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Abstract

This paper deals with flag-transitive non-symmetric 2-designs with (r, λ) = 1.
We prove that if D is a non-trivial non-symmetric 2-(v, k, λ) design with (r, λ) = 1
and G 6 Aut(D) is flag-transitive with Soc(G) = An for n > 5, then D is a 2-(6, 3, 2)
design, the projective space PG(3, 2), or a 2-(10, 6, 5) design.

Keywords: non-symmetric design; automorphism group; flag-transitive; alternat-
ing group

1 Introduction

This paper is inspired by a paper of P. H. Zieschang [17] on flag-transitive 2-designs
with (r, λ) = 1. He proved in [17, Theorem] that if G is a flag-transitive automorphism
group of a 2-design with (r, λ) = 1 and T is a minimal normal subgroup of G, then T is
abelian, or simple and CG(T ) = 1. From [6, 2.3.7(a)](see also Lemma 3 below) we know
that if G 6 Aut(D) is flag-transitive with (r, λ) = 1 then G acts primitively on P . It
follows that G is an affine or almost simple group. So it is possible to classify this type
of designs by using the classification of finite primitive permutation groups, especially for
the case of G is almost simple, with alternating socle. A 2-design with λ = 1 is also
called a finite linear space. In 2001, A. Delandtsheer [5] classified flag-transitive finite
linear spaces, with alternating socle, see Lemma 4 below. Recently, in [16], Zhu, Guan
and Zhou have classified flag-transitive symmetric designs with (r, λ) = 1 and alternating
socle. This paper is a continuation of [5, 16] and a contribution to the case where D is a
non-symmetric 2-design.
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A 2-(v, k, λ) design D is a pair (P,B) where P is a v-set and B is a collection of b k-
subsets (called blocks) of P such that each point of P is contained in exactly r blocks and
any 2-subset of P is contained in exactly λ blocks. The numbers v, b, r, k, λ are parameters
of the design. It is well known that

bk = vr,

b > v,

and so
r > k.

The complement D of a 2-(v, k, λ) design D = (P,B) is a 2-(v, v − k, b − 2r + λ)
design (P,B), where B = {P \ B |B ∈ B}. A 2-(v, k, λ) design is symmetric if b = v (or
equivalently, r = k), otherwise is non-symmetric. This paper deals only with non-trivial
non-symmetric designs, those with 2 < k < v − 1. So that we have

b > v and r > k.

An automorphism of D is a permutation of P which leaves B invariant. The full auto-
morphism group of D, denoted by Aut(D), is the group consisting of all automorphisms
of D. A flag of D is a point-block pair (x,B) such that x ∈ B. For G 6 Aut(D), G is
called flag-transitive if G acts transitively on the set of flags, and point-primitive if G acts
primitively on P . A design D is antiflag transitive if G 6 Aut(D) acts transitively on the
set {(x,B) |x /∈ B} ⊆ P × B of antiflags of D. It is easily known that G 6 Aut(D) is
flag-transitive on D if and only if G is antiflag transitive on D.

Flag-transitivity is one of many conditions that can be imposed on the automorphism
groupG of a designD. Lots of work have been done on flag-transitive symmetric 2-designs,
see [11, 12, 13, 15], for example. Although there exists large families of non-symmetric 2-
designs, less is known when D is non-symmetric admitting a flag-transitive automorphism
group.

The aim of this paper is to classify the flag-transitive non-symmetric 2-designs with
(r, λ) = 1, whose automorphism group is almost simple with an alternating group as socle.
This can be viewed as a first step towards a classification of non-symmetric 2-designs with
(r, λ) = 1. The main result of this paper is the following.

Theorem 1. Let D be a non-symmetric 2-(v, k, λ) design with (r, λ) = 1, where r is the
number of blocks through a point. If G 6 Aut(D) is flag-transitive with alternating socle,
then up to isomorphism (D, G) is one of the following:

(i) D is a unique 2-(15, 3, 1) design and G = A7 or A8.

(ii) D is a unique 2-(6, 3, 2) design and G = A5.

(iii) D is a unique 2-(10, 6, 5) design and G = A6 or S6.

This, together with [16, Theorem 1.1], yields the following.
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Corollary 2. If D is a 2-(v, k, λ) design with (r, λ) = 1, which admits a flag-transitive
automorphism group G with alternating socle, then D is a 2-(6, 3, 2) design, a 2-(10, 6, 5)
design, the projective space PG(3, 2) or PG2(3, 2).

The paper is organized as follows. In Section 2, we introduce some preliminary results
that are important for the remainder of the paper. In Section 3, we complete the proof
of Theorem 1 in three parts.

2 Preliminaries

Lemma 3. ([6, 2.3.7(a)]) Let D be a 2-(v, k, λ) design with flag-transitive automorphism
group G. If (r, λ) = 1 then G is point-primitive.

The following result due to A. Delandtsheer [5] gives the classification of flag-transitive
finite linear spaces with alternating socle.

