On obstacle numbers

Vida Dujmović*

Department of Computer Science and Electrical Engineering University of Ottawa Ottawa, Canada

vida.dujmovic@uottawa.ca

Pat Morin[†]

School of Computer Science Carleton University Ottawa, Canada

morin@scs.carleton.ca

Submitted: May 14, 2014; Accepted: Jun 10, 2015; Published: Jul 1, 2015 Mathematics Subject Classifications: 05C35, 05C62

Abstract

The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n vertices having obstacle number in $\Omega(n/\log n)$. In this note, we up this lower bound to $\Omega(n/(\log \log n)^2)$. Our proof makes use of an upper bound of Mukkamala et al. on the number of graphs having obstacle number at most h in such a way that any subsequent improvements to their upper bound will improve our lower bound.

1 Introduction

The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison [2]. Let G = (V, E) be a graph, let $\varphi : V \to \mathbb{R}^2$ be a one-to-one mapping of the vertices of G onto \mathbb{R}^2 (hereafter called a *drawing* of G), and let S be a set of connected subsets of \mathbb{R}^2 . The pair (φ, S) is an *obstacle representation* of G when, for every pair of vertices $u, w \in V$, the edge uw is in E if and only if the closed line segment with endpoints $\varphi(u)$ and $\varphi(w)$ does not intersect any *obstacle* in S. An obstacle representation (φ, S) is an

^{*}Supported by NSERC and MRI.

[†]Supported by NSERC.

h-obstacle representation if |S| = h. The obstacle number of a graph G, denoted by obs(G), is the minimum value of h such that G has an h-obstacle representation.

Note that obstacle representations of planar graphs using few obstacles often require drawings of those graphs that are far from crossing free. For example, any crossing-free drawing of the 5×5 grid, $G_{5\times 5}$ shown in the left part of Figure 1 requires at least one obstacle in each of the sixteen internal faces (each of which has at least four sides).

It is somewhat surprising, therefore, that $G_{5\times5}$ has obstacle number 1. The obstacle representation, illustrated on the right part of Figure 1 was given to us by Fabrizio Frati. In this figure, the single obstacle is drawn as a shaded region. Since at least one obstacle is clearly necessary to represent any graph other than a complete graph, this proves that $obs(G_{5\times5}) = 1$. (A similar drawing can be used to show that the $a \times b$, grid graph has obstacle number 1, for any integers a, b > 1.)

Figure 1: The 5×5 grid graph has obstacle number 1.

Since their introduction, obstacle numbers have generated significant research interest [4, 5, 6, 7, 8, 9, 10]. A fundamental—and far from answered—question about obstacle numbers is that of determining the *worst-case obstacle number*,

$$obs(n) = max{obs(G) : G is a graph with } n \text{ vertices}}$$
,

of a graph with n vertices.

For a graph G=(V,E), we call elements of $\binom{V}{2}\setminus E$ non-edges of G. The worst-case obstacle number $\mathrm{obs}(n)$ is obviously upper bounded by $\binom{n}{2}\in O(n^2)$ since, by mapping the vertices of G onto a point set in sufficiently general position, one can place a small obstacle—even a single point—on the mid-point of each non-edge of G. No upper bound on $\mathrm{obs}(n)$ that is asymptotically better than $O(n^2)$ is known.

More is known about lower bounds on obs(n). Alpert, Koch, and Laison [2] initially show that the worst-case obstacle number is $\Omega\left(\sqrt{\log n/\log\log n}\right)$ and posed as an open problem the question of determining if $obs(n) \in \Omega(n)$. Mukkamala et al. [7] showed that $obs(n) \in \Omega(n/\log^2 n)$ and Mukkamala et al. [6] later increased this to $obs(n) \in \Omega(n/\log^2 n)$

¹Note that this definition of obstacle representation is more generous than that of Alpert, Koch, and Laison [2], which requires that the obstacles be polygonal and that the set of points determined by vertices of the obstacles and the image of φ not contain 3 collinear points. Since the current paper proves a lower bound on the obstacle number, this lower bound also applies to the original definition.

 $\Omega(n/\log n)$. In the current paper, we up the lower bound again by proving the following theorem:

Theorem 1. For every integer n > 0, $obs(n) \in \Omega(n/(\log \log n)^2)$, that is, there exists a sequence, $\langle G_n \rangle_{n=1}^{\infty}$, such that G_n is a graph with n vertices and such that $obs(G) \in \Omega(n/(\log \log n)^2)$.

