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Abstract

A conjugacy class C of a finite group G is a sign conjugacy class if every irre-
ducible character of G takes value 0, 1 or —1 on C. In this paper we classify the
sign conjugacy classes of the symmetric groups and thereby verify a conjecture of
Olsson.
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1 Introduction

We will begin this paper by giving the definition of sign conjugacy class for an arbitrary
finite group.

Definition 1.1. Let G be a finite group. A conjugacy class of G is a sign conjugacy class
of G if every irreducible character of G takes values 0, 1 or —1 on C.

Since we will be working with the symmetric group, we will consider partitions instead
of conjugacy classes. A partition of n is a sign partition if it is the corresponding conjugacy
class of S, is a sign conjugacy class. An easy example of a sign partition of n is (n).

Definition 1.2. Define Sign to be the subsets of partitions consisting of all partitions
(M1, - -+ 7r) for which there exists an s, 0 < s < 1, such that the following hold:

® i >Yiy1t -ty for1<i<s,

® (Ysi1,---,7) is one of the following partitions:
- ()7 (17 1)7 (3727 17 1) or (5737 27 1)7
— (a,a—1,1) with a > 2,
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- (a,a—1,2,1) with a

4,
- (a,a—1,3,1) witha >5

>
=

The name Sign for the above set is justified by the next theorem, which classifies sign
partitions.

Theorem 1.3. A partition v is a sign partition if and only if v € Sign.

This was first formulated by Olsson in [4] as a conjecture.
In order to prove Theorem 1.3 we will use two results from [4]. The first one of them
is the following lemma (Theorem 7 of [4]).

Lemma 1.4. A sign partition cannot have repeated parts, except possibly for the part 1,
which may have multiplicity 2.

In particular only partitions of the form (v,...,7,) with either vy > ... > ~, or
Y1 > ... > Ve > Y1 = % = 1 may be sign partitions. The next lemma can also be
found in [4] (Proposition 2).

Lemma 1.5. Let (y1,...,7%) be a partition of n and let m > n. Then (y1,...,7,) is a
sign partition if and only if (m,~y1,...,7) is a sign partition.

For any partition A = (A,..., Ag) let |A| ;== Ay 4+ -+ 4+ A\ Also for 1 < i < k and
1<y <A et h?,j denote the hook length of the node (i, 7) of A. For partltlons )\, b with
Al = n = || let x; denote the value of the irreducible character of S, labeled by A on
the conjugacy class with cycle partition p.

Together with the previous lemmas, the following theorem, which will be proved in
Sections 2 and 3, will allow us to prove one direction of Theorem 1.3.

Theorem 1.6. Let a« = (ay, ..., ay) be a partition with h > 3. Assume that oy > oo, that
a & Sign and that (aw, ... ,ah) € Sign. Then if o # (5,4,3,2,1) we can find a partition
B of |a| such that x2 & {0,£1} and h§’1 =aq.

The other direction of Theorem 1.3 will be proved using Lemma 1.5 and the results
from Section 4, where we prove that the partitions (ys41,...,7,-) are sign partitions.

References about results on partitions and irreducible characters of S,, can be found
in [1] and [3].

2 Proof of Theorem 1.6 for as < ag+ --- + oy,

In this section we will prove Theorem 1.6 in the case where as < a3z + - -+ + 5. Since by
assumption h > 3 and (ag, ..., qp) € Sign, we have that

(Qo, .. an) €{(1,1),(3,2,1,1),(5,3,2, )YU{(a,a — 1,1) : a = 2}
U{(a,a—1,2,1) : a > 4}U{(a,a — 1, 3 1) a>>b}.
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Also a1 < as+ -+ + aj as a € Sign and by assumption oy > «g. If

(0427...,Oéh)E{(].,l),(3,2,1,1),(5,3,2,].)}U{(CL,CL— 17]-) :2<a< 4}
U{(a,a—1,2,1): 4 <a <8tU{(a,a—1,3,1):5 < a <10}

there are only finitely many such « and it can be checked that for each one of them
Theorem 1.6 holds.
For (ag,...,ap) = (a,a —1,1) with a > 5 let

(2(1,2, 1041—2)7 a+2< o €2a—2o0r ap = 2a,
B:=X (a—1l,a—1l,a—1,4), aj=a+1,
<2a7a1>7 o] = 2a — 1.

For (ag,...,ap) = (a,a —1,2,1) with a > 9 let

(2a +2,4,17), a+4<a;<2a—2o0r2a <o <2a+ 2,
5o (2a+2,00 — 1,1), a3 =a+1,
' (2a+2,2,17%), a+2<a; <a+3,
(2a + 2, ay), ay = 2a — 1.

For (ag,...,ap) = (a,a —1,3,1) with a > 11 let

(2a + 3,5,19175), a+5<a; <2a—2or2a< o <2a+3,
8= (2a + 3,2,10172), ap=a+1or o =a-+4,
’ (2a+ 3,01 —2,1,1), oy =a+2,
(2a + 3, 1), oap=a+3or a; =2a—1.

It’s easy to check that in each of the above cases (3 is a partition and that hgl = Q.
In each of the above cases in can also be proved that x? ¢ {0, +1}.

Assume that (ag,...,a,) = (a,a—1,1) and a + 2 < oy < 2a — 2, that (ag,...,qp) =
(a,a—1,2,1) and a +4 < oy < 2a — 2 or that (ag,...,ap) = (a,a—1,3,1) and a + 5 <
a; < 2a — 2. In either case hig,41 = 2a — 2 > a;. As hgl = o it follows from the
Murnaghan-Nakayama formula that

B _ (_1ya—PB2, (lal—a1) (|| —2cx1,B2,1%1—52)
Xa = (=) + X ,

Since by assumption

(|l —2a1,82,1°1~52)
hs 1 ar — By 2 a,

(la|=2a1,82,1%17F2)
hiy = |a] =20 < a—2,

and oy = a, we have that

Xg = (-1)a1_62 + (_1>a2—1 (|a|—2a1,52,1°‘1—52—a2)'

(a3,-.,am)
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By definition of g

_ aj—Bgo—a
hg'ff' 201,82,1%17F27) la| =201 + a1 — o —as + 1

= 043+"'+Oéh—(a4+"'+ah+1)+1

= (3.

