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Abstract

It was shown by LeCompte, Martin, and Owens in 2010 that the existence of
mutually unbiased Hadamard matrices and the identity matrix, which coincide with
mutually unbiased bases, is equivalent to that of a Q-polynomial association scheme
of class four which is both Q-antipodal and Q-bipartite. We prove that the existence
of a set of mutually unbiased Bush-type Hadamard matrices is equivalent to that of
an association scheme of class five. As an application of this equivalence, we obtain
an upper bound of the number of mutually unbiased Bush-type Hadamard matrices
of order 4n2 to be 2n−1. This is in contrast to the fact that the best general upper
bound for the mutually unbiased Hadamard matrices of order 4n2 is 2n2. We also
discuss a relation of our scheme to some fusion schemes which are Q-antipodal and
Q-bipartite Q-polynomial of class 4.

1 Introduction

A Hadamard matrix is a matrix H of order n with entries in {−1, 1} and orthogonal rows
in the usual inner product on Rn. Two Hadamard matrices H and K of order n are called
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unbiased if HKt =
√
nL for some Hadamard matrix L, where Kt denotes the transpose

of K. In this case, it follows that n must be a perfect square. A Hadamard matrix of
order n for which the row sums and column sums are all the same, necessarily

√
n, is

called regular, see [12].

Definition 1. A Bush-type Hadamard matrix is a block Hadamard matrix H = [Hij] of
order 4n2 with block size 2n, Hii = J2n and HijJ2n = J2nHij = 0, i 6= j, 1 6 i 6 2n,
1 6 j 6 2n where J` is the `× ` matrix of ones.

It is known that for odd values of n there is no pair of unbiased Bush-type Hadamard
matrices of order 4n2 [2]. In contrast, for even values of n, there are unbiased Bush-type
Hadamard matrices of order 4n2 [9]. (Note that a missing necessary assumption is needed
in the proof of [9, Theorem 13]. The modified version will be presented in Section 3.)
One very important property of unbiased Bush-type Hadamard matrices, as is shown in
section 3, is the fact that for any two unbiased pair of Bush-type Hadamard matrices H
and K of order 4n2, 1

2n
HKt is also a Bush-type Hadamard matrix.

It was shown by LeCompte, Martin, and Owens in [10] that the existence of mutu-
ally unbiased Hadamard matrices and the identity matrix, which coincide with mutually
unbiased bases, is equivalent to that of a Q-polynomial association scheme of class four
which is both Q-antipodal and Q-bipartite.

Our aim in this paper is to show that the existence of unbiased Bush-type Hadamard
matrices is equivalent to the existence of a certain association scheme of class five. As
an application of this equivalence, we obtain an upper bound for the number of mutually
unbiased Bush-type Hadamard matrices of order 4n2 to be 2n − 1, whereas the best
general upper bound for the mutually unbiased Hadamard matrices of order 4n2 is 2n2

[9, Theorem 2]. Also we discuss a relation of our scheme to some association schemes of
class four.

2 Association schemes

A symmetric d-class association scheme, see [1], with vertex set X of size n and d classes
is a set of nonzero symmetric (0, 1)-matrices A0, . . . , Ad with rows and columns indexed
by X, such that:

1. A0 = In, the identity matrix of order n.

2.
∑d

i=0Ai = Jn.

3. For all i, j, AiAj =
∑d

k=0 p
k
ijAk for some pkij.

It follows from property (3) that the matrices Ai necessarily commute. The vector space
spanned by the matrices Ai forms a commutative algebra, denoted by A and called the
Bose-Mesner algebra or adjacency algebra. There exists a basis ofA consisting of primitive
idempotents, say E0 = (1/n)Jn, E1, . . . , Ed. Since {A0, A1, . . . , Ad} and {E0, E1, . . . , Ed}
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are two bases in A, there exist change-of-bases matrices P = (Pij)
d
i,j=0, Q = (Qij)

d
i,j=0 so

that

Aj =
d∑
i=0

PijEj, Ei =
1

n

d∑
i=0

QijAi.