The proof of Theorem 1 makes use of an upper bound of Mukkamala et al. [6, Theorem 1] on the number of graphs having obstacle number at most h in such a way that any subsequent improvements on their upper bound will result in an improved lower bound on obs(n).

Although some aspects of our proof are a little technical, the main idea is quite simple: Mukkamala et al. [6] show that, with probability at least $1 - 2^{-\Omega(n^2)}$, a random graph on n vertices has obstacle number at least $\Omega(n/(\log n)^2)$. Our proof trades off a lower probability for a higher obstacle number. When all is said and done, our proof shows that, with probability at least $1 - 2^{-\Omega(n\log n)}$, a random graph on n vertices has obstacle number at least $\Omega(n/(\log \log n)^2)$.

2 The Proof

Our proof strategy is an application of the probabilistic method [1]. We fix an arbitrary ordering, π , on the vertices of an Erdős–Rényi random graph, $G = G_{n,\frac{1}{2}}$. We then show that it is very unlikely that there is an obstacle representation, (φ, S) of G such that $|S| \in o(n/(\log \log n)^2)$ and the lexicographic ordering of the points assigned to vertices by φ agrees with the ordering given by π . Here, "very unlikely" means that this occurs with probability p < 1/n!. Since there are only n! possible orderings of G's vertices, we then apply the union bound which shows that with probability 1-pn! > 0, there is no obstacle representation of G using $o(n/(\log \log n)^2)$ obstacles, that is, $obs(G) \in \Omega(n/(\log \log n)^2)$.

2.1 A Random Graph with a Fixed Ordering

We make use of the following theorem, due to Mukkamala, Pach, and Pálvölgyi [6, Theorem 1] about the number of n-vertex graphs with obstacle number at most h:

Theorem 2 (Mukkamala, Pach, and Pálvölgyi 2012). For any $h \ge 1$, the number of graphs having n vertices and obstacle number at most h is at most $2^{O(hn\log^2 n)}$.

Recall that an Erdős-Rényi random graph $G_{n,\frac{1}{2}}$ is a graph with n vertices and each pair of vertices is chosen as an edge or non-edge with equal probability and independently of every other pair of vertices [3]. The following lemma shows that, for random graphs, a fixed drawing is very unlikely to yield an obstacle representation with few obstacles. Recall that the $lexicographic\ ordering$, \prec , for points in the plane is defined as

$$(x_1, y_1) \prec (x_2, y_2)$$
 iff $x_1 < x_2$ or $(x_1 = x_2 \text{ and } y_1 < y_2)$.

Lemma 1. Let G = (V, E) be an Erdős-Rényi random graph $G_{n,\frac{1}{2}}$, let v_1, \ldots, v_n be an ordering of the vertices in V that is independent of the choices of edges in G, and let (φ, S) be an obstacle representation of G using the minimum number of obstacles subject to the constraint that

$$\varphi(v_1) \prec \varphi(v_2) \prec \cdots \varphi(v_n)$$
,

where \prec denotes the lexicographic ordering of points. Then, for any constant c > 0,

$$\Pr\{|S| \in \Omega(n/(\log\log n)^2)\} \geqslant 1 - e^{-cn\log n}.$$

Proof. Fix some integer $k = k(n) \in \omega_n(1)$ to be specified later and first consider the subgraph G_0 of G induced by the vertices v_1, \ldots, v_k . Applying Theorem 2 with n = k and $h = \alpha k / \log^2 k$, we obtain

$$\Pr\{\text{obs}(G_0) \leqslant \alpha k / \log^2 k\} \leqslant \frac{2^{O(\alpha k^2)}}{2^{\binom{k}{2}}} \leqslant e^{-\beta k^2} ,$$
 (1)

where $\beta > 0$ for a sufficiently small constant $\alpha > 0$, and sufficiently large k. Note that, if $obs(G_0) \ge h$, then, in the obstacle representation (φ, S) , there must be at least h-1 obstacles of S that are contained in the convex hull of $\varphi(v_1), \ldots, \varphi(v_k)$; this is because the obstacle representation (φ, S) can be turned into an obstacle representation of G_0 by merging all obstacles that are not contained in the convex hull of $\varphi(v_1), \ldots, \varphi(v_k)$.