So
Xg — (_1)041—,32 + (_1)a2—1+a1—ﬁ2—a2+lx(52—1) _ (_1)0&1—522‘

(ag,...,on)

The other cases can be computed similarly.

3 Proof of Theorem 1.6 for as > a3z + -+ + o,

In this section we will prove Theorem 1.6 for ay > ag + -+ + a;. Again, from Lemma
1.5, as o & Sign but (qw, ..., ap) € Sign, we have that a3 < as + -+ + .
Throughout this section let k£ be minimal such that

ap + - ap < ap — a.
Since a; < ag + - -+ + ay, it follows that 4 < k < h+ 1. Also define
=+ -+ o

Theorem 3.1. Assume that the following hold:

o o ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ - + ap,

e k< h,

e a1 — (1S not a part of «,

® (_1>XT.
Then 8 = (|a| — ay,z + 1,107"71) 4s a partition, hﬁl =) and X2 = (—1)m—o712,
Proof. By definition and by assumption

ol —ar =+ a2 0q > +1,

from which follows that 3 is a partition. Also clearly hg}l = «. We will now prove that
S

Assume first that 2a; + = > |a|. Then

2=|a|—a1—(ag+--+ap)+2<|a| -2y +2 <z + 1

and so

h’B

Lla|—201+2 — la| — a1 +2 = (Ja| = 21 +2) = a.
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It follows that
aj—z—1_ (la|—a ) ar—z— )
Xfe = (_1> ! IX(LQIV_,,;[)}L) - X(ag,...,ah) - (_1) ! t— X(ag,...,ah)a
where ¢ := (z, || —2a; +1,1°7*71). So it is enough to prove that X?QQ ) = (D)
As hig <7 < a1 < ag by assumption, we have that

as—1_ €

§
X(ag,...,ah) = (_1) X(ag,...,ah)7

where € := (z, |a| — 2a; + 1,1%17*27%~1) (as by definition of =, a; — ay > x, so that € is a
partition). By minimality of k,

le| <2x 4+ a; —ag — 2z < 22+ ag_1.
Also, as (ag,...,qap) € Sign and k — 2 > 2,
ag+ - tap=le| <2+ Fap)tFap <ago+ -+ ap

and then k — 2 < 3. Since k > 4 it follows that £ = 4. As by induction a3 > =z,

77777

X((Sag,...,ah) _ <_1)a2_1xfa3 ) = (_1)042—1+a1—az—x—lxgzl’...yah) _ (_l)oq—:c

and then the theorem holds in this case.
Assume now that 2a; + 2 < |a|. Then

r+1<|a|—2a;+1< o] —

and so
hﬁ

1,la|—2a1+1 = |Od‘ —ap+ I- <|&‘ - 20{1 + 1) = Qj.

By definition ay < oy —x — 1 and by assumption ay > az+ - - -+ ay, so that any partition
of as + - -+ + a4, has at most one hook of length as. So

la|—2a,x4-1,1%1 1)

B _ ar—z—1 (la|—o1)
Xao — (_]') ' X(a2,...,ah) +X Q2.
= (_1)&1—1?—1 + (_1)062_1X?a3,.‘.,ah)7

—~—

where A = (|a| — 21,2 + 1,1®7°272=1) " So it is enough to prove that Xf\ag ) =
(_1)0417012796‘ ,
First assume that a;_1 > a7 — as. Then
hé\,l = — g < @

for3<j<k—1and

M= -2-1-ai+a>|A-a1— - —ay=a3+ -+
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fx+2< . If A\ =2+ 1 then
N=r+a—am+l<aa+ - +a <ozt +ap=])

and so in this case k = 4. In either case

A (ap_1—oqtagtzadl1o1 e el
X(ag,...,ah) - (ak—17"'7ah)
- (_1)041*&271)652)16 ----- ap)
— (_1)041—012—;U

and so the theorem holds also in this case.
Now assume that ay_1 < a; — ag. Then k > 5 (otherwise a1 > ap + -+ - + o) and

ak_1+x:ak_1+-~-+ah>a1—a2

by definition of k. Since o —as—x—1 < a)_1 by minimality of £ and since by assumption
xr < ap_1 and a; — ay is not a part of «, it follows similarly to the previous case that

A — M
X(Ozg,...,ah) - X(ak_g,...,ah)’

where p = (ap_o + ap_1 — a1 +ay +x,x + 1, 197227271 Ag
2< a1 —a1tast+tzrz+2<r+1
and so
PY o —cntantaroa =02+ Q1 —o1 oy + 242 — (a1 — a1+ a0 + 2+ 2) =ap_».
From a7 — ay not being a part of a and
T,ap — Qo —x— 1 < g1 < Qp_o

it follows that
H — v
X(ak_z,--.,ah) X(ap_1,00) — <_1)0‘1—012—;B’

with v = (2,051 — a1 + g + o + 1,12177927271) "and so the theorem holds also in this
case.
At last assume that 2c; + = |«|. Then

ag=lal—ag—r=0as+ -+ 1.
By definition of £ we then have that
g+t =0~y S Qo+ T ap

and so
g+t ago <o+ + ap.

If K> 5then k —2 > 3 and then ap_o < ai + - -+ 4+ ;. This gives a contradiction with
(v, ...,ap) € Sign. So k = 4 and then oy — ay = ay is a part of o, which contradicts the
assumptions. O
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Theorem 3.2. Assume that the following hold:
e o ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ - + ap,
o k< h,
® a1 — an 1S not a part of a,

e ap 1 < xz,

none of the following holds:

3727171> and&l:a2+ak71+"‘+&h,

Ag—1,---,Qp (
(5 3 2 1) and&1:a2+04k_1+"'+0éh,
(a,
(a,

Ap—1,---,Qp

1) witha>2 and oy = as+ag—1 + -+ ap, — 1,
121)wztha/4anda1—a2+ak 1+ +a,—3,
(a, —1,3,1)witha}f)anda1:a2+ak_1+~--+ah—4.

e

Ag—1;5--.,Cp

( ) =
( )
— (g1, .-, 0p)
( )
(1,5 ap)

Then B = (la| — ag,x + 1,1°7"71) is a partition, hé},l =ay and P = (=1)m—2712,

Proof. As in the previous theorem we have that 2c; +x # |a, since ag — ay is not a part
of a.