Since disjoint (0, 1)-matrices Ai’s form a basis of A, the algebra A is closed under the
entrywise multiplication denoted by ◦. The Krein parameters qkij are defined by Ei ◦Ej =
1
n

∑d
k=0 q

k
ijEk. The Krein matrix B∗i is defined as B∗i = (qkij)

d
j,k=0.

Each of the matrices Ai can be considered as the adjacency matrix of some graph
without multiedges. The scheme is imprimitive if, on viewing the Ai’s as the adjacency
matrices of graphs Gi on vertex set X, at least one of the Gi, i 6= 0, is disconnected.
Then there exists a set I of indices, under a suitable ordering, such that 0 and such i are
elements of I and

∑
j∈I Aj = Ip ⊗ Jq for some p, q with 1 < p < n. Thus the set of n

vertices X are partitioned into p subsets called fibers, each of which has size q. The set
I defines an equivalence relation on {0, 1, . . . , d} by j ∼ k if and only if pkij 6= 0 for some
i ∈ I. Let I0 = I, I1, . . . , It be the equivalence classes on {0, 1, . . . , d} by ∼. Then by [1,
Theorem 9.4] there exist (0, 1)-matrices Aj (0 6 j 6 t) such that∑

i∈Ij

Ai = Aj ⊗ Jq,

and the matrices Aj (0 6 j 6 t) define an association scheme on the set of fibers. This is
called the quotient association scheme with respect to I

For fibers U and V , let I(U, V ) denote the set of indices of adjacency matrices Ai with
(Ai)u,v for some u ∈ U , v ∈ V .

We define a (0, 1)-matrix AUVi by

(AUVi )xy =

{
1 if (Ai)xy = 1, x ∈ U, y ∈ V,
0 otherwise.

We define uniformity for imprimitive association schemes following [4, 7].

Definition 2. An imprimitive association scheme is called uniform if its quotient asso-
ciation scheme is class 1 and there exist integers akij such that for all fibers U, V,W and
i ∈ I(U, V ), j ∈ I(V,W ), we have

AUVi AVWj =
∑
k

akijA
UW
k .
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3 Class 5 Association Scheme

Let {H1, H2, . . . , Hm} be a set of Mutually Unbiased Regular Hadamard (MURH) matrices
of order 4n2 with m > 2. Write

M =


I

H1/2n
H2/2n
. . .

Hm/2n

 [ I H t
1/2n H t

2/2n . . . H t
m/2n

]
. (1)

be the Gramian of the set of matrices {I, 1
2n
H1,

1
2n
H2, . . . ,

1
2n
Hm}. Let B = 2n(M − I).

Then B is a symmetric (0,−1, 1)-matrix. Let

B = B1 −B2,

where B1 and B2 are disjoint (0, 1)-matrices. By reworking a result of Mathon, see [3],
we have the following:

Lemma 3. Let I = I4n2(m+1), B1, B2 and B3 = Im+1⊗J4n2−I4n2(m+1). Then, I, B1, B2, B3

form a 3-class association scheme.

Proof. The intersection numbers can be read off from the following easily verified equa-
tions:

B2
1 = (2n2 + n)mI + (n2 +

3

2
n)(m− 1)B1

+ (n2 + n/2)(m− 1)B2 + (n2 + n)B3,

B2
2 = (2n2 − n)mI + (n2 − 1

2
n)(m− 1)B1

+ (n2 − 3

2
n)(m− 1)B2 + (n2 − n)B3,

B1B2 = (n2 − n/2)(m− 1)B1

+ (n2 + n/2)(m− 1)B2 + n2mB3,

B1B3 = (2n2 + n− 1)B1 + (2n2 + n)B2,

B2B3 = (2n2 − n)B1 + (2n2 − n− 1)B2.

We now impose a further structure on the regular Hadamard matrices Hi and assume
that they are all of Bush type. First we need the following.