Let $m = \lfloor n/k \rfloor$ and notice that the preceding argument applies to any subset $V_i = \{v_{ki+1}, \ldots, v_{(k+1)i}\}$ of vertices, for any $i \in \{0, \ldots, m-1\}$. That is, Equation (1) shows that, with probability at least $1-2^{-\Omega(k^2)}$, the obstacle number of the subgraph G_i induced by V_i is $\Omega(k/\log^2 k)$. If this occurs, then S has $\Omega(k/\log^2 k)$ obstacles that are completely contained in the convex hull of V_i . In particular, the obstacles contained in the convex hull of V_j , for all $j \neq i$.

We are proving a lower bound on the number of obstacles, so we are worried about the case where the number of convex hulls that do not contain at least $\alpha k/\log^2 k$ obstacles exceeds m/e.² The number of convex hulls, M, not containing at least $\alpha k/\log^2 k$ obstacles is dominated by a binomial $(m, e^{-\beta k^2})$ random variable. Using Chernoff's bound on the tail of a binomial random variable,³ we have that

$$\Pr\{M \geqslant m/e\} = \Pr\{M \geqslant (1+\delta)\mu\} \qquad \text{(where } \mu = me^{-\beta k^2} \text{ and } \delta = e^{\beta k^2 - 1} - 1)$$

$$\leqslant \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$

$$\leqslant \left(\frac{e^{e^{\beta k^2}}}{(e^{\beta k^2 - 1})e^{\beta k^2 - 1}}\right)^{me^{-\beta k^2}}$$

$$\Pr\{B \geqslant (1+\delta)\mu\} \leqslant \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

²Euler's constant $e = \lim_{n\to\infty} (1-1/n)^n$ is just a convenient constant to use here.

³Chernoff's Bound: For any binomial(m,p) random variable, B, any $\delta > 0$ and $\mu = mp$,

$$= \left(\frac{e^{e^{\beta k^2}}}{e^{(\beta k^2 - 1)e^{\beta k^2 - 1}}}\right)^{me^{-\beta k^2}}$$

$$= \frac{e^m}{e^{m(\beta k^2 - 1)e^{\beta k^2 - 1}e^{-\beta k^2}}}$$

$$= \frac{e^m}{e^{m(\beta k^2 - 1)/e}}$$

$$= e^{-\Omega(mk^2)}.$$

Taking $k = c' \log n$, for a sufficiently large constant, c', and recalling that $m = \lfloor n/k \rfloor$, we obtain the desired result. In particular,

$$|S| \ge \Omega\left(\left(k/\log^2 k\right) \cdot (m - m/e)\right) = \Omega\left(n/(\log\log n)^2\right)$$

with probability at least

$$1 - e^{-\Omega(mk^2)} = 1 - e^{-\Omega(c'n\log n)} \geqslant 1 - e^{-cn\log n} ,$$

for all n greater than some sufficiently large constant n_0 . For $n \in \{1, \ldots, n_0\}$, the lemma is trivially satisfied since $|S| \ge 0$ with probability $1 \ge 1 - e^{-cn \log n}$.

2.2 Finishing Up

For completeness, we now spell out the proof of Theorem 1.

Proof of Theorem 1. Let G = (V, E) be an Erdős-Rényi random graph with n vertices with vertex set $V = \{1, \ldots, n\}$. For every obstacle representation (φ, S) of G, there is an ordering on V given by the lexicographic ordering of the points $\{\varphi(v) : v \in V\}$.

By Lemma 1, the probability that a particular such ordering, v_1, \ldots, v_n , allows an obstacle representation using $o(n/(\log \log n)^2)$ obstacles is at most $p \leq e^{-cn \log n}$ for every constant c > 0. In particular, for sufficiently large c, we have p < 1/n!. By the union bound the probability that there is any ordering that supports an obstacle representation of G with $o(n/(\log \log n)^2)$ obstacles is at most

$$\hat{p} = p \cdot n! < 1$$
.

We deduce that there exists some graph, G', with $obs(G') \in \Omega(n/(\log \log n)^2)$.

3 Remarks

Our proof of Theorem 1 relates the problem of counting the number of n-vertex graphs with obstacle number at most h to the problem of determining the worst-case obstacle number of a graph with n vertices. Currently, we use Theorem 2 of Mukkamala et al. [7], which proves an upper bound of $e^{O(hn\log^2 n)}$ on the number of n-vertex graphs with obstacle number at most h.