Lemma 4. Let S be a finite non-trivial linear space having an automorphism group G
which acts flag-transitively on S. If An E G 6 Aut(An) with n > 5, then S = PG(3, 2)
and G ∼= A7 or A8

∼= PSL4(2).

Lemma 5. Let D be a 2-(v, k, λ) design. Then

(i) bk(k − 1) = λv(v − 1).

(ii) r = λ(v−1)
k−1

. In particular, if (r, λ) = 1 then r | v − 1 and (r, v) = 1.

Proof. Counting in two ways triples (α, β,B), where α and β are distinct points and
B is a block incident with both of them, gives (i). Part (ii) follows from the basic equation
bk = vr and Part (i). �

Lemma 6. If D is a non-symmetric 2-(v, k, λ) design and G is a flag-transitive point-
primitive automorphism group of D, then

(i) r2 > λv, and |Gx|3 > λ|G|, where x ∈ P ;

(ii) r | λdi, where di is any subdegree of G. Furthermore, if (r, λ) = 1 then r | di.

Proof. (i) The equality r = λ(v−1)
k−1

implies λv = r(k−1)+λ < r(r−1)+λ = r2−r+λ,
and by r > k > λ we have r2 > λv. Combining this with v = |G : Gx| and r 6 |Gx| gives
|Gx|3 > λ|G|. Part (ii) was proved in [4]. �

Lemma 7. ([9, p.366]) If G is An or Sn, acting on a set Ω of size n, and H is any
maximal subgroup of G with H 6= An, then H satisfies one of the following:

(i) H = (Sk × S`) ∩G, with n = k + ` and k 6= ` (intransitive case);

(ii) H = (Sk o S`) ∩G, with n = k`, k > 1 and ` > 1 (imprimitive case);
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(iii) H = AGLk(p) ∩G, with n = pk and p prime (affine case);

(iv) H = (T k.(OutT ×Sk))∩G, with T a nonabelian simple group, k > 2 and n = |T |k−1

(diagonal case);

(v) H = (Sk o S`) ∩G, with n = k`, k > 5 and ` > 1 (wreath case);

(vi) T EH 6 Aut(T ), with T a nonabelian simple group, T 6= An and H acting primi-
tively on Ω (almost simple case).

Remark 8. This lemma does not deal with the groups M10, PGL2(9) and PΓL2(9) that
have A6 as socle. These exceptional cases will be handled in the first part of Section 3.

Lemma 9. [10, Theorem (b)(I)] Let G be a primitive permutation group of odd degree
n on a set Ω with simple socle X := Soc(G), and let H = Gx, x ∈ Ω. If X ∼= Ac, an
alternating group, then one of the following holds:

(i) H is intransitive, and H = (Sa × Sc−a) ∩G where 1 6 a < 1
2
c;

(ii) H is transitive and imprimitive, and H = (Sa o Sc/a) ∩G where a > 1 and a | c;

(iii) H is primitive, n = 15 and G ∼= A7.

Lemma 10. [7, Theorem 5.2A] Let G := Alt(Ω) where n := |Ω| > 5, and let s be an
integer with 1 6 s 6 n

2
. Suppose that, K 6 G has index |G : K| <

(
n
s

)
. Then one of the

following holds:

(i) For some ∆ ⊂ Ω with |∆| < s we have G(∆) 6 K 6 G{∆};

(ii) n = 2m is even, K is imprimitive with two blocks of size m, and |G : K| = 1
2

(
n
m

)
;

or

(iii) one of six exceptional cases hold where:

(a) K is imprimitive on Ω and (n, s, |G : K|) = (6, 3, 15);

(b) K is primitive on Ω and (n, s, |G : K|, K) = (5, 2, 6, 5 : 2), (6, 2, 6, PSL2(5)),
(7, 2, 15, PSL3(2)), (8, 2, 15, AGL3(2)), or (9, 4, 120, PΓL2(8)).

Remark 11. (1) From part (i) of Lemma 10 we know that K contains the alternating
group G(∆) = Alt(Ω \∆) of degree n− s+ 1.

(2) A result similars to Lemma 10 holds for the finite symmetric groups Sym(Ω) which
can be found in [7, Theorem 5.2B].

We will also need some elementary inequalities.

Lemma 12. Let s and t be two positive integers.

(i) If t > s > 7, then
(
s+t
s

)
> t4 > s2t2.
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(ii) If s > 6 and t > 2, then 2(s−1)(t−1) > s4
(
t
2

)2
implies 2s(t−1) > (s+ 1)4

(
t
2

)2
.

(iii) If t > 6 and s > 2, then 2(s−1)(t−1) > s4
(
t
2

)2
implies 2(s−1)t > s4

(
t+1

2

)2
.

(iv) If t > 4 and s > 3, then
(
s+t
s

)
> s2t2 implies

(
s+t+1
s

)
> s2(t+ 1)2.

Proof. (i) It is necessary to prove that
(
s+t
s

)
> t4 holds. Since t > s > 7 then

7 6 s 6 [ s+t
2

], it follows that
(
s+t
s

)
>

(
t+7

7

)
> t4.