Lemma 4. Let H and K be two unbiased Bush-type Hadamard matrices of order 4n2.
Let L be a (1,−1)-matrix so that HKt = 2nL. Then L is a Bush-type Hadamard matrix.

Proof. Let X = I2n ⊗ J2n, then L is of Bush type if and only if LX = XL = 2nX. We
calculate LX.

LX =
1

2n
HKtX = 2nX.

Similarly, we have XL = 2nX. Thus L is a Bush-type Hadamard matrix.
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This enables us to add two more classes and we have the following.

Theorem 5. Let B1, B2 denote the matrices defined above. Let

• A0 = I4n2(m+1)

• A1 = Im+1 ⊗ I2n ⊗ (J2n − I2n)

• A2 = Im+1 ⊗ (J2n − I2n)⊗ J2n

• A3 = (Jm+1 − Im+1)⊗ I2n ⊗ J2n

• A4 = B1 − A3

• A5 = B2

Then, A0, A1, A2, A3, A4, A5 form a 5-class association scheme.

Proof. We work out the intersection numbers, using some of the relations in Lemma
3. Note that A0 + A1, A3, (A0 + A1 + A2) are block matrices of block size 2n, (4n2,
respectively), where each block is either the zero or the matrix of ones. On the other
hand A4 and A5 are block matrices of block size 2n, where the blocks are either the zero
matrix or of row and column sum n. So, it is straightforward computation to see the
following:

A1A1 = (2n− 1)A0 + (2n− 2)A1.

A1A2 = (2n− 1)A2.

A1A3 = (2n− 1)A3.

A1A4 = (n− 1)A4 + nA5.

A1A5 = nA4 + (n− 1)A5.

A2A2 = 2n(2n− 1)A0 + 2n(2n− 1)A1 + 2n(2n− 2)A2.

A2A3 = 2n(A4 + A5).

A2A4 = (2n− 1)nA3 + (2n− 2)n(A4 + A5).

A2A5 = (2n− 1)nA3 + (2n− 2)n(A4 + A5).

A3A3 = 2mn(A0 + A1) + 2n(m− 1)A3.

A3A4 = mnA2 + (m− 1)n(A4 + A5).

A3A5 = mnA2 + (m− 1)n(A4 + A5).

Using these, the facts that A3 + A4 = B1, A5(A3 + A4) = B2B1, and the intersection
numbers in Lemma 3 we have:

A4A5 = n2mA1 +m(n2 − n)A2 + (n2 − n

2
)(m− 1)A3

+ (n2 − 3n

2
)(m− 1)A4 + (n2 − n

2
)(m− 1)A5.
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Finally, noting that A4−A5 is a block matrix of block size 2n, where the blocks are either
the zero matrix or of row and column sum zero, it follows that

(A4 + A5)(A4 − A5) = 0,

so we have

A4A4 = A5A5 = (2n2 − n)mI + (n2 − n)m(A1 + A2)+

(n2 − n

2
)(m− 1)(A3 + A4) + (n2 − 3n

2
)(m− 1)A5.

Definition 6. Two Latin squares L1 and L2 of size n on symbol set {0, 1, 2, . . . , n − 1}
are called suitable if every superimposition of each row of L1 on each row of L2 results in
only one element of the form (a, a). A set of Latin squares in which every distinct pair
of Latin squares is mutually suitable is called Mutually Suitable Latin Squares, denoted
MSLS.

The existence and a construction method for MUBH matrices to use mutually suitable
Latin squares were given in [9, Theorem 13]. However, in order to obtain Bush-type
Hadamard matrices as defined here, an additional assumption on the MSLS is needed as
follows.

Proposition 7. If there are m mutually suitable Latin squares of size 2n with all one en-
tries on diagonal and a Hadamard matrix of order 2n, then there are m mutually unbiased
Bush-type Hadamard matrices of order 4n2.

The construction is exactly same as [9, Theorem 13]. The resulting mutually unbiased
Hadamard matrices are all of Bush-type. Indeed, each Latin square has the entries 1
on diagonal, thus the resulting Hadamard matrix has the all ones matrices on diagonal
blocks.

