sep2(x, y, z);
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• R5(x, y, z)⇔ ((x <2 y <2 z) ∧ Cyc1(x, y, z)) ∨ ((z <2 y <2 x) ∧ Cyc1(z, y, x));

• R6(x, y, x)⇔ ((x <1 y <1 z) ∧ Cyc2(x, y, z)) ∨ ((z <1 y <1 x) ∧ Cyc2(z, y, x));

• R7(x, y, z)⇔ ((Cyc1(x, y, z) ∧ Cyc2(x, y, z)) ∨ ((Cyc1(z, y, x) ∧ Cyc2(z, y, x));

• R8(x, y, z)⇔ Cyc1(x, y, z) ∧ ¬Cyc2(x, y, z);

• R9(x, y, w, z)⇔ (Cyc1(x, y, w) ∧ Cyc2(x, y, w) ∧ Cyc1(y, w, z) ∧ ¬Cyc2(y, w, z))
∨ (¬Cyc1(x, y, w) ∧ Cyc2(x, y, w) ∧ Cyc1(y, w, z) ∧ Cyc2(y, w, z))
∨ (¬Cyc1(x, y, w) ∧ ¬Cyc2(x, y, w) ∧ ¬Cyc1(y, w, z) ∧ Cyc2(y, w, z))
∨ (Cyc1(x, y, w) ∧ ¬Cyc2(x, y, w) ∧ ¬Cyc1(y, w, z) ∧ ¬Cyc2(y, w, z)).

Figure 3 shows which relations are preserved by the 39 groups listed above. Checking
the table is left to the reader. Since no two groups preserve the same subset of relations,
Theorem 2.7 follows.

5.2 Discussion

In [10], Cameron listed 37 closed supergroups of Aut(Π). His count included the 25 groups
which arise as intersections of closed supergroups of Aut(D;<1) and Aut(D;<2). He then
observed that 〈sw,

(
id
rev

)
〉 behaves like a dihedral group of order 8, with 10 subgroups, 4 of

which were already counted in the first 25. This gives 6 additional groups contained in
〈sw,

(
id
rev

)
〉. By the same argument, he counted 6 additional groups contained in 〈sw,

(
id
t

)
〉.

We discovered that while 〈sw,
(

id
rev

)
〉 behaves like a dihedral group of order 8, 〈sw,

(
id
t

)
〉

does not. It only has 4 proper, nontrivial subgroups: 〈sw〉, 〈
(

id
t

)
〉, 〈

(
t
id

)
〉, and 〈

(
id
t

)
,
(
t
id

)
〉.

Thus there is some asymmetry in the roles of the permutations
(

id
rev

)
and

(
id
t

)
. There is

a closed group consisting of all permutations which either preserve or reverse both or-
ders of Π simultaneously, namely 〈

(
rev
rev

)
〉, but there is no simultaneous action of turns

since 〈
(

id
t

)
◦
(
t
id

)
〉 = 〈

(
id
t

)
,
(
t
id

)
〉. Hence, 4 groups counted in [10] actually coincided

with others listed there. On the other hand, some joins of elements in JI were miss-
ing in [10]: 〈

(
rev
rev

)
,
(

id
t

)
〉, 〈

(
rev
rev

)
,
(
t
id

)
〉, 〈

(
rev
rev

)
,
(

id
t

)
,
(
t
id

)
〉, 〈sw,

(
rev
rev

)
,
(

id
t

)
〉, 〈sw ◦

(
id
rev

)
,
(

id
t

)
〉, and

〈sw,
(

id
rev

)
,
(

id
t

)
〉.
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Peter Cameron’s question, as well as for valuable discussion and generous hospitality
during his visit at the University of Novi Sad. He would also like to thank Ágnes Szendrei
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<1 Btw1 Cyc1 Sep1 <2 Btw2 Cyc2 Sep2 St Up Do R1 R2 R3 R4 R5 R6 R7 R8 R9

a x x x x x x x x
b x x x x x x x x x x x x
c x x x x x x x x
d x x x x x x x x x x x x
e x x x x x x x x x x x x
f x x x x x x
g x x x x x x
h x x x x
i x x x x
j x x x x

ab x x x x x x
ac x x x x x x
ad x x x x x
af x x
aj x x
bc x x x x x
bd x x x x x x x x x
be x x x x x x x
bf x x x
bg x x x
bh x x
bj x x
cd x x x x x x
ci x x
de x x x x x x x x
di x x
ef x x x x

abc x x x x
abd x x x x
abf x
abj x
acd x x x x
bcd x x x x
bde x x x x x
bef x x
cdi x

abcd x x x

Figure 3: Preservation table
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