(ii) Suppose that s > 6, t > 2 and 2(s−1)(t−1) > s4
(
t
2

)2
. Then

2s(t−1) = 2(s−1)(t−1)2t−1 > s4

(
t

2

)2

2t−1 = (s+ 1)4

(
t

2

)2(
1− 1

s+ 1

)4

2t−1.

Combing this with the fact (1− 1
s+1

)42t−1 > 2× (6
7
)4 > 1 gives (ii).

(iii) Suppose that t > 6, s > 2 and 2(s−1)(t−1) > s4
(
t
2

)2
. Then

2(s−1)t = 2(s−1)(t−1)2s−1 > s4

(
t

2

)2

2s−1 = s4

(
t+ 1

2

)2(
1− 2

t+ 1

)2

2s−1.

Combing this with the fact (1− 2
t+1

)22s−1 > 2× (5
7
)2 > 1 gives (iii).

(iv) Suppose that
(
s+t
s

)
> s2t2. Then(

s+ t+ 1

s

)
=

(
s+ t

s

)
(s+ t+ 1)

(t+ 1)
> s2t2

(s+ t+ 1)

(t+ 1)
= s2(t+ 1)2 (s+ t+ 1)t2

(t+ 1)3
.

This, together with the inequality (s+ t+ 1)t2 > (t+ 1)3, yields (iv). �

3 Proof of Theorem 1

Throughout this paper, we assume that the following hypothesis holds.
Hypothesis: Let D be a non-symmetric 2-(v, k, λ) design with (r, λ) = 1, G 6

Aut(D) be a flag-transitive automorphism group G with Soc(G) = An. Let x be a point
of P and H = Gx.

By Lemma 3, G acts primitively on P . So that H is a maximal subgroup of G by [14,
Theorem 8.2] and v = |G : H|. Furthermore, by the flag-transitivity of G, we have that b
divides G, r divides |H|, and r2 > v by Lemma 6(i).

Suppose first that n = 6 and G ∼= M10, PGL2(9) or PΓL2(9). Each of these groups
has exactly three maximal subgroups with index greater than 2, and their indices are
precisely 45, 36 and 10. By using the computer algebra system GAP [8], for v = 45, 36 or
10, we will compute the parameters (v, b, r, k, λ) that satisfy the following conditions:

r | v − 1; (1)

2 < k < r; (2)
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b =
vr

k
; (3)

λ =
bk(k − 1)

v(v − 1)
; (4)

(r, λ) = 1; (5)

r | |H|. (6)

We obtain three possible parameters (v, b, r, k, λ) as follows:

(10, 30, 9, 3, 2); (10, 18, 9, 5, 4); (10, 15, 9, 6, 5).

Now we consider the existence of flag-transitive non-symmetric designs with above pos-
sible parameters. For the parameters (10, 15, 9, 6, 5), we will consider the existence of its
complement design which has parameters (10, 15, 6, 4, 2).

Suppose that there exists a 2-(10, k, λ) design D with flag-transitive automorphism
group G, where the block size k is 3, 5 or 4, and λ = 2, 4 or 2 respectively. Here v = 10. Let
P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the group G ∼= M10, PGL2(9) or PΓL2(9) as the primitive
permutation group of degree 10 acting on P , has the following generators respectively ([2,
p.828]):

M10
∼= 〈(1, 6, 10, 9, 3, 8, 4, 5)(2, 7), (1, 7, 2, 6, 5, 9, 4, 10)(3, 8)〉,

PGL2(9) ∼= 〈(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), (1, 2, 5, 8, 9, 7, 4, 10, 6, 3)〉,
PΓL2(9) ∼= 〈(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), (1, 8, 6, 2, 9, 5, 3, 10)(4, 7)〉.

There are totally
(
v
k

)
k-element subsets of P . For any k-element subset B ⊆ P , we

calculate the length of the G-orbit BG where G = M10, PGL2(9) or PΓL2(9) respectively.
By using GAP [8], we found that |BG| > b for any k-element subset B. So G cannot act
block-transitively on D, a contradiction.

Now we consider G = An or Sn with n > 5. The point stabilizer H = Gx acts both
on P and the set Ωn := {1, 2, · · · , n}. Then by Lemma 7 one of the following holds:

• H is primitive in its action on Ωn;

• H is transitive and imprimitive in its action on Ωn;

• H is intransitive in its action on Ωn.

The proof of Theorem 1 consists of three subsections.

3.1 H acts primitively on Ωn.

Proposition 13. Let D and G satisfy Hypothesis. Let the point stabilizer act primi-
tively on Ωn. Then D is a 2-(6, 3, 2) design or the projective space PG(3, 2).
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Proof. Suppose first that r is even, since r | v − 1 then v is odd. Thus by Lemma
9, v = 15 and G = A7, and then r = 14. The possible parameters (v, b, r, k, λ) such that
2 < k < r and (r, λ) = 1 are (15, 35, 14, 6, 5), (15, 21, 14, 10, 9).