The equivalence of MOLS and MSLS was given in [9, Lemma 9]. The assumption on
MOLS corresponding to MSLS with all ones entries on diagonal is that each Latin square
has (1, 2, · · · , n) as the first row. The MOLS having this property is constructed by the
use of finite fields as follows. For each α ∈ Fq \ {0}, define Lα as (i, j)-entry equal to
αi+ j, where i, j ∈ Fq. By switching rows so that the first row corresponds to 0 ∈ Fq and
mapping Fq to {1, 2, . . . , n} such that each first row becomes (1, 2, . . . , n), we obtain the
desired MOLS. Thus we have the same conclusion as [9, Corollary 15].

Remark 8. (a) Rewriting A4A4 = A5A5 as:

A4A4 = A5A5 = n2mI + (n2 − n)mJ + n(
m+ 1

2
− n)(A3 + A4)

+ n(
3

2
− m

2
− n)A5.

It is seen that, for m = 2n − 1, A5 is the adjacency matrix of a strongly regular
graph and A4 is the adjacency matrix of a Deza Graph, see [5, 6]. There exists an
example satisfying m = 2n− 1 for n = 2k−1 and k > 1 [9, Corollary 15].
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(b) The association scheme of class 5 is uniform. Any two fibers define a coherent
configuration, which is a strongly regular design of the second kind, see [8]. The
first and second eigenmatrices and B∗5 are as follows:

P =


1 2n− 1 2n(2n− 1) 2nm n(2n− 1)m n(2n− 1)m
1 −1 0 0 nm −nm
1 2n− 1 −2n 2nm −nm −nm
1 2n− 1 −2n −2n n n
1 −1 0 0 −n n
1 2n− 1 2n(2n− 1) −2n −n(2n− 1) −n(2n− 1)

 ,

Q =


1 2n(2n− 1) 2n− 1 (2n− 1)m 2n(2n− 1)m m
1 −2n 2n− 1 (2n− 1)m −2nm m
1 0 −1 −m 0 m
1 0 2n− 1 −2n+ 1 0 −1
1 2n −1 1 −2n −1
1 −2n −1 1 2n −1

 ,

B∗5 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 m m− 1 0 0
0 m 0 0 m− 1 0
m 0 0 0 0 m− 1

 .

Thus the association scheme certainly satisfies [4, Proposition 4.7]. Note that the
scheme is not Q-polynomial since no column has all distinct entries.

Since the Krein number q11,2 = 2n−m−1
m+1

must be positive, we obtain m 6 2n−1 holds.
This means that the number of MUBH matrices of order 4n2 is at most 2n−1. The
example attaining the upper bound is given in [9, Corollary 15].

(c) The first, second eigenmatrices and the Krein matrix B∗1 of the class 3 association
scheme are as follows:

P =


1 n(2n+ 1)m n(2n− 1)m 4n2 − 1
1 nm −nm −1
1 −n n −1
1 −n(2n+ 1) −n(2n− 1) 4n2 − 1

 ,

Q =


1 4n2 − 1 (4n2 − 1)m m
1 2n− 1 −2n+ 1 1
1 −2n− 1 2n+ 1 1
1 −1 −m m

 ,

B∗1 =


0 1 0 0

4n2 − 1 2(2n2−m−1)
m+1

4n2

m+1
0

0 4n2m
m+1

(4n2−2)m−2
m+1

4n2 − 1

0 0 1 0

 .
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This association scheme is a Q-antipodal Q-polynomial scheme of class 3. By [3,
Theorem 5.8], this scheme comes from a linked systems of symmetric designs.

Next we show the converse implication as follows.

Theorem 9. Assume that there exists an association scheme with the same eigenmatrices
as in Remark 8(b). Then there exists a set of MUBH {H1, . . . .Hm} of order 4n2.

