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Abstract

We study tilings of groups with mutually disjoint difference sets. Some necessary
existence conditions are proved and shown not to be sufficient. In the case of tilings
with two difference sets we show the equivalence to skew Hadamard difference sets,
and prove that they must be normalized if the group is abelian. Furthermore, we
present some constructions of tilings based on cyclotomy and investigate tilings
consisting of Singer difference sets.
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1 Introduction

Let G be an additively written group of order v. A (v, k, λ) difference set in G is a k-
subset D ⊆ G such that every nonzero element of G can be expressed as a difference x−y
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with x, y ∈ D in exactly λ ways. Multiplicative notation is sometimes used, in which case
the “differences” are written as xy−1. For basic results on difference sets, see [2, 17, 22].
More recent surveys on difference sets are [14] and [26].

It is not possible to partition the whole group G into disjoint (v, k, λ) difference sets.
This follows from the necessary existence condition λ(v − 1) = k(k − 1) when v > k >
λ > 1, which is assumed throughout the paper. However, if k divides v − 1, it may be
possible to partition G \ {0} into difference sets. We introduce the following concept.

Definition 1. Let G be a finite group of order v with identity element 0. A (v, k, λ)
tiling of G is a collection {D1, . . . , Dt} of mutually disjoint (v, k, λ) difference sets such
that D1 ∪ · · · ∪Dt = G \ {0}.

Example 2. The following five difference sets are a (31, 6, 1) tiling of the cyclic group
Z31:

D1 = {1, 5, 11, 24, 25, 27},
D2 = {2, 10, 17, 19, 22, 23},
D3 = {3, 4, 7, 13, 15, 20},
D4 = {6, 8, 9, 14, 26, 30},
D5 = {12, 16, 18, 21, 28, 29}.

Tilings of cyclic groups have a nice combinatorial interpretation. We can visualize the
group Zv as a necklace of v beads, with the identity element coloured in black. A (v, k, λ)
tiling corresponds to a colouring of the remaining beads with t colours, such that there
are k beads of every colour. Furthermore, there are exactly λ pairs of equally coloured
beads at each possible distance, and for every colour. Here, a pair of beads is thought
to have two distances, counted clockwise and counterclockwise. The (31, 6, 1) tiling of
Example 2 can be represented as the necklace in Figure 1.

Figure 1: A (31, 6, 1) tiling of Z31.
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Mutually disjoint difference sets have been used to design hopping sequences for multi-
channel wireless networks [13]. Multiple users are assumed to communicate over a number
of channels, without synchronization or a common control channel. Every user utilizes the
same channel selection strategy, i.e. hopping sequence. Sequences based on difference sets
ensure a high rendezvous probability. The difference sets correspond to different chan-
nels; they need to be disjoint to ensure that each time slot is assigned a single channel. A
(v, k, λ) tiling of G is the extremal case, maximizing the number of channels for a given
sequence length v. See also [25] for this application.

A similar concept studied earlier are partitioned difference families (PDFs); see [3, 27].
A (v, k, λ) tiling with t difference sets can be seen as a (v, [kt, 11], k − 1)-PDF. A more
general concept are disjoint difference families ; see [7, 10, 24]. Quite recently, Gnilke,
Greferath and Pavčević [11] defined structures called mosaics of combinatorial designs.
The simultaneous development of the t difference sets forming a (v, k, λ) tiling of G is a
(t+ 1)-mosaic of symmetric designs with parameters

2-(v, k, λ)⊕ · · · ⊕ 2-(v, k, λ)︸ ︷︷ ︸
t times

⊕ 2-(v, 1, 0).

The layout of our paper is as follows. In Section 2, we prove necessary conditions for
the existence of (v, k, λ) tilings and consider small examples. Nonexistence of tilings for
some parameter triples satisfying the necessary conditions is proved. In Section 3, tilings
consisting of two difference sets are shown to be equivalent to the so-called skew Hadamard
difference sets. Constructions of general tilings based on cyclotomy are considered in
Section 4, and based on Singer difference sets in Section 5.