If there is a design D with parameters (15, 21, 14, 10, 9), then the complement design
D with parameters (15, 21, 7, 5, 2) also exists. However, by [3, Theorem 5.2], we know
that 2-(15, 5, 2) design does not exist. So the parameters (15, 21, 14, 10, 9) cannot occur.

Now assume that (v, b, r, k, λ) = (15, 35, 14, 6, 5). Let P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15}. Suppose that there exists a 2-(15, 6, 5) design D with flag-transitive auto-
morphism group A7. By [2, p.829], we know

A7
∼= 〈(1, 4, 7, 10, 13)(2, 5, 8, 11, 14)(3, 6, 9, 12, 15), (2, 6, 3, 8, 12, 4, 9)(5, 7, 13, 11, 10, 14, 15)〉.

There are totally 5005 =
(

15
6

)
6-element subsets of P . For any 6-element subset B ⊆ P ,

using GAP [8], we calculate the length of the A7-orbit BA7 . It follows that |BA7| > 35 for
any 6-element subset B. So A7 cannot act block-transitively on D, a contradiction.

Then r is odd. Let p be an odd prime divisor of r, then (p, v) = 1 according to Lemma
5(ii). Thus H contains a Sylow p-subgroup R of G. Let g ∈ G be a p-cycle, then there
is a conjugate of g belongs to H. This implies that H acting on Ωn contains an even
permutation with exactly one cycle of length p and n − p fixed points. By a result of
Jordan [14, Theorem 13.9], we have n− p 6 2. Therefore n− 2 6 p 6 n, p2 - |G|, and so
p2 - r. It follows that r is either a prime, namely n − 2, n − 1, n, or the product of two
twin primes, namely r = (n− 2)n. Moreover, since the primitivity of H acting on Ωn and

H � An implies that v >
[n+1

2
]!

2
by [14, Theorem 14.2], combining this with r2 > v gives

r2 >
[n+1

2
]!

2
.

Therefore, (n, r) = (5, 5), (5, 15), (6, 5), (7, 5), (7, 7), (7, 35), (8, 7) or (13,143). From Lem-

mas 5, 6, the facts v >
[n+1

2
]!

2
and [b, v] | |G|, where the condition [b, v] | |G| is a consequence

of v | |G| and b | |G|, we obtain 3 possible parameters (v, b, r, k, λ) which listed in the
following:

(6, 10, 5, 3, 2), (15, 21, 7, 5, 2), (15, 35, 7, 3, 1).

Case (1): (v, b, r, k, λ) = (6, 10, 5, 3, 2). By [2, p.27, p.36], we know that there is up
to isomorphism a unique 2-(6, 3, 2) design D = (P,B) where

P = {1, 2, 3, 4, 5, 6};
B = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 6}, {1, 5, 6},

{2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 5, 6}}.

Here G = A5, S5, A6 or S6, the stabilizer Gx = D10, AGL1(5), A5 or S5 respectively.
Assume first that G = S5, A6 or S6. As the primitive permutation group of degree
6, S5, A6 or S6 is 3-, 4- or 6-transitive respectively, so G is 3-transitive. If we choose
B = {1, 2, 3}, then |BG| = 20 > b = 10, a contradiction.
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Hence G = A5. Without loss of generality, assume that A5 = 〈(24)(56), (123)(456)〉.
Let B = {1, 2, 3} be a block. Then BA5 = B. Now G1 = 〈(24)(56), (35)(46)〉 ∼= D10, and

BG1 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 6}, {1, 5, 6}},

which is the G1-orbit on B containing B. So that G1 is transitive on 5 blocks through 1,
note that G is also transitive on P , and hence D is flag-transitive.

Case (2): (v, b, r, k, λ) = (15, 21, 7, 5, 2). This can be ruled out by [3, Theorem 5.2].
Case (3): (v, b, r, k, λ) = (15, 35, 7, 3, 1). Here λ = 1, by [5] or Lemma 4, we know

that D is the projective space PG(3, 2) and G = A7 or A8
∼= PSL4(2). For completeness,

the structure of the design and the proof of flag-transitivity are given below.
Let P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, the group G ∼= A7 or A8, as the

primitive group of degree 15 acting on P , has the following generators respectively ([2,
p.829]):

A7
∼= 〈(1, 4, 7, 10, 13)(2, 5, 8, 11, 14)(3, 6, 9, 12, 15), (2, 6, 3, 8, 12, 4, 9)(5, 7, 13, 11, 10, 14, 15)〉,

A8
∼= 〈(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), (1, 5)(6, 13)(7, 8)(10, 12)〉.