Assume first that 2aq + x > |a|. From the proof of the previous theorem (g > x
since (as, ..., o) € Sign), it is enough to prove that x{,, ) = (—1)7e2=7=1 where
€ = (z,|al — 20y + 1,1172272=1) n this case it holds k = 4 as in the previous theorem.

Assume now that 2a; + z < |a|. Since aj—1 < = < a3 — ag we have that a1 <
a1 — . As a; — a9 1s not a part of a it is enough, from the proof of the previous
theorem, to prove that z < a; for j < k—2 and that x{, =~ = (—1)x—e2m2=1 " where
v=(r,04_1—1+ay+x+1, 1072277 1) In order to prove that z < a; for j < k—2, it
is enough to prove it for j =k —2. As k > 4, so that k —2 > 2, and (aw, ..., qap) € Sign,
we have that r = ap + -+ - + ap < ap_o.

In either case it is then enough to prove that X(ak oy = (L)Y for Ay = (z, a1 —
y, 1Y), y = al —ay —x — 1. Notice that 0 <y < ap—1 — 1 since ), is a partition.

Clearly h271 = ay_1. If this is the only ai_1-hook of A, then it is easy to see that

X?ayk_l o) = (—1)¥. Else, due to hook lengths being decreasing along both the rows and

the columns, )\, has exactly 2 ay_;-hooks and there exists 2 < j < o with hi\yj = Q1.
As ap_1 < = by assumption

(ag—1,-..,0q) € {(1,1),(3,2,1,1),(5,3,2,1)} U{(a,a — 1,1) : a > 2}
UW{(a,a—1,2,1):a >4} U{(a,a—1,3,1) : a > 5}.
If (ag—1,...,ap) = (1,1) then = 1 < 2, so no such j exists.
If (ag—1,...,00) = (3,2,1,1) then A\, € {(4,3),(4,1,1,1)} if such a j exists, and so
y = 0 or y = 2 respectively. The second case would imply a7 — as — & = 3, which would

contradict the assumption. As y 3 2)1 = 1 = (—1)° the theorem holds in this case.
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If (g—1,...,a5) = (5,3,2,1) and there exists such a j then
A, € {(6,5),(6,4,1),(6,3,1,1),(6,1°)}

and then y = 0, y = 1, y = 2 or y = 4 respectively. In the last case a; — s — x = 5,

which contradicts the assumption. In the other cases ng’g)Q y=1= (—1)°, ng’g’;)l) =

—1=(-1)! and XEgg;B = 1= (—1)? and so the theorem holds also in this case.

If (ag—1,...,ap) = (a,a—1,1) then there exists such a j if and only if 0 < y < a1 —2.
If y=oa,_1—2then a; — as — & = ag_1 — 1 which contradicts the assumption. In the
other cases

1
“ oty = (CD e — Xty = (1Y,

sincea—y—2,y+1>1,sothat alsoa—y—2,y+1 < a—1. In particular the theorem
holds in this case.

If (ag—1,...,n) = (a,a—1,2,1) then there exists such a j if and only if y # ag_1 — 3.
For y = a1 — 4 we have that a; —as —x = a1 — 3, which contradicts the assumptions.

For 0 <y <ag_1—5then j =4 as a,_; —y >4, so that

hy=a+2+2-4=a

So
A . (a+2,a—y,1Y) (a+2) (a—y—1,3,1¥) (a—y—1,3,1Y)
X(ozz/k,l,...,ah) *X(a,a—1,2?1) = (_1)yX(a—1,2,1) - X(a—zlj,z,l) =(=1)Y - X(a—yi,&l)
and
X(a—y—l,?;,ly) _ 0 @.1) Y 7é 0

(a717271) _X(2:1) = O y = O,
as

P = g

WY = 43 <a—1,

B = a—y-1<a-1,
since 0 <y < ap_1 — 5 =a — 5. In particular X?;’k_l ) = (—1)v.

For ap_ 1 —2<y<ag_1—1then j =3 as a,_1 —y < 2, so that
hy=a+2+1-3=a.
It follows that
A . (a+2,a—y,1Y) (a+2) (2,a—y,1¥) (2,a—y,1Y)
X(op1man) = X(a,a—1,2f/1) = (=1)"X(a120) T (a—l,g,l) = (-1)Y+ (a—l,g,l) :
As (2,2,1972)
X(Za—y,l”) _ XEa;’m,l) =0 y=ap_1—2,
a—121) — 2,19 a2 (2,1
( : X(a—l?Z,l) = (_1) 2X§271§ =0 y=ap1—1,
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as a > 4. In particular also in this case X?;k_l,...,ah) = (—1)v.

If (ag_1,...,0n) = (a,a—1,3,1) then there exists such a j if and only if y # ay_; — 4.
If y=ap_1 — 5 then a; — as — x = ap — 4, in contradiction to the assumption.

For 0 <y < a1 —6then j=5as ap_1 —y > 5 and then

hy=a+3+2-5=a.