2 Necessary existence conditions and small examples

As already mentioned in the introduction, a necessary condition for the existence of
(v, k, λ) difference sets in a group G of order v is λ(v−1) = k(k−1). From this, the number
t of difference sets in a (v, k, λ) tiling of G can be expressed as t = (v − 1)/k = (k− 1)/λ
and we have the following existence condition for tilings.

Proposition 3. If a (v, k, λ) tiling of a group G exists, then k divides v−1 and λ divides
k − 1.

An immediate consequence is that v and k are relatively prime (since v and v−1 = t·k
are relatively prime).

The condition λ(v − 1) = k(k − 1) is not sufficient for the existence of difference sets;
many non-trivial nonexistence results are known. In this paper the existence of (v, k, λ)
difference sets is taken for granted, in the sense that only parameter triples satisfying
Proposition 3 for which there is at least one difference set are considered admissible for
(v, k, λ) tilings. We shall soon see that these two conditions are not sufficient for the
existence of (v, k, λ) tilings.
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If D is a (v, k, λ) difference set in G, the translates of D (i.e. the sets D+x, x ∈ G) are
also difference sets. The set of all translates of D forms a symmetric (v, k, λ) block design
with the point set G. Since every two blocks of a symmetric design intersect in λ points,
the difference sets forming a (v, k, λ) tiling of G cannot be translates of each other. Using
this observation we can prove nonexistence of tilings for some admissible parameters.

Proposition 4. A (21, 5, 1) tiling of the cyclic group of order 21 does not exist.

Proof. From the multiplier theorem [2, Theorem VI.2.11] and [2, Lemma VI.2.5] it follows
that there are only two (21, 5, 1) difference sets up to translation: {3, 6, 7, 12, 14} and
{7, 9, 14, 15, 18}. According to the observation above, a (21, 5, 1) tiling of Z21 would
require four difference sets not being translates of each other.

Now consider (57, 8, 1) tilings of the group Z57. As before, one can see that there are 12
cyclic (57, 8, 1) difference sets up to translation. Seven disjoint difference sets are required
for a (57, 8, 1) tiling, so nonexistence of tilings does not follow immediately. We set up
a computer search using backtracking and found that there can be at most 5 mutually
disjoint cyclic (57, 8, 1) difference sets, thus proving the following result.

Proposition 5. A (57, 8, 1) tiling of the cyclic group of order 57 does not exist.

Surprisingly, the non-abelian group of order 57 can be tiled with difference sets. The
next example was also found by computer search.

Example 6. Let G = 〈a, b | a3 = b19 = 1, ab7 = ba〉 be the non-abelian group of order 57.
The following seven difference sets are a (57, 8, 1) tiling of G:

D1 = {a, b, a2, b2, ab4, ab10, b13, b18},
D2 = {ab, ab5, a2b6, a2b13, b15, a2b14, ab15, ab18},
D3 = {a2b, a2b7, a2b8, ab9, ab12, b14, ab14, a2b16},
D4 = {ab2, b4, a2b3, b9, a2b9, b11, b12, a2b18},
D5 = {b3, a2b2, b5, b8, a2b10, a2b11, ab17, a2b17},
D6 = {ab3, b6, ab6, ab8, b10, b16, a2b15, b17},
D7 = {a2b4, a2b5, b7, ab7, ab11, a2b12, ab13, ab16}.

Using our backtracking program we examined all admissible groups of order v 6 50.
Tilings exist in 11 of the 18 cases, and in 7 cases there are no tilings. The results are
summarized in Table 1. Please note that the table contains only parameters (v, k, λ)
satisfying Proposition 3 and only groups G with at least one (v, k, λ) difference set. For
example, the parameters (49, 16, 5) and the groups Z49 and Z7 × Z7 are not included
because by [17, Theorem 4.38 and Corollary 4.42] there are no (49, 16, 5) difference sets.