There are totally 455 =
(

15
3

)
3-element subsets of P . For any 3-element subset B ⊆ P ,

using GAP [8], we calculate the length of the G-orbit BG. It follows that up to isomorphism
there exists a unique 2-(15, 3, 1) design D = (P,B) where

B = {{1, 2, 13}, {1, 4, 5}, {1, 6, 11}, {4, 7, 8}, {1, 7, 9}, {4, 9, 14}, {1, 3, 10},
{7, 10, 11}, {9, 12, 13}, {4, 10, 12}, {2, 7, 12}, {2, 9, 15}, {4, 6, 13}, {1, 8, 14},
{10, 13, 14}, {1, 12, 15}, {2, 4, 11}, {7, 13, 15}, {5, 10, 15}, {3, 5, 12}, {2, 5, 6},
{3, 9, 11}, {11, 14, 15}, {3, 4, 15}, {5, 7, 14}, {6, 9, 10}, {5, 11, 13}, {3, 8, 13},
{6, 8, 15}, {5, 8, 9}, {3, 6, 7}, {6, 12, 14}, {2, 8, 10}, {2, 3, 14}, {8, 11, 12}}.

Let B = {1, 2, 13} be a block. Then it is easily known that BG = B. Now

G1 = 〈(2, 6, 3, 8, 12, 4, 9)(5, 7, 13, 11, 10, 14, 15), (3, 8)(4, 11)(5, 6)(7, 9)(10, 14)(12, 15)〉
∼= PSL3(2)

or

G1 = 〈(2, 5, 8, 3, 15, 11, 7)(4, 14, 10, 12, 6, 9, 13), (3, 14)(7, 12)(8, 10)(9, 15)〉 ∼= AGL3(2)

with G = A7 or A8 respectively. Then BG1 containing 7 blocks: {1, 2, 13}, {1, 6, 11},
{1, 3, 10}, {1, 4, 5}, {1, 8, 14}, {1, 7, 9}, {1, 12, 15}. So that G1 is transitive on r blocks
through 1, note that G is also transitive on P , and hence G is flag-transitive and D =
PG(3, 2). �

3.2 H acts transitively and imprimitively on Ωn.

Proposition 14. Let D and G satisfy Hypothesis. Let the point stabilizer acts transi-
tively and imprimitively on Ωn, then D is a 2-(10, 6, 5) design with Soc(G) = A6.
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Proof. Suppose on the contrary that Σ := {40,41, . . . ,4t−1} is a nontrivial partition
of Ωn preserved by H, where |4i| = s, 0 6 i 6 t− 1, s, t > 2 and st = n. Then

v =

(
ts
s

)(
(t−1)s
s

)
. . .

(
3s
s

)(
2s
s

)
t!

=

(
ts− 1

s− 1

)(
(t− 1)s− 1

s− 1

)
. . .

(
3s− 1

s− 1

)(
2s− 1

s− 1

)
. (7)

Moreover, the set Oj of j-cyclic partitions with respect to X (a partition of Ωn into
t classes each of size s) is an union of orbits of H on P for j = 2, . . . , t (see [5, 15] for
definitions and details).

(1) Suppose first that s = 2, then t > 3, v = (2t− 1)(2t− 3) · · · 5 · 3, and

dj = |Oj| =
1

2

(
t

j

)(
s

1

)j

= 2j−1

(
t

j

)
.

We claim that t < 7. If t > 7, then it is easy to know that v = (2t−1)(2t−3) · · · 5 ·3 >
t2(t−1)2, and as r divides d2 = t(t−1) it follows that t(t−1) > r, hence v > t2(t−1)2 > r2

which is a contradiction. Thus t < 7. For t = 3, 4, 5 or 6, we calculate d = gcd(d2, d3)
which listed in Table 1 below.

Table 1: Possible d when s = 2

t n v d2 d3 d
3 6 15 6 4 2
4 8 105 12 16 4
5 10 945 20 40 20
6 12 10395 30 80 10

In each case r 6 d which contradicts to the fact r2 > v.
(2) Suppose second that s > 3, then Oj is an orbit of H on P , and dj = |Oj| =(

t
j

)(
s
1

)j
= sj

(
t
j

)
. In particular, d2 =

(
t
2

)(
s
1

)2
= s2

(
t
2

)
and r | d2. Moreover, from

(
is−1
s−1

)
=

is−1
s−1
· is−2
s−2
· · · is−(s−1)

1
> is−1, for i = 2, 3, . . . , t, we have v > 2(s−1)(t−1). Then

2(s−1)(t−1) < v < r2 6 s4

(
t

2

)2

,

and so

2(s−1)(t−1) < s4

(
t

2

)2

. (8)

We will calculate all pairs (s, t) satisfying the inequality (8). Since 2(s−1)(t−1) = 225 >

s4
(
t
2

)2
= 24 · 36 · 52, i.e. the pair (s, t) = (6, 6) does not satisfy the inequality (8) but
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satisfies the conditions of Lemma 12 (ii) and (iii). Thus, we must have s < 6 or t < 6. It
is not hard to get 32 pairs (s, t) satisfying the inequality (8) as follows:

(3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 2), (4, 3),
(4, 4), (4, 5), (4, 6), (5, 2), (5, 3), (5, 4), (6, 2), (6, 3), (6, 4), (7, 2),
(7, 3), (8, 2), (8, 3), (9, 2), (10, 2), (11, 2), (12, 2), (13, 2), (14, 2), (15, 2),
(16, 2), (17, 2).