So
A _ (a+3,a—y,1Y) (a+3) (a—y—1,4,1¥) (a—y—1,3,1Y)
X(t;/k_l,...,oah) _X(a,a—1,3,y1) = (_1)yX(a—1,3,1) - X(a—?i?:,l) =(-1)Y - X(a—lf,3,1)
and
(a_y_17471y) — 0 (3 1) y # 07
(a7173»1) _X(3:l) — O y — O7
as
P = g,
WY =y rd<a—1,
PG = a—y—1<a—1,
since 0 <y < ag_1 — 6 = a — 6. In particular X?;’kil ) = (—1)v.
For a1 —3 <y <ag_1—1then j =4 as a1 —y < 3, so that
hy=a+3+1-4=a
Then
A . (a+3,a—y,1Y) (a+3) (3,a—y,1¥) (3,a—y,1Y)
X(cyyk,l,...,ah) = X(a,a—l,S,yl) = (-1) (a—1,31) T (a—l,g,l) =(—1)Y+ X(a—l,g,l) '
As (3,3,1973)
( : X(a7_717371 =0 Yy =01 — 3’
3,a—y,1Y 3,219~
X(a—l,g,l) - Xga—l,?),l)) =0 y=ap1—2,
371(1 a— 3a1
X(a—l,)S,l) = (_1) 2X§3,1§ =0 y=oap1 —1,
since a > 5 it follows that also in this case X?ayk_l o) = (—1)v. ]

Theorem 3.3. Assume that the following hold:
o o ¢ Sign, (ag,...,ap) € Sign and a1 > ag > az + -+ + ap,
o k< h,
® a1 — an 1S not a part of a,

o (1, ) €4{(3,2,1,1),(5,3,2,1)},
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[} a1:a2+ozk_1+---—|—ah.
Let ¢ equal to 3 if (ag—1,...,an) = (3,2,1,1) or equal to 6 if (ag—1,...,an) = (5,3,2,1).
Then = (|a] — aq,0q0 — ¢, 1°) is a partition with hé},l =y and xh = (—1)°2.
Proof. Since ¢ < ag < a1 < ag + -+ + a, = |a| — a1 by assumption on «, it follows that
B is a partition. Clearly hg’l = .
Also, from

2< a3+ t+apo+2<az+---+a,—c<a;—c
we have that

hf,a3+~~-+ak_2+2 = |laj—ag+2—(ag+ -+ ago+2)
= ay+---4+oap—a3—--—Qp_9
= Qtap1t--tap
Q.

If (ag_1,...,00) = (3,2,1,1) let d = 3. If instead (ag_1,...,an) = (5,3,2,1) let
d = 4. Notice that c+d =a,_1 + -+ 4+ a; — 1. Then by assumption

ar—c=ag+ap1+ -+a,—c=ay+d-+1.
It follows that
X = (DX ) = Manan) = (1 = X
where 0 = (ag +d, a3 + -+ + ag_o + 1, 1°).
Assume first that k = 4. Then az + -+ 4+ ap_o =0 and so, as ¢ + 1 < ao,
_ (dieth _ (_1)071

X(ag,...,ah) - X(ak,l,...,ah)

(the last equality follows from (ax_1,...,an) € {(3,2,1,1),(5,3,2,1)} and from the defi-
nition of ¢ and d) and so in this case xo = (—1)°2.

So assume now that k > 4. As (ag, ..., qq) € Sign, it follows that a; > a1+ -+,
for j <k —2. Also

52:oz3+---+ozk_2+1>oz3—|—1>d—|—2>2.

So
h goo =02 +d+2— (d+2) = ay
and then as by assumption |§] = ag + - - - + ap < 2a, so that § cannot have more than 1
hook of length as,
1 €
X(ag,“.,ah) - _X(ag,.“,ozh)
with € = (a3 + -+ + ag_o,d + 1,1°). As hs, = c+d+1=oap1+ -+ a, < aj for
7 < k — 2 and then in particular also aj_o > d 4+ 1 > 2, we have that

€ _ (ak727d+1716) _ (drlc+1) _ c
X(a37'-'7ah) - (akfg,...,ah) - (akfl,...,ah) - (_1) :
In particular also in this case x% = (—1)°2. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.12 10



Theorem 3.4. Assume that the following hold:
e a ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ + ap,
o k< h,
e a1 — (1S not a part of «,
e one of the following holds:

— (g1, .. .,ap) = (a,a—1,1) witha > 2, oy = s+ a1+ -+ a, — 1 and
(g2, o) €4{(3,2,1,1),(5,3,2,1)},

— (a1, ..., ap) = (a,a —1,2,1) with a

— (ag—1,...,ap) = (a,a —1,3,1) with a

4 and oy = ag + a1+ -+ ap — 3,

VoWV

5and oy = g+ a1+ -+ ap — 4.
Then 5 := (|a] — aq, 1%1) is a partition with h§71 =ay and P = (—=1)*712.

Proof. From the definition we clearly have that 3 is a partition with h§71 = .
Notice that from the assumptions a; = ag + 2a — 1. Also

o] —ag =ag+ - +ap>as+2a— 1=

and so, as ap > a3+ - - -+ ap, so that any partition of as + - - - + ay, has at most one hook
of length ano,

g _ or—1(al—an) , (jal=2a1,11)
Xa - (_1) ! (a2,~~~,éh) (0127~~~aa;)
_ (_1)a1—1+(_1)a2—1XE|a|—2a1,)1a17a2)
as,...,ap
o — a o|—2a1,1291
= (=)™ (=1 1x§‘a3' ..... ) .

Assume first that either k =4 or £ > 4 and ay_» > 2a. Then, as ap_1+---+ap > 2a
it follows that

(la|=2a1,12¢7)  (ap_1+-tap—2a+1,12%7Y) 0 o\(a—1)+(a—2) _
(o) X(ago1,ean) =(=1) =-1

The second last equality follows from
(122) (-1, 0p) = (a,a—1,1),
(g1 + - +ap—2a+1,171)=L (3,127 (qpy,..., ) = (@, — 1,2, 1),
(4,127 Y (ap_1,...,a4) = (a,a —1,3,1),

_ 2a—1
so that, by assumption on a, a — 1 > h§‘f‘;—1+ Fon=20+ LI G the last two cases.
Assume now that & > 4 and aj_» < 2a < aj_; + --- + 5. Notice that in this case
(W—1,...,0p) = (a,a—1,1), as (ag,...,ap) € Sign and then also (ag_o,...,an) € Sign.