Proof. Let A0, . . . , A5 be the adjacency matrices of an association scheme with the same
eigenmatrices as in Remark 8. Let B0 = A0, B1 = A3 + A4, B2 = A5 and B3 = A1 + A2.
By Remark 8 Bi’s form a linked system of symmetric designs. Thus we rearrange the
vertices so that B3 = Im+1 ⊗ J4n2 − I4n2(m+1).

We first determine the form of A3. Since A1 is the adjacency matrix of an imprimitive
strongly regular graph with eigenvalues 2n− 1,−1 with multiplicities 2n(m+ 1), 2n(2n−
1)(m + 1), A1 is I2n(m+1) ⊗ (J2n − I2n) after rearranging the vertices. By B3 = Im+1 ⊗
J4n2 − I4n2(m+1) = A1 + A2, A2 has the desired form. Since B3 and A3 are disjoint and
A2A3 = 2n(A4 + A5), we obtain A3 = (Jm+1 − Im+1)⊗ I2n ⊗ J2n.

Letting G = (m+ 1)(E0 + E1 + E2), we have

G = (m+ 1)(E0 + E1 + E2)

=
1

4n2

5∑
i=0

(Q0,i +Q1,i +Q2,i)Ai

= A0 +
1

2n
A3 +

1

2n
A4 −

1

2n
A5.

Since A3 + A4 + A5 = (Jm+1 − Im+1)⊗ J2n ⊗ J2n, G is the following form

G =


I2n

1
2n
H1,2 . . . 1

2n
H1,m+1

1
2n
H2,1 I2n . . . 1

2n
H2,m+1

...
...

. . .
...

1
2n
Hm+1,1

1
2n
Hm+1,2 . . . I2n


where Hi,j (i 6= j) is a (1,−1)-matrix.

We claim that Hk := Hk+1,1 (1 6 k 6 m) are mutually unbiased Bush-type Hadamard
matrices. Let Ā denote the submatrix of entries that lie in the rows and columns on the
first and (k + 1)th blocks. We consider the principal submatrix Ḡ. Since the association
scheme is uniform, the restricting to indices on the first and second blocks yields an
association scheme with the eigenmatrix P̄ = (P̄ij)

5
i,j=0 obtained by putting m = 1.

Since Ḡ = (m+1)(Ē0+Ē1+Ē2) holds and m+1
2
Ēi (i = 0, 1, 2) are primitive idempotents

of the subscheme, we have Ḡ2 = 2Ḡ. Expanding the left hand-side to use the form

Ḡ =
(

I2n
1
2n
Ht

k
1
2n
Hk I2n

)
, we obtain(
I2n + 1

4n2H
t
kHk

1
n
H t
k

1
n
Hk I2n + 1

4n2HkH
t
k

)
=

(
2I2n

1
n
H t
k

1
n
Hk 2I2n

)
.
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This implies that Hk is a Hadamard matrix of order 4n2.
Next we show Hk is of Bush-type. Now we calculate Ā3Ḡ in two ways. First we have

Ā3Ḡ = (m+ 1)Ā3(Ē0 + Ē1 + Ē2)

= (m+ 1)(
5∑
i=0

P̄i3Ēi)(Ē0 + Ē1 + Ē2)

= (m+ 1)(
2∑
i=0

P̄i3Ēi)

= 2n(m+ 1)(Ē0 + Ē2)

= 2n(m+ 1)(
1

4n2(m+ 1)

5∑
i=0

(Q̄i,0 + Q̄i,2)Āi)

= (A0 + A1 + A3)

=

(
I2n ⊗ J2n I2n ⊗ J2n
I2n ⊗ J2n I2n ⊗ J2n

)
.

Second we have

Ā3Ḡ =

(
0 I2n ⊗ J2n

I2n ⊗ J2n 0

)(
I2n

1
2n
H t
k

1
2n
Hk I2n

)
=

(
1
2n

(I2n ⊗ J2n)Hk I2n ⊗ J2n
I2n ⊗ J2n 1

2n
(I2n ⊗ J2n)H t

k

)
.