For each (s, t), we calculate the parameters (v, b, r, k, λ) satisfying Eq.(7), Lemmas 5,
6 and r | d2. Then we obtain five possible parameters (v, b, r, k, λ) corresponding to (s, t)
are the following:

(2.1) (s, t) = (3, 2): (10, 30, 9, 3, 2), (10, 18, 9, 5, 4), (10, 15, 9, 6, 5);
(2.2) (s, t) = (5, 2): (126, 525, 25, 6, 1), (126, 150, 25, 21, 4).
Case (2.1): (s, t) = (3, 2). Then n = 6, v = 10 and G ∼= A6 or S6. Let P =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the group G ∼= A6 or S6, as the primitive permutation group of
degree 10 acting on P , has the following generators respectively ([2, p.828]):

A6
∼= 〈(1, 10, 4, 7, 5)(2, 8, 6, 9, 3), (1, 3, 4, 5, 7)(2, 10, 9, 8, 6)〉,

S6
∼= 〈(1, 8, 6)(2, 3, 7, 9, 10, 5), (1, 8, 9, 3, 5, 6)(2, 7, 4)〉.

Assume first (v, b, r, k, λ) = (10, 30, 9, 3, 2) or (10, 18, 9, 5, 4), and there exists a 2-(10, k, λ)
design D with flag-transitive automorphism group G, where k = 3 or 5, and λ = 2 or
4, respectively. There are totally

(
v
k

)
k-element subsets of P . For any k-element subset

B ⊆ P , we calculate the length of the G-orbit BG where G = A6 or S6 respectively. By
using GAP [8], we found that |BG| > b for any k-element subset B. So G cannot act
block-transitively on D, a contradiction.

Therefore, (v, b, r, k, λ) = (10, 15, 9, 6, 5). Here G ∼= A6 or S6 acts transitively on P .
There are totally 210 =

(
10
6

)
6-element subsets of P . For any 6-element subset B ⊆ P ,

using GAP [8], we calculate the length of the G-orbit BG. It follows that up to isomorphism
there exists a unique 2-(10, 6, 5) design D = (P,B) where

B = {{1, 2, 3, 4, 5, 8}, {1, 2, 6, 7, 8, 10}, {3, 4, 5, 6, 7, 10}, {4, 5, 6, 8, 9, 10}, {1, 2, 3, 6, 9, 10},
{1, 2, 4, 5, 7, 9}, {1, 3, 4, 6, 7, 9}, {2, 5, 6, 7, 8, 9}, {2, 3, 4, 8, 9, 10}, {1, 3, 5, 7, 8, 10},
{2, 3, 5, 7, 9, 10}, {1, 3, 5, 6, 8, 9}, {2, 3, 4, 6, 7, 8}, {1, 2, 4, 5, 6, 10}, {1, 4, 7, 8, 9, 10}}.

Let B = {1, 2, 3, 4, 5, 8} be a block. Then it is easily known that BG = B. Now

G1 = 〈(2, 9, 10, 3)(4, 7, 8, 5), (2, 5, 8, 10)(3, 7, 6, 4)〉 ∼= 32 : 4

or
〈(2, 10, 8, 3, 9, 4)(5, 6, 7), (3, 9, 7, 8)(4, 10, 5, 6)〉 ∼= 32 : D8

with G = A6 or S6 respectively. Then BG1 containing 9 blocks:

{1, 2, 3, 4, 5, 8}, {1, 2, 4, 5, 7, 9}, {1, 3, 5, 7, 8, 10},
{1, 4, 7, 8, 9, 10}, {1, 3, 5, 6, 8, 9}, {1, 2, 6, 7, 8, 10},
{1, 2, 3, 6, 9, 10}, {1, 2, 4, 5, 6, 10}, {1, 3, 4, 6, 7, 9}.
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So that G1 is transitive on the blocks through 1, note that G is also transitive on P , and
hence D is flag-transitive.

Case (2.2): (s, t) = (5, 2). Then n = 10, v = 126 and G ∼= A10 or S10.
For the parameters (126, 525, 25, 6, 1) we have λ = 1, it can be ruled out by Lemma 4.
Suppose that (v, b, r, k, λ) = (126, 150, 25, 21, 4). Since G is flag-transitive, then it is

block-transitive and point-transitive. So that G must has subgroups with index 126 and
150. By using Magma [1] we know that G has 126 subgroups with index 126. Let B ∈ B,
so that |G : GB| = b = 150 and |GB| = 12096 or 24192 with G ∼= A10 or S10 respectively.
Clearly, |G : GB| <

(
10
4

)
. Then by Lemma 10 and [7, Theorem 5.2B], one of 3 cases holds.

