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Abstract

We study generalized small Schröder paths in the sense of arbitrary sizes of
steps. A generalized small Schröder path is a generalized lattice path from (0, 0)
to (2n, 0) with the step set of {(k, k), (l,−l), (2r, 0) | k, l, r ∈ P}, where P is the
set of positive integers, which never goes below the x-axis, and with no horizontal
steps at level 0. We find a bijection between 5-colored Dyck paths and generalized
small Schröder paths, proving that the number of generalized small Schröder paths
is equal to

∑n
k=1N(n, k)5n−k for n > 1.

Keywords: generalized large and small Schröder paths; colored Dyck paths

1 Introduction

Lattice paths have been studied extensively by many mathematicians over a long period
of time. Recently, several attempts of generalization have been successful. (See [2], [4], [7],
and [3].) Schröder paths are also interesting objects, but have been rarely studied for any
type of generalization until J.P.S Kung and A. De Mier [5] found the generating functions
for the number of generalized Dyck and Schröder paths, which are called rook and queen
paths, with a given right boundary and steps satisfying a natural slope condition. In this
paper we try to enumerate combinatorially the number of the generalized small Schröder
paths.

In the next section we give some basic definitions and facts on lattice paths in gen-
eral. Section 3 talks about a bijection between colored Dyck paths and generalized small
Schröder paths.

2 Preliminaries

We list two sets of definitions.
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Definition 1. The following are fairly well known, but we state them anyway.

(1) An n-Dyck path is a path from (0, 0) to (2n, 0) with up U = (1, 1) and down
D = (1,−1) steps that never goes below the x-axis.

(2) An n-Dyck path is called a prime if it never touches the x-axis except at the starting
and terminal vertices.

(3) A peak in a Dyck path is a vertex between an up step and a down step, and a valley
is a vertex between a down step and an up step.

(4) A double ascent in a Dyck path is an intermediate vertex of a consecutive UU pair,
and a double descent is defined similarly.

(5) The Narayana number N(n, k) counts n-Dyck paths with k peaks.

(6) An n-Schröder path is a path from (0, 0) to (2n, 0) with up U = (1, 1), down
D = (1,−1), and flat F = (2, 0) steps that never goes below the x-axis.

(7) An n-small Schröder path is a Schröder path having no flat steps at level 0.

Definition 2. We introduce the new ones that we need throughout this paper.

(1) A 5-colored n-Dyck path is an n-Dyck path only whose double ascents are colored
in one of five colors, b(black), w(white), f(flame), g(green), and y(yellow).

(2) A bicolored n-small Schröder path is an n-small Schröder path whose vertices be-
tween distinct steps of U,D, and F are colored in b only and vertices between the
same kind of steps of UU,DD, and FF are colored in either b or w. The starting
vertex and ending vertex are not colored.

(3) A generalized (large) n-Schröder path is a lattice path from (0, 0) to (2n, 0) using
steps from {(k, k), (l,−l), (2r, 0)} for any positive integers k, l, and r, that never
goes below the x-axis.

(4) A generalized n-small Schröder path is a generalized n-Schröder path with no flat
steps at level 0.

Then the following lemma is straightforward from the definitions 2.1 (5) and 2.2 (1).
(The number is listed as A078009 in OEIS [6].)

Lemma 3. The number of 5-colored n-Dyck paths is
n∑

k=1

N(n, k)5n−k.
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3 A bijection between 5-colored Dyck paths and generalized
small Schröder paths

In this section we provide a bijective relation between 5-colored n-Dyck paths and bi-
colored n-small Schröder paths by Bijection I. Then we give a natural bijection between
bicolored n-small Schröder paths and generalized n-small Schröder paths by Bijection II.
In other words, we prove the following theorem bijectively.

Theorem 4. The number of generalized n-small Schröder paths is

n∑
k=1

N(n, k)5n−k.

Proof. Bijection I.
Let P be a 5-colored n-Dyck path. We construct the corresponding bicolored n-small
Schröder paths by taking four steps described as follow:

STEP 1. (coloring)
For each double ascent of P find the first double descent right of the ascent at the same
level. We call this the matching double descent. Note that each double ascent of P is
colored in one of five colors, b, w, f, g, and y. Let P ′ be the path obtained from P by the
following process:
(i) If a double ascent of P is colored in one of three colors, b, w, and f , then color its
matching double descent in the same color.
(ii) If a double ascent of P is colored in one of two colors, g and y, then replace the color
with b and w, respectively, and color its matching double descent in w and b, respectively.
(iii) Color each peak and valley of P in b.
Notice that every f colored double ascent in P ′ has the matching double descent also
colored in f .

STEP 2. (factorizing)
Find the first vertex v colored in f . Assume that v is the ending vertex of an up step U
at level i. Then one can find the corresponding first down step D at the same level. Let
Q be the subpath of P ′ above the level i from U to D. Then we can factor P ′ in general
as LUfQxDR, where L and R are subpaths of P ′, f is the color of the vertex v, and x
is a color of the starting vertex of D which is either b or f . Initially, this x is f , but as
processes repeated it can be b if Q ends with a flat step. (See Figure 1 (i).)