From this assumption and the assumption that (ay_o,...,as) € {(3,2,1,1),(5,3,2,1)}
it follows that (ag_o,...,an) € {(4,3,2,1),(5,4,3,1)}. Also, always by assumption of

(g, ..., ap) € Sign, if k > 6 then ay_3 > 2a — 1. In either of the two cases
(Ja|—2a1,1207Y) _  (agp_p+1,1227Y) |
(@zyesan) T Aag—gyenan) )

In either case Y2 = (—1)*1712 and so the theorem is proved. O
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Theorem 3.5. Assume that the following hold:
e a ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ + ap,
e k< h,
e a1 — (1S not a part of «,
oy =0t apg+--tap—1,
o (ap_o,...,ap) €{(3,2,1,1),(5,3,2,1)}.
Then = (|a] — aq, 1) is a partition with hgl =a; and x5, =

Proof. Since, by assumption, oy < ag + - -+ ap = |a| — ag we have that (3 is a partition.
Also clearly hé{l = ;.

Notice that in this case k — 2 > 2, as ap_9 < ap_1 + --- + a5 and by assumption
g >3+ -+ ay. As

I<ag+-+apot+3<az+-+a,<ay<aq
it follows that

hf7a3+...+ak72+3 - |Oé|—041+2—(043+---+05k_2+3)
= la|— (e +ap1+-F+a,—1)— (s +- -+ o) —1

= 1.
50 (laf—aa)
B __ aj—o1 1 _ 1)
Xa = X(ag,...,ah) T X(a27...,ah) =1- X(ag,...7ah)7
with

d=(n—lag+ - +apo+2)=(w+a 1+ +ap—2,a3+ - +a_2+2).
Also by assumption
l<ap 1+ 4o, <apos+2<az3+--F+apo+2
and then

RS =yt a1+t —2+2—qp 1+ +ap = .

Loag—1+-+ap
From the previous a3 + - + ag_2 + 2 < a9 and so

) _ €
X(ag,“.,ah) _X(ag,.“,ozh)

with
€ = (a3+---+ak_2—1—1,ozk_1+---+ah—1).
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As (ag,...,qp) € Sign by assumption, so that a; > a1 + -+ + ) > e for j <k —3
and as ag_o+ 1> a1+ ---+ a5 — 1 by assumption, it follows that

e _ Nog—otlogat+tap—1)
X(Oé37...704h) - (CVk,Q,...,Cl{h) - 1
(the last equation follows from the assumption that (ag_o,...,ap) is either (3,2,1,1) or
(5,3,2,1)).
In particular . = 2 and so the theorem holds. ]

Theorem 3.6. Assume that the following hold:

e a ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ + ap,

e k< h,

e there exists 1 with a; = a; — awg,

o o = g+ .
Then 8 = (Ja] — a1, ag+1,1°17°271) s a partition with h2 L= aq and X2 = (—1) 2712,
Proof. Since by assumption a; > ag + oy, = ag + 1 and (also using Lemma 1.5)

la] —ag 2o > +ap 2 an+ 1

it follows that /3 is partition. Also clearly hgl = ag.
From the definition of k£ and from

2a2>062+"'+06h2051
we have that 3 <7 < k < h. Then

hf,Q = la|—ar=ay+--+ap >+ a; +ap > o,

hf,a2+1 = lo—-a+2—aw—1l=a3+ - +ap+1<a<a.

In particular there exists 3 < j < as such that hfvj = . From the Murnaghan-Nakayama
formula it follows that

X/B = ( 1)041 Q2 — 1 ‘O‘| al)) _ Ea27j717]-)a17a271)
@ a2, Qap Qz,...,03
al—o 2,117 %2
( 1) el 813,"-,01}1) )
_ ( 1)(11 g — 1+XEZTIZZ;)+O”“1M)
a]—a a;— Qjp1t+Fa
(=17 4 () T
(1)

1a1 ag— 12

The second line follows from h;’ (ozj—1 11702 D = ay, as J > 3, and from

|(a2aj - 17 1a1_a2_1)| = |OZ| —o1 < 20{2,

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.12 13



so that (ag,j—1,1*72271) has at most one hook of length as. The third line from «; > «;
for j < i and from ¢ < h, so that
WP = e an)] = (0 - aa) 1

z o+ g

The fourth line follows from a; > a; 11 + - + . O
Theorem 3.7. Assume that the following hold:

o o ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ - + ap,

o k< h,

e there exists 1 with a; = a; — awg,

o a; < g1+t Q.
Then 8 = (|a] — a1, ag + 2,1917°272) 4s a partition with h§,1 = and X2 = (—1)M17222,
Proof. Since by assumption o > as + o, > as + 1 and

la] —ag 2o > +ap 2 ag+ 1

it follows that /3 is partition with hg’l = 0.
From o; < a1 + -+ + ap and (ag, ..., a;) € Sign it follows that

(i, ...,an) € {(3,2,1,1),(5,3,2,1)} U{(a,a —1,2,1) : a > 4}
U{(a,a—1,3,1) : a > 5}.

Similar to the previous theorem we have that 3 < i < k < h, from which follows that

Mo = lal—a1=ao+ - tapZamta+otap>am+2

hf,a2+2 = |a|_a1+2—012_2:a3+"‘+04h<042<O./1.