If Case (i) holds, there exists some ∆ ⊆ Ω10 = {1, 2, . . . , 10} with |∆| < 4. We have
A7 6 GB by Remark 11. However, |A7| = 7!/2 does not divide |GB|, a contradiction.
Case (ii) can be ruled out by |G : GB| = 150 6= 1

2

(
10
5

)
and Case (iii) can be ruled out by

n = 10. Hence, G has no subgroups with index 150, a contradiction. So that G 6∼= A10 or
S10. �

3.3 H acts intransitively on Ωn.

Proposition 15. Let D and G satisfy Hypothesis. Then the point stabilizer cannot be
intransitive on Ωn.

Proof. Suppose on the contrary that H acts intransitively on Ωn. We have H =
(Sym(S) × Sym(Ω \ S)) ∩ G, and without loss of generality assume that |S| = s < n/2
by Lemma 7(i). By the flag-transitivity of G, H is transitive on the blocks through x,
and so H fixes exactly one point in P . Since H stabilizes only one s-subset of Ωn, we can
identify the point x with S. As the orbit of S under G consists of all the s-subsets of Ωn,
we can identify P with the set of s-subsets of Ωn. So that v =

(
n
s

)
, G has rank s+ 1 and

the subdegrees are:

n0 = 1, ni+1 =

(
s

i

)(
n− s
s− i

)
, i = 0, 1, . . . , s− 1. (9)

First, we claim that s 6 6. Since r | ni for any subdegree ni of G by Lemma 6(ii) and
ns = s(n− s) is a subdegree of G by (9), then r | s(n− s). Combining this with r2 > v,
we have s2(n− s)2 >

(
n
s

)
. Since the condition s < n

2
equals to s < t := n− s, we have

s2t2 >

(
s+ t

s

)
. (10)

Combining it with Lemma 12 (i), we get s 6 6.
Case (1): If s = 1, then v = n > 5 and the subdegrees are 1, n − 1. The group

G is (v − 2)-transitive on P . Since 2 < k 6 v − 2, G acts k-transitively on P . Then
b =|B|= |BG| =

(
n
k

)
for every block B ∈ B. From the equality bk = vr we can obtain(

n
k

)
k = nr. On the one hand, by Lemma 5(ii) we have r 6 n − 1, it follows that(

n
k

)
k 6 n(n−1). On the other hand, by 2 < k 6 n−2, we have n−i > k−i+2 > k−i+1
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for i = 2, . . . , k − 1. So that(
n

k

)
k = n(n− 1) · n− 2

k − 1
· n− 3

k − 2
· · · n− k + 1

2
> n(n− 1),

a contradiction.
Case (2): If s = 2, then the subdegrees are 1,

(
n−2

2

)
, 2(n− 2), and G is a primitive

rank 3 group acting on P . By Lemma 6(ii), r |
( (

n−2
2

)
, 2(n−2)

)
= n−2

2
, n−2, or 2(n−2)

with n ≡ 2 (mod 4), n ≡ 1 (mod 4), or n ≡ 3 (mod 4) respectively.

Assume first that r | n−2
2

. Then n(n−1)
2

= v < r2 6
(
n−2

2

)2
, which is impossible.

Assume that r | (n− 2). From Lemma 6(i), λv = λn(n−1)
2

< r2 6 (n− 2)2 which forces
λ = 1. It follows from Lemma 4 that D = PG(3, 2) and G ∼= A7 or A8. This contracts
the assumption that v =

(
n
2

)
= 21 or 28.

Hence r | 2(n − 2). From above analysis we know that r is even. By Lemma 6(i),

λv = λn(n−1)
2

< r2 6 4(n− 2)2 which implies 1 6 λ 6 7. Recall that (r, λ) = 1, so that λ
is odd. Since Lemma 4 implies that λ 6= 1, we assume that λ = 3, 5 or 7 in the following.

Let r = 2(n−2)
u

for some integer u. From Lemma 6(i), we have 4(n−2)2

u2
> λn(n−1)

2
. It

follows that 8 > 8(n−2)2

n(n−1)
> λu2 which forces u = 1. Therefore, r = 2(n − 2). By Lemma

5, we get k = λ(n+1)
4

+ 1, and b = vr
k

= 4n(n−1)(n−2)
λ(n+1)+4

, where λ = 3, 5 or 7.

If λ = 3, then (3n + 7) | 4n(n− 1)(n− 2) since b ∈ N. And since (3, 3n + 7) = 1, we
have (3n+ 7) | 36n(n− 1)(n− 2). Recall that n ≡ 3 (mod 4), and from

32b =
36n(n− 1)(n− 2)

3n+ 7
= 12n2 − 64n+ 173− 1211− n

3n+ 7
∈ N

we have (3n+ 7) | (1211− n), so n = 7, 11, 15, 91, 119 or 171.

Similarly, if λ = 5, then 52b = 100n(n−1)(n−2)
5n+9

= 20n2 − 96n + 213 − n+1917
5n+9

∈ N. Now
the facts (5n+ 9) | (n+ 1917) and n ≡ 3 (mod 4) imply n = 15, 99, 135 or 211.