STEP 3. (creating flats)
In the subpath UfQxD, Q can be factored as Q1bQ2 where Q1 is the first prime path at
level i and Q2 is the rest of the path of Q. If Q is a prime then take Q1 = Q. (See Figure
1 (ii).)

Now find the lowest level k of Q1 at which a black colored vertex lies.
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Figure 1: The factorizations of P ′, (i) and Q, (ii). A square vertex represents a vertex
of color f .

Note that
(i) Q1 starts with k − i U steps and ends with k − i D steps.
(ii) First k − i− 1 double ascents are colored in w or f
(iii) Each of the last k− i− 1 double descents is colored in the same color of its matching
double ascent.

Thus we can factor Q1 as Q1 = U1c1U2 · · · ck−i−1Uk−ick−iQ
∗
1ck−i+1Dk−ick−i−1 · · ·D2c1D1,

where Q∗1 is a subpath of Q1 above the level k, Uj is the up step ending at the level i+ j,
and Dj is the down step starting at the level i + j for j = 1, 2, · · · , k − i.

We have four cases to construct flat steps depending on the colors of vertices ck−i and
ck−i+1, i.e., the starting and ending vertices of the subpath Q∗1, which are:
Case 1: The color ck−i+1 is b.
Case 2: The colors of ck−i and ck−i+1 are both f .
Case 3: The color ck−i is b and ck−i+1 is w.
Case 4: The colors of ck−i and ck−i+1 are both w.

We explain these four cases one at a time, all of which will be concluded by the last
process of changing colors. We start at the subpath UfQxD of the path P ′.

Case 1.
(i) Erase the color f of UfQxD and delete U1c1U2 · · · ck−i−1Uk−i of Q1, so that the

color ck−i takes over the color f .

(ii) Replace each down step Dj (1 6 j 6 k − i) of Q1 by Fj at level i with colors
unchanged.

(iii) Replace the x of UfQxD by b if it is an f .
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Then the path UfQxD is now transformed to

U ck−i Q
∗
1 ck−i+1 Fk−i ck−i−1 · · ·F2 c1 F1 bQ2 bD. (See Figure 2.)

If the Q∗1 is empty, then ck−i = ck−i+1 and then flat steps followed.

Case 1

Q1

Q2

level k

Q*1

ck-i ck-i+1

ck-i

Q*1

ck-i+1

Q2

U

U

D

D

Figure 2: Case 1.

Case 2.
The first three processes are the same as Case 1. We just change the color of the first

flat step from ck−i+1 = f to b.
Then the path UfQxD is transformed to U ck−i Q

∗
1 b Fk−i ck−i−1 · · ·F2 c1 F1 bQ2 bD. (See

Figure 3.)

Case 2

Q1

Q2

level k

Q*1

Q*1

Q2

D

DU

U

ck-i ck-i+1

ck-i b

Figure 3: Case 2.
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Case 3.
(i) Replace the color f of UfQxD with b and erase the color x.

(ii) Replace each up step Uj (1 6 j 6 k − i) of Q1 by Fj at level i with colors un-
changed.

(iii) Delete Dk−ick−i−1 · · ·D2c1D1 of Q1.

(iv) Cut off bQ2 of Q = Q1bQ2 and then paste it after turning 180 degrees (denoted
by Q̄2b) in between the first color b in (i) and the first flat step F1 in (ii). (See Figure 4).

Then the path UfQxD is transformed to U b Q̄2 b F1 c1 · · ·Fk−i ck−i Q
∗
1 ck−i+1D.

Case 3

Q1

Q2

level k

Q*1

Q*1

Q2

ck-i

ck-i+1

ck-i+1

ck-i

U

U

D

D

Figure 4: Case 3.

Case 4.
In this case, Q∗1 is clearly neither empty nor prime. So we can factor Q∗1 as Q∗11bQ

∗
12, where

Q∗11 is the first prime of Q∗1 and Q∗12 is the rest of Q∗1.

(i) Erase the color f of UfQxD and replace the x with b.

(ii) Delete U1c1U2 · · · ck−i−1Uk−i.

(iii) Replace each down step Dj (1 6 j 6 k − i) of Q1 by Fj at level i with colors
unchanged.

(iv) Let Q′2 represent the newly created flat steps by (iii) along with Q2b from (i), and
after turning 180 degrees of Q′2 let us denote it by Q̄′2. Now cut off Q′2 and then paste Q̄′2
after Q∗11. (See Figure 5.)

Then the path UfQxD is transformed to U ck−iQ
∗
11 Q̄

′
2 bQ

∗
12 ck−i+1D.
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Case 4

Q1

Q2

level k

Q*1

ck-i

ck-i+1

ck-i+1

Q*11

Q*12

ck-i

Q*11

Q*12

D

D

U

U

Q’2

ck-i+1ck-i

Q*11

Q*12

DU

Q’2

Figure 5: Case 4.

