On exponential growth of degrees

Yuval Roichman

Department of Mathematics Bar-Ilan University Ramat-Gan 52900, Israel yuvalr@math.biu.ac.il

Submitted: May 4, 2015; Accepted: Jun 1, 2015; Published: Jun 22, 2015

Abstract

A short proof to a recent theorem of Giambruno and Mishchenko is given in this note.

1 The theorem

The following theorem was recently proved by Giambruno and Mishchenko.

Theorem 1. [1, Theorem 1] For every $0 < \alpha < 1$, there exist $\beta > 1$ and $n_0 \in \mathbb{N}$, such that for every partition λ of $n \ge n_0$ with $\max\{\lambda_1, \lambda_1'\} < \alpha n$

$$f^{\lambda} \geqslant \beta^n$$
.

The proof of Giambruno and Mishchenko is rather complicated and applies a clever order on the cells of the Young diagram. It should be noted that Theorem 1 is an immediate consequence of Rasala's lower bounds on minimal degrees [2, Theorems F and H]. The proof of Rasala is very different and not less complicated; it relies heavily on his theory of degree polynomials. In this short note we suggest a short and relatively simple proof to Theorem 1.

First, note that the following weak version is an immediate consequence of the hook-length formula.

Lemma 2. The theorem holds for every $0 < \alpha < \frac{1}{2e}$.

Proof. Under the assumption, for every $(i, j) \in [\lambda]$

$$h_{i,j} \leqslant h_{1,1} \leqslant \lambda_1 + \lambda_1' \leqslant 2\alpha n.$$

Hence, by the hook-length formula together with Stirling's formula, for sufficiently large n

$$f^{\lambda} = \frac{n!}{\prod\limits_{(i,j)\in[\lambda]} h_{i,j}} \geqslant \frac{n!}{(2\alpha n)^n} \geqslant \frac{(\frac{n}{e})^n}{(2\alpha n)^n} = \beta^n,$$

where, by assumption, $\beta := \frac{1}{2e\alpha} > 1$.

2 Two lemmas

Lemma 3. For every $\lambda \vdash n$

$$\prod_{\substack{(i,j)\in[\lambda]\\1\leq i}} h_{ij} \leqslant (n-\lambda_1)!$$

Proof. For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t) \vdash n$ let $\bar{\lambda} := (\lambda_2, \dots, \lambda_t) \vdash n - \lambda_1$. Then

$$1 \leqslant f^{\bar{\lambda}} = \frac{(n - \lambda_1)!}{\prod\limits_{\substack{(i,j) \in [\lambda]\\1 < i}} h_{ij}}.$$

Lemma 4. For every $\lambda \vdash n$ and $1 \leqslant k \leqslant \lambda_1$,

$$\prod_{(1,j)\in[\lambda]} h_{1j} \leqslant \binom{n}{k} \left(\lambda_1 + \left\lfloor \frac{n-\lambda_1}{k} \right\rfloor\right)!.$$

Proof. Obviously, $h_{1,1} > h_{1,2} > \cdots > h_{1,\lambda_1}$. Since $h_{1,1} \leqslant n$ it follows that

$$\prod_{\substack{(1,j)\in[\lambda]\\j\leqslant k}} h_{1j}\leqslant (n)_k$$

and

$$\prod_{\substack{(1,j)\in[\lambda]\\k< j}} h_{1j} \leqslant (h_{1,k})_{\lambda_1-k}.$$

To complete the proof, notice that, by definition, $\sum_{i=1}^k \bar{\lambda}_i' \leq n - \lambda_1$. Hence $\bar{\lambda}_k' \leq \lfloor \frac{n-\lambda_1}{k} \rfloor$ and thus

$$h_{1,k} = \lambda_1 - k + \lambda'_k = \lambda_1 - k + 1 + \bar{\lambda}'_k \leqslant \lambda_1 + \bar{\lambda}'_k \leqslant \lambda_1 + \left\lfloor \frac{n - \lambda_1}{k} \right\rfloor.$$

We conclude that

$$\prod_{\substack{(1,j)\in[\lambda]\\k\neq j}} h_{1j} \leqslant (h_{1,k})_{\lambda_1-k} \leqslant \left(\lambda_1 + \left\lfloor \frac{n-\lambda_1}{k} \right\rfloor\right)_{\lambda_1-k} = \frac{\left(\lambda_1 + \left\lfloor \frac{n-\lambda_1}{k} \right\rfloor\right)!}{\left(\left\lfloor \frac{n-\lambda_1}{k} \right\rfloor + k\right)!} \leqslant \frac{\left(\lambda_1 + \left\lfloor \frac{n-\lambda_1}{k} \right\rfloor\right)!}{k!}.$$

2

Thus

$$\prod_{\substack{(1,j)\in[\lambda]\\(1,j)\in[\lambda]}}h_{1j}=\prod_{\substack{(1,j)\in[\lambda]\\j\leqslant k}}h_{1j}\prod_{\substack{(1,j)\in[\lambda]\\k< j}}h_{1j}\leqslant (n)_k\frac{\lambda_1+\left\lfloor\frac{n-\lambda_1}{k}\right\rfloor!}{k!}=\binom{n}{k}\left(\lambda_1+\left\lfloor\frac{n-\lambda_1}{k}\right\rfloor\right)!.$$

3 Proof of Theorem 1

For the sake of simplicity the floor notation is omitted in this section.