A difference set in an abelian group is said to be normalized provided the sum of its
elements is 0. The (31, 6, 1) tiling of Example 2 is composed of normalized difference
sets, and so are all tilings of abelian groups we found. Therefore we make the following
conjecture.

the electronic journal of combinatorics 22(2) (2015), #P2.56 4



(v, k, λ) Group Tiling

(7, 3, 1) Z7 Paley

(11, 5, 2) Z11 Paley

(13, 4, 1) Z13 No

(15, 7, 3) Z15 No

(19, 9, 4) Z19 Paley

(21, 5, 1) Z21 No

(21, 5, 1) 〈a, b | a7 = b3 = 1, a2b = ba〉 No

(23, 11, 5) Z23 Paley

(27, 13, 6) Z3 × Z3 × Z3 Paley

(27, 13, 6) 〈a, b | a3 = b9 = 1, ab7 = ba〉 Example 11

(31, 6, 1) Z31 Example 2

(31, 15, 7) Z31 Paley

(35, 17, 8) Z35 No

(37, 9, 2) Z37 Thm 12, F∗37/F
(4)
37

(40, 13, 4) Z40 No

(40, 13, 4) 〈a, b | a5 = b8 = 1, a4b = ba〉 No

(43, 21, 10) Z43 Paley

(47, 23, 11) Z47 Paley

Table 1: Tilings of admissible groups of order v 6 50.

Conjecture 7. The difference sets in a tiling of an abelian group are necessarily normal-
ized.

In general we have no proof of this conjecture, but in the next section we shall prove
it for tilings with two difference sets (t = 2). Proposition 5 follows directly from the
conjecture: there is a unique normalized translate of every cyclic (57, 8, 1) difference set
and it contains the elements 19 and 38. Hence, normalized (57, 8, 1) difference sets cannot
be disjoint.

3 Tiling with two difference sets

Suppose that a group G can be tiled with two difference sets {D1, D2}. Then the param-
eters (v, k, λ) are of the form (4n − 1, 2n − 1, n − 1) for some n > 2, i.e. D1 and D2 are
Paley-type difference sets. The canonical example are the Paley difference sets, i.e. the
nonzero squares F(2)

q = {x2 | x ∈ F∗q} in the additive group of the field Fq of order q ≡ 3

(mod 4). The nonsquares F∗q \F
(2)
q are also a difference set, and therefore {F(2)

q , F∗q \F
(2)
q }
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is a (q, (q − 1)/2, (q − 3)/4) tiling of the elementary abelian group of order q.
A special class of Paley-type difference sets are the skew Hadamard or antisymmetric

difference sets. A difference set D in a group G is skew Hadamard provided D ∪ (−D) =
G \ {0} holds. Since −D = {−x | x ∈ D} is clearly also a difference set, {D,−D} is a
tiling of G with two difference sets. For a long time it was conjectured that the Paley
difference sets were the only examples of skew Hadamard difference sets in abelian groups.
Two new series of skew Hadamard difference set in elementary abelian groups of order
3m, m odd, were constructed in [5, 6]. Since then there have been other constructions,
see [9] and [20].

It is natural to ask whether any tiling of a group G with two difference sets {D1, D2}
necessarily comes from a skew Hadamard difference set, i.e. whether D2 = −D1 must
hold. We shall prove this by using the group ring Z[G]. Now we switch to multiplicative
notation, and write D(−1) instead of −D. Also, we identify a subset S ⊆ G with the
corresponding group ring element

∑
g∈S g.

Theorem 8. If {D1, D2} is a tiling of a group G with two (v, k, λ) difference sets, then

D2 = D
(−1)
1 holds, i.e. the two difference sets are skew Hadamard.