If λ = 7, then 72b = 196n(n−1)(n−2)
7n+11

= 28n2 − 128n + 257 − 2827−n
7n+11

∈ N. Now the facts
(7n+ 11) | (2827− n) and n ≡ 3 (mod 4) imply n = 7, 11, 27, 55, 127 or 187.

For each value of n, we compute the possible parameters (n, v, b, r, k) satisfying Lemma
5 and the condition b > v which listed in the following.

λ = 3 : (7, 21, 30, 10, 7), (11, 55, 99, 18, 10),
(15, 105, 210, 26, 13), (91, 4095, 10413, 178, 70),
(119, 7021, 18054, 234, 91), (171, 14535, 37791, 338, 130).

λ = 5 : (15, 105, 130, 26, 21), (99, 4851, 7469, 194, 126),
(135, 9045, 14070, 266, 171), (211, 22155, 34815, 418, 266).

λ = 7 : (55, 1485, 1590, 106, 99), (127, 8001, 8890, 250, 225),
(187, 17391, 19499, 370, 330).

Assume first that (n, v, b, r, k) = (7, 21, 30, 10, 7) and there exists a 2-(21, 7, 3) design D
with flag-transitive automorphism group G ∼= A7 or S7. Let P = {1, 2, 3, . . . , 21}, the
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group G ∼= A7 or S7, as the primitive permutation group of degree 21 acting on P , has
the following generators respectively ([2, p.830]):

A7
∼= 〈(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)(15, 16, 17, 18, 19, 20, 21),
(1, 4)(2, 11)(3, 9)(5, 15)(7, 20)(8, 13)(10, 21)(12, 14)〉,

S7
∼= 〈(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)(15, 16, 17, 18, 19, 20, 21),
(1, 21, 4, 10)(2, 9, 11, 3)(5, 12, 15, 14)(7, 13, 20, 8)(17, 18)〉.

There are totally
(

21
7

)
7-element subsets of P . For any 7-element subset B ⊆ P , we

calculate the length of the G-orbit BG where G = A7 or S7 respectively. By using GAP [8],
we found that |BG| > 30 for any 7-element subset B. So G cannot act block-transitively
on D, a contradiction.

For all other possible parameters (n, v, b, r, k) listed above, G ∼= An or Sn. On the one
hand, by the block-transitivity, we have b = |G : GB| where B ∈ B. On the other hand,
since |G : GB| = b <

(
n
3

)
for each case, by Lemma 10 and [7, Theorem 5.2B], it is easily

known that G has no subgroups of index b, a contradiction.
Case (3): Suppose that 3 6 s 6 6. Now for each value of s, using the inequality (10)

and Lemma 12(iv), we know that t (and hence n) is bounded. For example, let s = 3,
since

(
3+48

3

)
> 32 · 482, we must have 4 6 t 6 47 by Lemma 12(iv), and so 7 6 n 6 50.

The bound of n listed in Table 2 below. Here the last column denotes the arithmetical
conditions which we used to ruled out each line.

Table 2: Bound of n when 3 6 s 6 6

s t n Reference
3 4 6 t 6 47 7 6 n 6 50 (1)-(4), Lemma 6
4 5 6 t 6 14 9 6 n 6 18 Lemma 6
5 6, 7, 8, 9 11, 12, 13, 14 Lemma 6
6 7 13 Lemma 6

Note that v =
(
n
s

)
, and n1 =

(
n−s
s

)
, ns = s(n − s) are two subdegrees of G acting on

P . Therefore, the 6-tuple (v, b, r, k, λ, n) satisfies the following arithmetical conditions:
(1)-(4), (r, λ) = 1, r2 > v (Lemma 6(i)), and

r | d, where d = gcd(n1, ns). (11)

If s = 3, by using GAP [8], it outputs five 6-tuples satisfying above arithmetical
conditions:

(364, 1001, 33, 12, 1, 14), (1540, 3135, 57, 28, 1, 22), (4960, 7440, 87, 58, 1, 32),
(19600, 19740, 141, 140, 1, 50), (1540, 1596, 57, 55, 2, 22).

The four parameters with λ = 1 can be ruled out by Lemma 4. For the parameters
(1540, 1596, 57, 55, 2, 22), we have λ = 2, G ∼= A22 or S22. By the block-transitivity,
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b = |G : GB| = 1596 where B ∈ B. However, since |G : GB| = 1596 <
(

22
4

)
, by Lemma

10 and [7, Theorem 5.2B], it is easily known that A22 and S22 has no subgroups of index
1596. So the parameters (1540, 1596, 57, 55, 2, 22) cannot occur.

If s = 4, 5 or 6, by using GAP [8], there are no parameters (v, k, n) satisfying the
conditions. For example, if s = 6, then n = 13, v = 1716, d = 7. It follows that
r 6 7 by (10), then r2 < v which is impossible. If s = 5, then n = 11, 12, 13 or 14,
v = 462, 792, 1287 or 2002 and d = 6, 7, 8 or 9, respectively. It is easy to check that r2 < v
for every case. This is the final contradiction. �

Propositions 13-15 finish the proof of Theorem 1.
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