By Lemmas 3 and 4,

$$f^{\lambda} = \frac{n!}{\prod\limits_{(i,j)\in[\lambda]} h_{ij}} = \frac{n!}{\prod\limits_{(1,j)\in[\lambda]} h_{1j} \prod\limits_{(i,j)\in[\lambda] \atop 1< i} h_{ij}} \geqslant \frac{n!}{(n-\lambda_1)! \binom{n}{k} (\lambda_1 + \frac{n-\lambda_1}{k})!}$$
$$= \frac{(n-k)!k!}{(n-\lambda_1)! (\lambda_1 + \frac{n-\lambda_1}{k})!}.$$

Denote $\gamma_n:=\frac{\lambda_1}{n}$. By Lemma 2, we may assume that $\frac{1}{2e}<\gamma_n<\alpha$. Choose $k=\epsilon n$ for a constant $\epsilon=\epsilon(\alpha)$ to be defined later. Let $c_n:=\frac{1-\gamma_n}{\epsilon}$. Thus, by definition, $\frac{1-\alpha}{\epsilon}< c_n<\frac{2e-1}{2e\epsilon}$. By the Stirling's formula, the lower bound in the RHS asymptotically equals to

$$\frac{((1-\epsilon)n)!(\epsilon n)!}{((1-\gamma_n)n)!(\gamma_n n + \frac{1-\gamma_n}{\epsilon})!} \sim \sqrt{\frac{\epsilon(1-\epsilon)}{(1-\gamma_n)(\gamma_n + \frac{c_n}{n})}} \cdot \frac{(1-\epsilon)^{(1-\epsilon)n}\epsilon^{\epsilon n}}{(1-\gamma_n)^{(1-\gamma_n)n}(\gamma_n + \frac{c_n}{n})^{(\gamma_n + \frac{c_n}{n})n}} \cdot \left(\frac{e}{n}\right)^{c_n}.$$

Hence, for sufficiently large n

$$\lim_{n \to \infty} \inf (f^{\lambda})^{1/n}$$

$$\geqslant \lim_{n \to \infty} \inf \left(\sqrt{\frac{\epsilon (1 - \epsilon)}{(1 - \gamma_n)(\gamma_n + \frac{c_n}{n})}} \cdot \frac{(1 - \epsilon)^{(1 - \epsilon)n} \epsilon^{\epsilon n}}{(1 - \gamma_n)^{(1 - \gamma_n)n} (\gamma_n + \frac{c_n}{n})^{(\gamma_n + \frac{c_n}{n})n}} \cdot \left(\frac{e}{n}\right)^{c_n} \right)^{1/n}$$

$$= \lim_{n \to \infty} \inf \frac{\epsilon^{\epsilon} (1 - \epsilon)^{1 - \epsilon}}{\gamma_n^{\gamma_n} (1 - \gamma_n)^{1 - \gamma_n}}.$$

The function $f(x) := x^x (1-x)^{1-x}$ is differentiable in the open interval (0,1), symmetric around its minimum at $x = \frac{1}{2}$, decreasing in $(0,\frac{1}{2}]$, increasing in $[\frac{1}{2},1)$, strictly less than 1 in this interval and tends to 1 at the boundaries. Thus, for every $0 < 1 - \beta \le x \le \beta < 1$, $f(x) \le f(\beta) = f(1-\beta)$.

Now, if $1 - \frac{1}{2e} > \alpha$ then $\frac{1}{2e} < \gamma_n < \alpha < 1 - \frac{1}{2e}$; hence $f(\gamma_n) < f(1 - \frac{1}{2e}) = f(\frac{1}{2e})$. If $1 - \frac{1}{2e} \leqslant \alpha$ then $1 - \alpha \leqslant \frac{1}{2e} < \gamma_n < \alpha$; hence $f(\gamma_n) < f(\alpha)$. It follows that

$$\lim_{n\to\infty}\inf(f^\lambda)^{1/n}\geqslant \lim_{n\to\infty}\inf\frac{f(\epsilon)}{f(\gamma_n)}>\begin{cases} \frac{f(\epsilon)}{f(\alpha)}, & 1-\frac{1}{2e}\leqslant\alpha;\\ \frac{f(\epsilon)}{f(\frac{1}{2e})}, & \text{otherwise}. \end{cases}$$

Choosing $\epsilon := \delta \min\{1 - \alpha, \frac{1}{2e}\}$ for some $0 < \delta < 1$ we conclude that

$$\lim_{n\to\infty}\inf(f^\lambda)^{1/n}>\begin{cases} \frac{f(\delta(1-\alpha))}{f(\alpha)}=\frac{f(\delta(1-\alpha))}{f(1-\alpha)}, & 1-\alpha\leqslant\frac{1}{2e};\\ \frac{f(\frac{\delta}{2e})}{f(\frac{1}{2e})}, & \text{otherwise}. \end{cases}$$

Since the function f is strictly decreasing in $(0, \frac{1}{2e}]$, the lower bound is greater than 1. The proof is complete.

Acknowledgements

Thanks to Amitai Regev for fruitful discussions and references. Thanks also to Ron Adin, Nathan Keller and the anonymous referee for their comments.

References

- [1] A. Giambruno and S. Mishchenko, Irreducible characters of the symmetric group and exponential growth. arXiv:1406.1653
- [2] R. Rasala, On the minimal degrees of characters of S_n . J. Algebra, 45:132–181, 1977.