Proof. Since D1 and D2 are difference sets, the following relations in the group ring Z[G]
hold:

D1 ·D(−1)
1 = (k − λ) + λG, (1)

D2 ·D(−1)
2 = (k − λ) + λG. (2)

By the definition of a tiling, we have D1 +D2 +1 = G. Multiplying this by D
(−1)
1 from

the right and using (1), we get

(k − λ) + λG+D2 ·D(−1)
1 +D

(−1)
1 = G ·D(−1)

1 = kG. (3)

Similarly, multiplying D
(−1)
1 +D

(−1)
2 + 1 = G by D2 from the left and using (2), we get

D2 ·D(−1)
1 + (k − λ) + λG+D2 = D2 ·G = kG. (4)

Now D2 = D
(−1)
1 follows by subtracting (3) and (4).

By this theorem, all known restrictions for skew Hadamard difference sets also apply
to tilings of groups with two difference sets. For example, it is known that the Paley
difference sets are indeed the only examples in cyclic groups [15]. See the survey [26] for
other known restrictions in the abelian case. One known result about skew Hadamard
difference sets in elementary abelian groups is that they must be normalized; see [23,
Lemma 4.3]. We are going to improve this result by proving it without the ‘elementary
abelian’ assumption.

Theorem 9. Every skew Hadamard difference set in an abelian group of order |G| > 3 is
normalized.
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Proof. LetD be a skew Hadamard difference set in an abelian groupG and let h =
∏

d∈D d.
By [4], the order v = |G| = pm is a prime power and the quadratic residues modulo v are
multipliers fixing D. If p > 3, we can find a quadratic residue t > 1 such that t − 1 is
coprime to p, and then gt 6= g for all g ∈ G \ {1}. Now from D(t) = D we have

ht =
∏
d∈D

dt =
∏
d∈D(t)

d = h

and thus h = 1.
Next we look at the case p = 3. According to the fundamental theorem of finitely

generated abelian groups, G ∼= Z3N0 × Z3N1 × · · · × Z3Nl , where N0 6 N1 6 . . . 6 Nl. For
every g ∈ G, we write g = (g0, g1, . . . , gl), where gi ∈ Z3Ni . Here the identity element is
(0, . . . , 0) and we use additive notation on the coordinates. If Ni > 1, we can again find
a quadratic residue t > 1 such that (t− 1, 3Ni) = 1 and conclude that hi = 0. Now only
the case Ni = 1 remains.

Without loss of generality, we assume that N0 = 1. Let ni = |{d ∈ D | d0 = i}|, for
i = 0, 1, 2; clearly n0 + n1 + n2 = k. Noting that k = v−1

2
≡ 1 (mod 3) and λ = v−3

4
≡ 0

(mod 3), we have
n0 + n1 + n2 ≡ 1 (mod 3). (5)

Since D is a difference set, D ·D(−1) = (k − λ) + λG. Counting elements with g0 = 0 on
the left-hand and right-hand side yields

n2
0 + n2

1 + n2
2 = (k − λ) + λ3m−1,

and taking this modulo 3

n2
0 + n2

1 + n2
2 ≡ 1 (mod 3). (6)

On the other hand, since D is a skew Hadamard difference set

D ·D = D(G− 1−D(−1)) = (k − λ)G−D − (k − λ).

Again, by counting elements with g0 = 0 we have

n2
0 + 2n1n2 = (k − λ)3m−1 − n0 − (k − λ),

and since m > 1, modulo 3 we get

n2
0 + 2n1n2 + n0 ≡ 2 (mod 3). (7)

It is routine to verify that from (5), (6), (7) follows n0 ≡ 1 (mod 3) and n1 ≡ n2 ≡ 0
(mod 3). From this we have h0 ≡ n1 +2n2 ≡ 0 (mod 3). Now we see that all components
of h are equal to 0, and h is the identity element. Hence, D is normalized.

For p > 3, our proof is essentially the same as in [23], and for p = 3 our proof is
simpler and more general. From Theorem 8 and Theorem 9 we have the following result.
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Corollary 10. Conjecture 7 is true for tilings of abelian groups with two difference sets.

Skew Hadamard difference sets are known to exist in non-abelian groups; see [8] for
an infinite family. The smallest example occurs in a non-abelian group of order 27.