In particular there exists 4 < j < ay such that hﬁj = ;. So

B — _1yer—az—2 (la|—a1) (q2+1,j—1,191-2272)
X = ( 1) e X(O%m,oéh) (a2,...,a3)
al—a j—2,2,101 22
f— (—1) 1 2 _i_XE-;s’m’ah) )
o~ Qip1tetap,2,1% 72
= (—1)Ter e,

The second line follows from as > a3 + - -+ + oy, and, as j > 4,

PTG 142 -3 = ay.
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The third line follows from a; > o; for j < i and from

s a]—ag—2
RS2 = (s, )| — (0 — ag) — 2

= a3t tap—a -2

Z ap+ -+ oGy
If (i, .. a) € {(3,2,1,1),(5,3,2,1)} it is easy to check that

Qi1+ top,2,1%72 o a1—a
N = = = e

In particular the theorem holds in this case.
If (g, ...,ap) = (a,a—1,¢,1) with ¢ € {2,3} then, as a — 1 > ¢,

(ai+1+---+ah,2,1°‘i_2) _ (a+c,2,1“72)
X(ai,...,ah) - (a,a—1,c,1)
a— a+tc c,2,1072
= (=1 QXEa—l?c,l) + et
- (-1
= (_1)(117&2?
so that the theorem holds also in this case. O

In the next theorems we will consider the case k = h + 1, that is a3 — as < ay,.
Theorem 3.8. Assume that the following hold:

o a ¢ Sign, (ag,...,ap) € Sign and a3 > ay > az+ -+ + ap,

o o —ay < qy.
Then = (|a] — aq, 1%1) is a partition with hé{l = ay and P = (—=1)712.

Proof. Clearly [ is a partition and h§71 = ay. By assumption |a| — oy = as + a5 > ay,
from which also follows that oy — oy < ap < a; for j < h. Also as by assumption
ag > ag + - -+ + ap, so that any partition of ap + - + «p has at most one as-hook, it
follows from the Murnaghan-Nakayama formula that

B _ (_1yu—1,(laf-a) (laf=20q,1%1)
XO‘ - ( 1) ' X(az,...,;h) + X(ag,.,.,ah)
o1 — Qo — al—2aq,1%1 72
= (_1) 1 1+<_1) 2 IXELJ,W’(X;) )
= (DT (e
= (cpm

Theorem 3.9. Assume that the following hold:

o a ¢ Sign, (ag,...,ap) € Sign and a; > ay > az+ -+ - + ap,
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® vy — (g = (p,
o h=3.
Then = (a1, 1) is a partitions with h§,1 =y and x5 =

Proof. Notice that az > 2, since 1 < o — ag = g and (g, ag, az) € Sign. Clearly § is a
partition with hgl = 0.
As 8 = (a1, 1) and a3 > 2 we have that

B _ . (a1) (c1—1,1)
Xa = X(ag,a3) - X(a27a3) =2 -

Theorem 3.10. Assume that the following hold:
o a ¢ Sign, (asg,...,ap) € Sign and a1 > ay > az+ -+ + ap,
oy —ay=aqy =2,
e h>4.
Then 8 = (|a] — a1, ag + 2,1°17°272) 4s q partition with h§,1 = and X2 = (—1)M1~222,

Proof. As as +2 < as + o, = ag and |a] — oy = as + «y, we have that § is a partition
and that hgl = ;. Notice that §], which is the number of parts of 3, is given by

Bl =01 —ay = oy
As h >4 and ap_; > a3 > 2 we have that

h/i2 = lal—agZ2a+ta,+ap1 > a;+3,

h'[f,a2+2 = loj—oyg—aw=a3+ - +ap,<a—1< g -2

In particular there exists 5 < j < ap with hfj = ay. Such j satisfies 5\ Rf,j = (g +

5
1,7 —1,1°172272) and then also h’i\fl’j =g as j — 1 > 3 (where Rfvj is the rim hook of

S corresponding to node (1,j)). As as > asz+ -+ + ay, as f; = ap, and as «; > «y for
i < h (since ay, > 2) we then obtain from the Murnaghan-Nakayama formula that

_ a1—as—2. (la|—a1) (ap+1,j—1,191-22=2)
Xfl o <_1) 1 ’ (a27“~101‘h) - (az,...,ih)
o1 —« j—2,2,1%h 2
= ()" 4 &3,...,%) :
_ a1 —a (ap_1,2,1%n=2)
- <_1) S (an—1,an)
a]—o 1%h
- <_1) B Xgahf)hah)
— (_1)0&1—&2 + ( 1>ah
— (_1)1341*&22
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Theorem 3.11. Assume that the following hold:
o a ¢ Sign, (ag,...,ap) € Sign and a3 > ay > az+ -+ + ap,
e o —y=qap=1=aqy_1,
e h>4.

Then = (Ja| — a1, 1) is a partition with h§71 =, and X2 = 2.

Proof. From Lemma 1.5 it follows from the assumptions that |a| — a3 > «; and so § is a
partition. Also hgl =a;. As

3=ap1t+2< a3+t t2=a3+ -t tl<w<ay

and
la] =200 +2 =+ +ap—a1+2=a3+ -+ ap_1 + 2,

we have that, for j = |a| — 20q + 2,
h . =la|—a1+2—j=a.

Also 2 < j—1< agand then, as ap =a; — 1 and aj_o > a1 = ap =1,

B _ . (lal—a1) (n—1,j-1) _ (G-21) _
Xa = X(az.‘.,ah) T Aag,enan) L+ X(ag,.‘.,ah) = 2. [
Theorem 3.12. Assume that the following hold:
o o ¢ Sign, (ag,...,ap) € Sign and a1 > ag > az + -+ + ap,

e o —ap = =1<ay,
o h=4.
Then B = (a; — 2, a3, as, 4,1°177972) 4s q partition with hﬁl =y and x? = (—1)M1~32,

Proof. Notice that from the assumptions it follows that as > 4. Also a; > as > ag and
so 3 is a partition with hg’l =qaq. As as = a7 — 1 and a4y = 1 we have that

. a1 —as . (a1—2,a3—1,3) (as—1,a3—1,3,191-@3~1)
Xg - (_1) ! SX(oci—Lai,l) - (a?_17a271)
a1 —ao (e} —2,2,1 a1 —Q o —1,2
— (_1) 1 3XEa’;"1) ) + (_1) 1—az+1 Ea;l) )

= (=)™,

Theorem 3.13. Assume that the following hold:

o a ¢ Sign, (ag,...,ap) € Sign and a; > ay > az+ -+ - + ap,
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oy —ao =qp =1,

e hh>5,

e oy 1= 2.
Then B = (la] — a1 — 2,04 — 2,2, 2) is a partition with h@l = and X2 = -2,
Proof. As ag > ay > ... > ap = 1 it follows that a; > h > 5. Also, by assumption on «,

la] —ag Z g +ap o+ ap > a1+ 3
and so it follows that [ is a partition. Clearly h§71 = . Since by assumption
la]| =201 +2 =+ - +ap—a1+2=a3+ - +ap+1 < <a

we also have that
e = lal—ay—2+2-3=la| —o1 — 3> ay,
hfarQ = |lof—a1—2+2—-—a;+2=|a| —2a; +2 < a3.