For the last process of Step 3 we replace the color f ’s between the flat steps with b’s.

STEP 4. Repeat Step 2 and 3 until there is no vertex colored in f .

Then clearly the outcome is a bicolored n-small Schröder path.

Now we give an example, which can be obtained by applying STEPs 1 through 4 along
with Figures 1 through 5.

Let a 5-colored 16-Dyck path P be given:

P = UfUfUwUfUfUfUfUwUDUDDUDDDUfUD5UffUyUD5,

where D5 represents DDDDD. We will construct the corresponding bicolored 16-small
Schröder path P̂ :

P̂ = UwUbFbUbFbUbDwDbFwFbFbUbFbDbFbFbUbDbFbUbDwD.

Step by step applications of STEPs and Cases are showed in the Figure 6.

For recovery processes we first note that from STEP 3:

the electronic journal of combinatorics 22(3) (2015), #P3.14 7



f

y
w

f

f
f

f
f

f

f

w

U D

level 2  

Q=Q1

c1 c2
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U D

Q
Q1
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Q*1

Q*1

level 2  
c1 c2

Q*1

Q*11 Q*12

STEP1

STEP2 STEP3

Case2

Case2

U D

Q=Q1

level 3  
c1 c2

Q*1

Case2

Case4

Case3

Case1

U D

Q=Q1

level 3  
P̂

P

Figure 6: Example 3. Transforming P to P̂

1. The outcomes of Cases 1 and 2 give the color b to the starting vertex of the D in
UfQxD, and the leftmost block of F ’s on the level i is created lastly.

2. Cases 3 and 4 produce the color w to the starting vertex of the D in UfQxD, and
the rightmost block of F ’s on the level i is created lastly.

3. In any case, if Q2 is not empty, then it should not start with a flat step.

Now we describe the recovery process. Let P̂ be a bicolored n-small Schröder path.
First, we label the ith up step by Ui from left to right. Let Ui be an up step ending at the
level k and let Uj (i < j) be the next up step ending at the level k. Then the flat steps
at the level k between these up steps Ui and Uj are labeled as Fi. If there is no such Uj,
then every flat step at level k is labeled as Fi. We call this Ui a label up step for the flat
steps. We also call the first down step after Ui starting at the same level the label down
step for the flat steps.
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Now find the flat steps whose subscript is the largest. These steps can be appeared
as blocks of consecutive flat steps. Then look for the starting vertex v2 of the label down
step for these flat steps. Let v1 be the ending vertex of the corresponding label up step,
for convenience. Then we take the following processes to recover the corresponding Dyck
path just before the STEP 1.

1. If v2 has color b, then the leftmost block of flat steps are changed first. If the color
of v1 is b or w, then we apply the reverse process of Case 1 of STEP 3. If the color
of v1 is f , then apply the reverse process of Case 2 of STEP 3.

2. If v2 has the color w, then the rightmost block of flat steps are changed first. If the
color of v1 is b, then we apply the reverse process of Case 3 of STEP 3. If the color
of v1 is w, then apply the reverse process of Case 4 of STEP.

3. Repeat these processes until we have no flats.

Then we have an n-Dyck path whose double ascents and double descents are colored
in one of three colors, b, w, and f , and all peaks and valleys are colored in b. By the
following recovery processes of colors, we can fully recover the 5-colored n-Dyck path P :

1. Delete the colors of peaks and valleys.

2. If a double ascent and its matching double descent are in the same color, then delete
the color of the double descent.

3. If not, give each double ascent a new color by the following:

(a) Color the double ascent in g if a pair of the colors of a double ascent and
its matching double descent is (b, w) and then delete the color of the double
descent.

(b) Color the double ascent in y if a pair of the colors of a double ascent and
its matching double descent is (w, b) and then delete the color of the double
descent.

Now we have the 5-colored n-Dyck path as we desired. Figure 7 shows full recovery
processes.

Let us consider the second bijection. As we mentioned earlier, this bijection gives one-
to-one correspondence between bicolored n-small Schröder paths and generalized n-small
Schröder paths.

Bijection II.

Let P̂ be a given bicolored n-small Schröder path. Recall that in P̂ all peaks and
valleys are colored in black, and the starting and ending vertices of all blocks of flats are
colored in black. And other vertices can be black within blocks of up, down, and flat
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reverse of Case 1

reverse of Case 3

reverse of Case 4

reverse of Case 2

reverse of Case 2

reverse of Case 2

f

y
w

f

f
f

f
f

f

f

w

reverse of STEP1

P

P

^

F1 F1 F1 F1 F1 F1 F1

F3 F5

Figure 7: The recovery processes of Example 3

steps, respectively. So these black vertices separate the path P̂ into line segments. By
taking each of these line segments as a step we have the generalized n-small Schröder
path, denoted by P̃ , which has arbitrary lengths of steps. And the recovery process is
pretty obvious. (See Figure 8.)

Figure 8: An example of Bijection II.
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