Comparing these two equations yields

(I2n ⊗ J2n)Hk = (I2n ⊗ J2n)H t
k = 2nI2n ⊗ J2n.

This implies that Hk is of Bush-type by Lemma 4.
Finally we show H1, . . . , Hm are unbiased. Let k, k′ be integers such that 1 6 k <

k′ 6 m. Let Ã denote the submatrix of vertices that lie in the rows and columns on the
first, (k+1)th and (k′+1)th blocks. We then have G̃2 = 3G̃. Comparing the (2, 3)-block,
we obtain

1

4n2
HkH

t
k′ +

1

2n
I2nHk+1,k′+1 +

1

2n
Hk+1,k′+1I2n =

3

2n
Hk+1,k′+1,

namely 1
4n2HkH

t
k′ = 1

2n
Hk+1,k′+1,. Since Hk+1,k′+1 is a (−1, 1)-matrix, Hk and Hk′ are

unbiased.

4 8 class association schemes

Linked systems of symmetric designs with specific parameters have the extended Q-
bipartite double which yields an association scheme of mutually unbiased bases [11, The-
orem 3.6]. Next we show an association scheme from our association schemes of class 5
has a double cover and show a relation to an association scheme of class 4 as a fusion
scheme.
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Theorem 10. Let A0, A1, . . . , A5 be the adjacency matrices of the association scheme in
Theorem 5. Define

Ã0 =

(
A0 0
0 A0

)
, Ã1 =

(
A1 0
0 A1

)
, Ã2 =

(
0 A1

A1 0

)
, Ã3 =

(
A2 A2

A2 A2

)
,

Ã4 =

(
A3 0
0 A3

)
, Ã5 =

(
0 A3

A3 0

)
, Ã6 =

(
A4 A5

A5 A4

)
, Ã7 =

(
A5 A4

A4 A5

)
,

Ã8 =

(
0 A0

A0 0

)
.

Then Ã0, . . . , Ã8 form an association scheme.

Proof. This follows from the calculation in Theorem 5.

Remark 11. (a) The association scheme of class 8 is also uniform. The second eigen-
matrix and B∗8 are as follows:

Q =


1 2n(2n−1) 2n 2n−1 2n(2n−1)(m+1) (2n−1)m 2nm 2n(2n−1)m m
1 −2n 2n 2n−1 −2n(m+1) (2n−1)m 2nm −2nm m
1 2n −2n 2n−1 −2n(m+1) (2n−1)m −2nm 2nm m
1 0 0 −1 0 −m 0 0 m
1 0 2n 2n−1 0 −2n+1 −2n 0 −1
1 0 −2n 2n−1 0 −2n+1 2n 0 −1
1 2n 0 −1 0 1 0 −2n −1
1 −2n 0 −1 0 1 0 2n −1
1 −2n(2n−1) −2n 2n−1 2n(2n−1)(m+1) (2n−1)m −2nm −2n(2n−1)m m

 ,

B∗8 =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 m 0 0 0 0
0 0 0 m 0 m− 1 0 0 0
0 0 m 0 0 0 m− 1 0 0
0 m 0 0 0 0 0 m− 1 0
m 0 0 0 0 0 0 0 m− 1


.

Thus the association scheme certainly satisfies [4, Proposition 4.7]. Note that the
scheme is not Q-polynomial since no column has all distinct entries.

(b) Letting B̃1 = Ã1 + Ã2 + Ã3, B̃2 = Ã4 + Ã6 and B̃3 = Ã5 + Ã7, B̃4 = Ã8, we obtain
a fusion association scheme of class 4. The second eigenmatrix of the class 4 fusion
association scheme is as follows:

Q =


1 4n2 (4n2 − 1)(m+ 1) 4n2m m
1 0 −m− 1 0 m
1 2n −0 −2n −1
1 −2n 0 2n −1
1 −4n2 (4n2 − 1)(m+ 1) −4n2m m

 .

This association scheme is a Q-antipodal and Q-bipartite Q-polynomial scheme of
class 4, see [10].
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