Example 11. Let G be the group 〈a, b | a3 = b9 = 1, ab7 = ba〉 of order 27. The following
two difference sets are a (27, 13, 6) tiling of G:

D1 = {a, b2, ab2, a2b2, b3, ab3, b4, a2b4, ab5, a2b5, ab6, ab7, b8},
D2 = {a2, b, ab, a2b, a2b3, ab4, b5, b6, a2b6, b7, a2b7, ab8, a2b8}.

The difference set D1 is equivalent to one of the two non-abelian (27, 13, 6) difference
sets found by Kibler [16].

4 Tilings based on cyclotomy

We can use the quotient group to construct tilings with t > 2. Let D be a difference set
in the additive group of a finite field Fq. If D is also a subgroup of the multiplicative
group F∗q, then F∗q/D is a tiling of the additive group. The quotient group consists of
disjoint cosets {a1D, . . . , atD} for ai ∈ F∗q. Multiplication by a nonzero element is an
automorphism of the additive group, and therefore preserves the difference set property.
Thus, we have proved the following theorem.

Theorem 12. Let Fq be a finite field of order q. If there exists a difference set D in
(Fq,+) such that D is a subgroup of (F∗q, ·), then the quotient group F∗q/D is a tiling of
(Fq,+).

The nonzero squares form a subgroup of F∗q, and the Paley tilings are a special case
of Theorem 12. The theorem also applies to the fourth and eighth powers, i.e. to the
following cyclotomic difference sets (see [1] and [14]):

• F(4)
q = {x4 | x ∈ F∗q}, q = 4t2 + 1, t odd;

• F(8)
q = {x8 | x ∈ F∗q}, q = 8t2 + 1 = 64u2 + 9, t, u odd.

The corresponding tilings F∗q/F
(4)
q and F∗q/F

(8)
q with parameters (q, (q−1)/4, (q−5)/16)

and (q, (q− 1)/8, (q− 9)/64) consist of four and of eight difference sets, respectively. The

first few examples for F(4)
q are (37, 9, 2), (101, 25, 6), (197, 49, 12), (677, 169, 12), and for

F(8)
q (73, 9, 1) with the next one already being very large.

The tiling of Example 2 cannot be obtained from Theorem 12 because D1 = {1, 5, 11,
24, 25, 27} is not a multiplicative subgroup of F∗31. However, D1 is a union of the subgroup
〈5〉 = {1, 5, 25} and one of its cosets, while the other difference sets are multiples of D1:

D1 = {1, 5, 11, 24, 25, 27} = ω0〈5〉 ∪ ω3〈5〉,
D2 = {2, 10, 17, 19, 22, 23} = ω4D1,
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D3 = {3, 4, 7, 13, 15, 20} = ω8D1,

D4 = {6, 8, 9, 14, 26, 30} = ω2D1,

D5 = {12, 16, 18, 21, 28, 29} = ω6D1.

Here ω = 3 is a primitive element of F31. In general, assume we have a (q, k, λ) difference
set in Fq fixed by the multiplier m, such that the order |〈m〉| = r divides k. Then D can
be written as a union of cosets

D = ωc1〈m〉 ∪ ωc2〈m〉 ∪ · · · ∪ ωck/r〈m〉.

The problem of tiling Fq by multiples of D is equivalent to tiling the set of integers
{0, 1, . . . , n − 1} by cyclic shifts of {c1, c2, . . . , ck/r} modulo n = (q − 1)/r. This can be
expressed as the following theorem.

Theorem 13. Let ω be a primitive element and 〈m〉 a multiplicative subgroup of order r
of the finite field Fq. Suppose we have a (q, k, λ) difference set in (Fq,+) which is a union
of cosets

D = ωc1〈m〉 ∪ ωc2〈m〉 ∪ · · · ∪ ωck/r〈m〉,

for c1, c2, . . . , ck/r ∈ {0, 1, . . . , n − 1}, n = (q − 1)/r. Then there exists a (q, k, λ)
tiling of (Fq,+) by multiples of D if and only if there exist integers b1, b2, . . . , b(k−1)/λ ∈
{0, 1, . . . , n− 1} such that

bi − bj 6≡ cu − cv (mod n)

for all i, j ∈ {1, 2, . . . , (k − 1)/λ}, i 6= j, and u, v ∈ {1, 2, . . . , k/r}, u 6= v.