In particular there exists 3 < j < a3 — 3 with hfj = Q.
From aj—1 = 2 and a;, = 1 it follows that o; +--- +a;, —3 > a; for j < h — 2. Since
a; = 3 for j < h — 2 we then have that

8 _  (al—a1—-211) (a1-3,5-122)
Xa = (a2,...,an) (a2,...,an)
_ (al—a1—a2-2,1,1) (j—2,1,1)
- X(a3,---70th) +X(a3 ----- ap)
o (1,1,1)
= 2@
= —2.

Theorem 3.14. Assume that the following hold:
e a ¢ Sign, (ag,...,ap) € Sign and a1 > ay > az+ -+ + ap,
e o —y =aqp =1,
e h>5
o qy_1 = 3.

Then B = (Ja — a1 — a1 + 1,3,3,200-173 101=en-1-1) s g partition with hy, = a; and
& = (1)t
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Proof. As h > 5, so that
=la]—ay—ap1+1>as+az3+1>a;+3,

and as a; > ap_1 > 3 it follows that S is a partition with h§,1 = ay. Also 7 > 4 and

th > ay. From the assumptions we also have
la] =200 —ap 1 =as+- +ap—ag—ap1=az3+ - +apo>az+ -+ ap3+ 2.

Since a; > a1 for j < h — 1 and again any partition of ay + - -+ + « has at most one
as-hook, we have that

1)e1—3 (\04 ai—ap_1+1,2,1%—17 3)+ (Jo| =201 =, _1+1,3,3,2%h—1723 191~ *h—171)
X(ag,..om) (a2,...,an)

a1—1 (‘C“| 2001 —ap—142,2,1%h—17 3) a1 —4 (|a|*2041*ah—1+173,1ah71_3)
1 +(—1)
X(ag,..om) (a3,...,an)

= ()
= ()
= (T et
- i
= (—1)mtenatin,

4 The partitions (v¥s41,...,7) are sign partitions

In this section we will prove that
e (), (1,1), (3,2,1,1), (5,3,2,1),
e (a,a—1,1) with a > 2,
e (a,a—1,2,1) with a > 4,
e (a,a—1,3,1) witha >5

are all sign partitions. For (), (1,1), (3,2,1,1) and (5,3,2,1) this can be done by just
looking at the corresponding character table. For the other partitions we will use the next
lemma.

Lemma 4.1. Let a > 2 and v = (a,a — 1,73,...,7,) be a partition. Assume that the
following hold.

o (a—1,73,...,7) is a sign partition,
® 3t +y<a

If B is a partition of |7y| for which X ¢ {0, j:l} then B has two a-hooks. Also if ¢ is
obtained from [ by removing an a- hook then X(a L) # 0. In particular each such ¢

has an (a — 1)-hook.
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Proof. By assumption
V=20 -1+ 4+ +7 < 3a

In particular any partition of |y| has at most two a-hooks. As

5 _ B\R};
Xy = E: EX(a-133070)

(i,j):hfj:a
: : : s B\R;
and, since (a — 1,73,...,7:) is a sign partition, so that X(a—1,) € {0,+1} for each
(,7) € [B], the Young diagram of 3, with hf] = a, the lemma follows. ]

Theorem 4.2. If a > 2 then (a,a — 1,1) is a sign partition.

Proof. As (a —1,1) is a sign partition for a > 2, from Lemma 4.1 we only need to check
that XI(Ba,a—l,l) € {0,+£1} for partitions 8 of 2a with two a-hooks and such that if ;4 and
v are the partitions obtained from S by removing an a-hook then g and v both have an
an (a — 1)-hook. From f having two a-hooks it follows that p and v also have an a-hook.
The only partitions of a having both an a-hook and an (a — 1)-hook are (a) and (1%). As
w # v it then follows that {u, v} = {(a), (1*)}. Looking at the a-quotients and a-cores of
B, u and v we have that there exists a unique such 3, which is given by 8 = (a,2,1%72).

We have . : :
a,2,19~ a2 (a 10 u .
XEa,a—l,l) =(=1) 2XEa—1,l) - XEa—l,l) = (1) + (-1 =0
and so (a,a — 1,1) is a sign partition. ]

Theorem 4.3. Ifa > 4 then (a,a — 1,2,1) is a sign partition.

Proof. For a = 4 we can check that (a,a—1,2,1) = (4, 3,2, 1) is a sign partition by looking
at the character table of Syg. So assume that a > 5. As (e —1,2,1) is a sign partition for
a > 5 from Lemma 1.5, from Lemma 4.1 we only need to check that X(ﬁa,aflﬂ,l) € {0,£1}
for partitions 8 of 2a 4+ 2 with two a-hooks and such that if 4 and v are the partitions
obtained from f by removing an a-hook then p and v have both an a-hook and an (a—1)-
hook.