Any improvement on the upper bound for the counting problem will immediately translate into an improved lower bound on the worst-case obstacle number. Let f(h, k) denote the number of k-vertex graphs with obstacle number at most h and let

$$\hat{h}(k) = \max \left\{ h : f(h, k) \leqslant 2^{k^2/4} \right\} .$$

The quantity $\hat{h}(k)$ is chosen so that a random graph on k vertices has probability at most $2^{-\Omega(k^2)}$ of having obstacle number less than $\hat{h}(k)$; Theorem 2 shows that $\hat{h}(k) \in \Omega(k/(\log k)^2)$. Our proof of Lemma 1 shows that there exist graphs with obstacle number at least $\Omega(n\hat{h}(c\log n)/(c\log n))$.

We note that our technique gives an improved lower bound until someone is able to prove that $\hat{h}(n) \in \Omega(n)$. At this point, our approach gives a lower bound worse than the trivial lower bound $\hat{h}(n)$.

We conjecture that improved upper bounds on f(h, n) that reduce the dependence on h are the way forward:

Conjecture 1.
$$f(h, n) \leq 2^{g(n) \cdot o(h)}$$
, where $g(n) \in O(n \log^2 n)$.

In support of this conjecture, we observe that an upper bound of the form $f(1,n) \leq 2^{g(n)}$ is sufficient to give the crude upper bound $f(h,n) \leq 2^{h \cdot g(n)}$ since any graph with an h-obstacle representation is the common intersection of h graphs that each have a 1-obstacle representation. That is, if $\operatorname{obs}(G) \leq h$, then there exists E_1, \ldots, E_h such that $G = (V, \bigcap_{i=1}^h E_i)$ and $\operatorname{obs}(V, E_i) = 1$ for all $i \in \{1, \ldots, h\}$. This seems like a very crude upper bound in which many graphs are counted multiple times. Conjecture 1 asserts that this argument overestimates the dependence on h.

Acknowledgements

This work was initiated at the Workshop on Geometry and Graphs, held at the Bellairs Research Institute, March 10-15, 2013. We are grateful to the other workshop participants for providing a stimulating research environment.

A previous draft of this article proved a version Lemma 1 for a fixed drawing, φ , and then went to great lengths to argue that the number of combinatorially distinct drawings was at most $2^{O(n \log n)}$. We are grateful to an anonymous referee who pointed out that the proof of Lemma 1 also holds when only the lexicographic ordering of the vertices is fixed, thereby eliminating the need to bound the number of combinatorially equivalent drawings.

References

- [1] N. Alon and J. H. Spencer. *The Probabilistic Method*. John Wiley & Sons, Hoboken, third edition, 2008.
- [2] H. Alpert, C. Koch, and J. D. Laison. Obstacle numbers of graphs. *Discrete & Computational Geometry*, 44(1):223–244, 2010.

- [3] P. Erdős and A. Rényi. On random graphs. *Publicationes Mathematicae*, 6:290–297, 1959.
- [4] R. Fulek, N. Saeedi, and D. Sariöz. Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs. In J. Pach, editor, *Thirty Essays on Geometric Graph Theory*, pages 249–261. Springer, New York, 2013.
- [5] M. P. Johnson and D. Sariöz. Computing the obstacle number of a plane graph, 2011. arXiv:1107.4624
- [6] P. Mukkamala, J. Pach, and D. Pálvölgyi. Lower bounds on the obstacle number of graphs. *Electr. J. Comb.*, 19(2):#P32, 2012.
- [7] P. Mukkamala, J. Pach, and D. Sariöz. Graphs with large obstacle numbers. In D. M. Thilikos, editor, WG, volume 6410 of Lecture Notes in Computer Science, pages 292–303, 2010.
- [8] J. Pach and D. Sariöz. Small (2, s)-colorable graphs without 1-obstacle representations, 2010. arXiv:1012.5907
- [9] J. Pach and D. Sariöz. On the structure of graphs with low obstacle number. *Graphs and Combinatorics*, 27(3):465–473, 2011.
- [10] D. Sariöz. Approximating the obstacle number for a graph drawing efficiently. In *Proceedings of the 23rd Canadian Conference on Computational Geometry* (CCCG 2011), 2011.