Proof. Let C = {c1, c2, . . . , ck/r}. From the observations above we see that the tiling can
be constructed if and only if there exist integers b1, b2, . . . , b(k−1)/λ such that

(b1 + C) ∪ (b2 + C) ∪ · · · ∪ (b(k−1)/λ + C) = {0, 1, . . . , n− 1}

holds modulo n. This is equivalent to sets of the form bi + C being mutually disjoint,
i.e. bi + cu 6≡ bj + cv (mod n) for all different i, j ∈ {1, 2, . . . , (k − 1)/λ} and u, v ∈
{1, 2, . . . , k/r}. Finally, the condition can be expressed as bi− bj 6≡ cu− cv (mod n).

If we take the (31, 6, 1) difference set D = ω0〈5〉∪ω3〈5〉, then r = 3, n = 10, C = {0, 3}
and the problem of finding the bi’s has two solutions: 0, 2, 4, 6, 8 and 1, 3, 5, 7, 9. The first
one gives the tiling of Example 2, and the second one a (31, 6, 1) tiling that corresponds
to the mirror image of the necklace in Figure 1.

As another application of Theorem 13, we show that F307 cannot be tiled by multiples
of a (307, 18, 1) difference set fixed by the multiplier 17. We take the primitive element
ω = 5 and note that the multiplicative group 〈17〉 = {1, 17, 289} is of order r = 3. By [14,
Remark 18.74], all (307, 18, 1) difference sets are equivalent to

D = ω0〈17〉 ∪ ω10〈17〉 ∪ ω30〈17〉 ∪ ω35〈17〉 ∪ ω37〈17〉 ∪ ω59〈17〉.
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Tiling F307 by multiples of D is equivalent to tiling {0, . . . , 101} by translates of the set
C = {0, 10, 30, 35, 37, 59} modulo n = 102. We set up a graph with vertices {0, . . . , 101},
i and j being adjacent if i − j 6≡ u − v (mod 102) for all u, v ∈ C, u 6= v. A tiling
corresponds to a clique of size 17 in this graph. Using the program Cliquer [21] we found
that the maximum clique size is 14. Therefore, a tiling does not exist. However, we got
14 mutually disjoint (307, 18, 1) difference sets corresponding to the following numbers bi
as in Theorem 13: 0, 3, 6, 9, 12, 15, 48, 51, 54, 57, 60, 63, 66, 69.

5 Tilings using Singer difference sets

Let q be the power of a prime, n > 3 an integer, and G the cyclic group of order qn−1
q−1 .

Singer difference sets are difference sets in G with parameters ( q
n−1
q−1 ,

qn−1−1
q−1 , q

n−2−1
q−1 ). The

classical construction comes from projective geometry PG(n− 1, q). Let ω be a primitive
element of Fqn and Tr(x) = x+ xq + · · ·+ xq

n−1
the trace mapping from Fqn to Fq. Let β

be a nonzero element in Fqn and r an integer coprime to qn−1
q−1 . Then the set of integers

{i | 0 6 i <
qn − 1

q − 1
,Tr(βωri) = 0} (8)

forms a Singer difference set with addition modulo qn−1
q−1 . There are also other constructions

of cyclic difference sets with these parameters, see [12, 19]. We are going to consider using
classical Singer difference sets to tile the group G; such tilings will be called classical Singer
tilings. Several small examples fall into this category.

Example 14. Take q = 2, n = 3 and the irreducible polynomial f(x) = x3 + x2 + 1
over F2 to construct the field F23 . Take the primitive element ω = x and β = 1. Then
by substituting r = 3 in (8) we get the squares in F∗7, and from r = 1 the non-squares.
Hence, the Paley tiling of F7 is a classical Singer tiling.