So let 8 have two a-hook. Then, as || = 2a+ 2 < 3a, we have that 3, the a-core of
3, is either (2) or (1?). We will assume that S, = (2), since for any partitions X, p with
|A| = |p| and any positive integer ¢, we have that X,))‘ = j:x;\/ and )\zq) = (A(g))’; where X is
the adjoint partition of A and similarly for A\,). Then p and v can be obtained by adding
an a-hook to (2) and so

v €{(a+2),(2,2,17%), (2,1} U{(a—14,3,1" Y : 1 <i<a— 3},

as all these partitions can be obtained by adding an a-hook to (2) and, since 2 < a, there
are exactly a such partitions. As p and v have an (a — 1)-hook we then have that

v € {(a+2),(2,1%),(a—1,3),(3,3,1°74)}.
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Notice that since a > 5 the four above partitions are distinct. As a > 5

(271a) — a—2 (271) _
X2 = (FD7xEh) =0,
(G‘*l”?’) — (271) R
X@-121) = "X =Y

we only need to consider, from Lemma 4.1, the partition § corresponding to {u,v} =
{(a+2),(3,3,1%71)}, that is for 8 = (a +2,4,1971). As

(a+2,4,187%) (3,3,1274) a—4. (a+2) o a—3. (3) a __
(@a-121) — X(a-121) T (—1) (a—12,1) — (=1) X2,y + (=1D)*=0
it follows that (a,a — 1,2, 1) is a sign partition. ]

Theorem 4.4. If a > 5 then (a,a — 1,3, 1) is a sign partition.

Proof. 1f a = 5 then (a,a — 1,3,1) = (5,4,3,1) and by looking at the character table
of S13 we can easily check that this is a sign partition. So assume now that a > 6. As
(a —1,3,1) is a sign partition for a > 6 from Lemma 1.5, from Lemma 4.1 we only need
to check that X(ﬁa,afl,;%,l) € {0, £1} for partitions 5 of 2a + 3 with two a-hooks and such
that if 4 and v are the partitions obtained from S by removing an a-hook then p and v
have both an a-hook and an (a — 1)-hook.

So let 8 have two a-hook. Then S, is (3), (2,1) or (1*). Similarly to the previous
theorem we will assume that 3, is either (3) or (2,1).

Assume first that 8,y = (3). Then, as 4 and v can be obtained by adding an a-hook
to (3) and as there exists exactly a such partitions since a > 3,

poref{(a+3),(3,3,1°7%),(3,2,1°7),(3,19} U {(a —,4,1" ") : 1 <i<a—4}.
As p and v also have an (a — 1)-hook it then follows that

v € {(a+3),(3,1%),(a — 1,4), (4,4, 1°7)}.

Asa>6
(371a) — a—2 (371) J—
X3y = (CD7xEn) =0,
(a—1,4) o 3,1) _
X(a-131) — X =

and so, from Lemma 4.1, we can assume that {7,0} = {(a + 3), (4,4,1%75)}, that is that
B =(a+3,51%7°) and then

B _ (4,4,1%79) a—5. (a+3) _ a—4. (4) a—5 _
X(aa-131) = X(a-131) T (1) X(a-1,31) = (1) X1+ (=1)*"=0.

Assume now that B,y = (2,1). Also in this case, as a > 3, there exist exactly a
partitions which can be obtained by adding an a-hook to (2,1) and p and v are two of
them. So

pve{(a+2,1),(a,3),(2,2,2,1°7%),(2, 1"} U{(a — 4,3,2,1"%):2<i<a — 3}.
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As p and v have an (a — 1)-hook it follows that

’u’ v e {(G/ + 2’ 1)7 (0’7 3)7 (2’ 27 27 ]‘a_3)7 (27 1a+1)7 (a - 27 37 2)? (37 37 27 1a_5)}.

Since a > 6
(a+2,1)  _ _(3,1) _
X(a—1,3,1) - X(371) - 07
(2,1e+y a—2. (2,1,1)
Xa-1ay = (1D)7x@h) =0,
(@a-2,32) _ _(2,1,1) _
(a-1,31) — X@3B1) = 0,
(3,3,2,1479) a—4_ (3,1)
(a—1,3,1) (=1D)" X3 1) = 0

we again only need to consider one partition 8. In this case {u, v} = {(a, 3),(2,2,2,1%73)}
and then 8 = (a,3,3,1%73). As

(a,3,3,1973)  (2,2,2,1973) a—3._ (a,3) . a—3. (2,2) a—2_(2,2)
(@a—1,31) —X(a=13,1) T (1) X(a—1,3,1)—(_1) (3,1) (1) 31 =Y,
it follows that (a,a — 1,3, 1) is a sign partition also for a > 6. ]

5 Proof of Theorem 1.3

For r < 2 Theorem 1.3 follows from Lemmas 1.4 and 1.5. So assume now that r > 3.

From Lemma 1.5 and Section 4 it easily follows that if v € Sign then v is a sign
partition.

Assume now that v = (71, ...,7,) is a sign partition. From Lemma 1.4 it follows that
(Vr—1,7) € Sign. Also from Lemma 1.5, ;1 >y for 2<i<r—1. Fix2<i<r—1
and assume that (v, ...,7,) € Sign.

Assume that (v;—1,...,7%) # (5,4,3,2,1) and that (y;_1,...,7 ) & Sign. From Theo-

rem 1.6 we can find § such that Xf(ﬁ,h__lww ¢ {0,£1} and hgl = ;1. Let

d=(Br+m+- 4720520, ..).

Then 6 is a partition of |y|. If i — 1 =1 then
X=Xy nn € {0,513,
in contradiction to v being a sign partition. If i — 1 > 2 then (1,5, + 1) € [4] and
h(15,51+1 =7+t Y2
Since 3, < 1 + 1 and hgl = hS’l = Y1 < 7y, for j <7 — 2, we have that also in this case

Xf{ - X?’Yifly---v’)/r) g {0’ :tl}’

which again gives a contradiction.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.12 22



Assume now that (v;_1,...,7) =(5,4,3,2,1). fi—1=1ori—1>2and 2> 7,
then similarly to the previous case

(dty1+-+yi2,4,43) _ | (4443)
Xy = X(s.4321) = 2

Ifi—12>2and v,_; = 6 we have similarly that

(A5+y1+-47i-3,2,1,1,1,1) __  (152,,1,1,1) __
Xy = X(osd321) = 2

In either case we have a contradiction with v being a sign partition.
So (Yi—1,---,7) € Sign. By induction v € Sign and so Theorem 1.3 is proved.
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