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Abstract

A short proof to a recent theorem of Giambruno and Mishchenko is given in this
note.

1 The theorem

The following theorem was recently proved by Giambruno and Mishchenko.

Theorem 1. [1, Theorem 1] For every 0 < α < 1, there exist β > 1 and n0 ∈ N, such
that for every partition λ of n > n0 with max{λ1, λ

′
1} < αn

fλ > βn.

The proof of Giambruno and Mishchenko is rather complicated and applies a clever
order on the cells of the Young diagram. It should be noted that Theorem 1 is an
immediate consequence of Rasala’s lower bounds on minimal degrees [2, Theorems F and
H]. The proof of Rasala is very different and not less complicated; it relies heavily on his
theory of degree polynomials. In this short note we suggest a short and relatively simple
proof to Theorem 1.

First, note that the following weak version is an immediate consequence of the hook-
length formula.

Lemma 2. The theorem holds for every 0 < α < 1
2e
.

Proof. Under the assumption, for every (i, j) ∈ [λ]

hi,j 6 h1,1 6 λ1 + λ′1 6 2αn.
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Hence, by the hook-length formula together with Stirling’s formula, for sufficiently large
n

fλ =
n!∏

(i,j)∈[λ]

hi,j
>

n!

(2αn)n
>

(n
e
)n

(2αn)n
= βn,

where, by assumption, β := 1
2eα

> 1.

2 Two lemmas

Lemma 3. For every λ ` n ∏
(i,j)∈[λ]

1<i

hij 6 (n− λ1)!

Proof. For λ = (λ1, λ2, . . . , λt) ` n let λ̄ := (λ2, . . . , λt) ` n− λ1. Then

1 6 f λ̄ =
(n− λ1)!∏
(i,j)∈[λ]

1<i

hij
.

Lemma 4. For every λ ` n and 1 6 k 6 λ1,∏
(1,j)∈[λ]

h1j 6

(
n

k

)(
λ1 +

⌊
n− λ1

k

⌋)
!.

Proof. Obviously, h1,1 > h1,2 > · · · > h1,λ1 . Since h1,1 6 n it follows that∏
(1,j)∈[λ]
j6k

h1j 6 (n)k

and ∏
(1,j)∈[λ]
k<j

h1j 6 (h1,k)λ1−k.

To complete the proof, notice that, by definition,
k∑
i=1

λ̄′i 6 n−λ1. Hence λ̄′k 6 bn−λ1k
c and

thus

h1,k = λ1 − k + λ′k = λ1 − k + 1 + λ̄′k 6 λ1 + λ̄′k 6 λ1 +

⌊
n− λ1

k

⌋
.

We conclude that∏
(1,j)∈[λ]
k<j

h1j 6 (h1,k)λ1−k 6

(
λ1 +

⌊
n− λ1

k

⌋)
λ1−k

=
(λ1 + bn−λ1

k
c)!

(bn−λ1
k
c+ k)!

6
(λ1 + bn−λ1

k
c)!

k!
.
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Thus ∏
(1,j)∈[λ]

h1j =
∏

(1,j)∈[λ]
j6k

h1j

∏
(1,j)∈[λ]
k<j

h1j 6 (n)k
λ1 + bn−λ1

k
c!

k!
=

(
n

k

)(
λ1 +

⌊
n− λ1

k

⌋)
!.

3 Proof of Theorem 1

For the sake of simplicity the floor notation is omitted in this section.

By Lemmas 3 and 4,

fλ =
n!∏

(i,j)∈[λ]

hij
=

n!∏
(1,j)∈[λ]

h1j

∏
(i,j)∈[λ]

1<i

hij
>

n!

(n− λ1)!
(
n
k

)
(λ1 + n−λ1

k
)!

=
(n− k)!k!

(n− λ1)!(λ1 + n−λ1
k

)!
.

Denote γn := λ1
n

. By Lemma 2, we may assume that 1
2e
< γn < α. Choose k = εn for a

constant ε = ε(α) to be defined later. Let cn := 1−γn
ε

. Thus, by definition, 1−α
ε

< cn <
2e−1
2eε

. By the Stirling’s formula, the lower bound in the RHS asymptotically equals to

((1− ε)n)!(εn)!

((1− γn)n)!(γnn+ 1−γn
ε

)!
∼

√
ε(1− ε)

(1− γn)(γn + cn
n

)
· (1− ε)(1−ε)nεεn

(1− γn)(1−γn)n(γn + cn
n

)(γn+ cn
n

)n
·
( e
n

)cn
.

Hence, for sufficiently large n

lim
n→∞

inf(fλ)1/n

> lim
n→∞

inf

(√
ε(1− ε)

(1− γn)(γn + cn
n

)
· (1− ε)(1−ε)nεεn

(1− γn)(1−γn)n(γn + cn
n

)(γn+ cn
n

)n
·
( e
n

)cn)1/n

= lim
n→∞

inf
εε(1− ε)1−ε

γγnn (1− γn)1−γn
.

The function f(x) := xx(1− x)1−x is differentiable in the open interval (0, 1), symmetric
around its minimum at x = 1

2
, decreasing in (0, 1

2
], increasing in [1

2
, 1), strictly less than 1

in this interval and tends to 1 at the boundaries. Thus, for every 0 < 1− β 6 x 6 β < 1,
f(x) 6 f(β) = f(1− β).

Now, if 1 − 1
2e
> α then 1

2e
< γn < α < 1 − 1

2e
; hence f(γn) < f(1 − 1

2e
) = f( 1

2e
). If

1− 1
2e

6 α then 1− α 6 1
2e
< γn < α; hence f(γn) < f(α). It follows that

lim
n→∞

inf(fλ)1/n > lim
n→∞

inf
f(ε)

f(γn)
>

{
f(ε)
f(α)

, 1− 1
2e

6 α;
f(ε)

f( 1
2e

)
, otherwise.
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Choosing ε := δmin{1− α, 1
2e
} for some 0 < δ < 1 we conclude that

lim
n→∞

inf(fλ)1/n >


f(δ(1−α))
f(α)

= f(δ(1−α))
f(1−α)

, 1− α 6 1
2e

;

f( δ
2e

)

f( 1
2e

)
, otherwise.

Since the function f is strictly decreasing in (0, 1
2e

], the lower bound is greater than 1.
The proof is complete.
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