Example 15. Take q = 5, n = 3 and the irreducible polynomial f(x) = x3 + 3x+ 2 over
F5 to construct the field F53 . Take the primitive element ω = x and β = 1. Then by
substituting r = 17, 11, 21, 37, 3 in (8) we get the difference sets D1, . . . , D5 of Example 2.
This (31, 6, 1) tiling is also a classical Singer tiling.

Example 16. Take q = 8, n = 3 and first construct the field F8 as in Example 14. Now
take the irreducible polynomial g(y) = y3 + y + (x2 + 1) over F8 to construct the field
F83 with primitive element ω = y. By substituting β = 1, r = 1 in (8) we get the eighth
powers in F73, and from r = 25, 11, 9, 5, 17, 13, 3 the other cosets forming a (73, 9, 1) tiling.

Hence, the tiling obtained from Theorem 12 by using the eighth powers F(8)
73 is a classical

Singer tiling as well.

To prove our main result in this section, we need the following lemma which can be
found in [18, Chapter 7].
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Lemma 17. If ϕ : Fq → Fq is an arbitrary function, then there exists a unique polynomial
g ∈ Fq[x] with deg(g) < q representing ϕ, in the sense that g(c) = ϕ(c) for all c ∈ Fq. To
be precise,

g(x) =
∑
c∈Fq

ϕ(c)(1− (x− c)q−1).

Furthermore, for f, g ∈ Fq[x] we have f(c) = g(c) for all c ∈ Fq if and only if f(x) ≡ g(x)
(mod xq − x).

Theorem 18. When qn−1
q−1 > q ·

(
n+q−2
n−1

)
+ 1, there are no classical Singer tilings of the

cyclic group of order qn−1
q−1 .

Proof. Assume that there are βi and ri where i = 1, 2, . . . , q, such that the classical Singer
difference sets determined by (βj, rj) form a tiling. That means Tr(βi) 6= 0 for each i and
there is a unique i such that Tr(βia

ri) = 0 for each a ∈ Fqn \ Fq. Hence

τ(a) :=

q∑
i=1

Tr(βia
ri)q−1 =

{
0, a ∈ Fq;

q − 1, otherwise.

By Lemma 17, we can write τ as a polynomial over Fqn as follows:

1 + τ(x) =
∑
a∈Fq

(1− (x− a)q
n−1)

= −
∑
a∈Fq

qn−1∑
i=0

(
qn − 1

i

)
xq

n−1−i(−a)i

=

qn−1∑
i=0

(−1)i+1

(
qn − 1

i

)∑
a∈Fq

ai

xq
n−1−i

=

qn−1
q−1∑
j=1

(−1)(q−1)j
(
qn − 1

(q − 1)j

)
xq

n−1−(q−1)j.

The last equality follows from the fact that∑
a∈Fq

ai =

{
−1, i ≡ 0 (mod q − 1) and i 6= 0;

0, otherwise.

Finally, using
(
qn−1
(q−1)j

)
≡ 1 modulo the characteristic of Fq, we can write

τ(x) =

qn−1
q−1
−1∑

j=1

(−1)(q−1)jxq
n−1−(q−1)j.

Hence, the polynomial τ(x) has qn−1
q−1 − 1 terms.
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On the other hand, as the polynomial Tr(βix
ri)q−1 has at most

(
n+q−2
n−1

)
terms, τ(x)

has at most q ·
(
n+q−2
n−1

)
terms. Note that reducing modulo xq

n − x cannot increase the

number of terms of the polynomial. By Lemma 17, we have a contradiction when qn−1
q−1 >

q ·
(
n+q−2
n−1

)
+ 1.

According to Theorem 18, for each given q there is an integer nq such that, when
n > nq there are no classical Singer tilings. We list several q’s and the corresponding nq’s
in the following table.

q 2, 3, 4 5, . . . , 17 19, . . . , 109 113, . . . , 701 709, . . . , 5011

nq 4 5 6 7 8

Table 2: Nonexistence of classical Singer tilings.
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