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Facultad De Matemáticas
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Abstract

We show that some of the main structural constants for symmetric functions
(Littlewood-Richardson coefficients, Kronecker coefficients, plethysm coefficients,
and the Kostka–Foulkes polynomials) share symmetries related to the operations of
taking complements with respect to rectangles and adding rectangles.
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1 Introduction

Four families of coefficients of great importance in the theory of symmetric functions
are: the Kostka numbers (and their deformations, the Kostka–Foulkes polynomials), the
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Littlewood-Richardson coefficients, the Kronecker coefficients, and the plethysm coeffi-
cients. The importance of these families of numbers come from their applicability to
many different fields of mathematics such as representation theory, invariant theory and
algebraic geometry, as well as physics and computer science.

The Littlewood-Richardson and Kronecker coefficients satisfy many well-known sym-
metries involving permutation of indices and conjugation. These symmetries often lead
to better understanding of the objects they enumerate, to simplifications in the number
of cases in proofs, and in some cases, can be used to make computations more efficiently.

We present symmetries for Littlewood-Richardson, Kronecker, and plethysm coeffi-
cients, and for the Kostka-Foulkes polynomials, that involve the operations of (i) taking
complements in rectangles, or (ii) adding “tall” rectangles to the parts. The symmetries
of type (i) actually follow from duality between representations of general linear groups,
and those of type (ii) from factoring by determinant representations. We give an elemen-
tary approach using the language of symmetric polynomials (instead of representations).
In this language, these symmetries appear as evaluation at the inverses of the variables,
for type (i), and factorization by the product of the variables, for type (ii).

In more detail, let �k,a(λ) be the complement of λ with respect to a k × a rectangle,
as illustrated in Figure 1.

�k,a(λ)

λ

k

a

Figure 1: The partition �k,a(λ)

The Littlewood–Richardson coefficients, cνλ,µ:

These coefficients are indexed by three partitions. They are the structure constants in
the ring of symmetric functions with respect to the basis of Schur functions. That is, for
any partitions λ and µ,

sλsµ =
∑
ν

cνλ,µsν . (1)

These coefficients are important because they occur in many other mathematical contexts.
For example, in representation theory they occur as multiplicities of tensor products
of irreducible representations of general linear groups, and also as multiplicities in the
decompositions of certain induced representations of the symmetric group. In algebraic
geometry, they occur as structure coefficients when multiplying Schubert classes in the
cohomology ring of the Grassmannian.

In Theorem 4 and Proposition 5 we show that they satisfy

cνλ,µ = c
�l+m,n(ν)
�l,n(λ),�m,n(µ)

, when λ ⊆ (ln), µ ⊆ (mn) and ν ⊆ ((l +m)n) (2)
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(see Figure 2) and

cνλ,µ = c
ν+(kn)
λ+(kn),µ, when ν and λ have length at most n. (3)

�l,n(λ)

λ

l

n �m,n(µ)

µ

m

n �l+m,n(ν)

ν
n

l +m

Figure 2: The partitions occurring in the symmetry of Theorem 4

Other symmetries for Littlewood–Richardson coefficients, such as cνλ,µ = cνµ,λ and cνλ,µ =

c
�m,n(µ)
λ,�m,n(ν)

, have been extensively studied. In particular a number of bijective proofs for

them have been found, see [13, 14, 20] and the references therein. These other symmetries,
that generate a full symmetric group S3, are also obvious in the setting of Schubert

calculus, since the numbers c
�m,n(µ)
λ,ν interpret as triple intersections of Schubert varieties

[7, §4, Eq. (23)]. The symmetry (2) is probably folklore, but we did not find it in the
literature in the way presented here. It is, however, equivalent to the symmetry mentioned
in [1, §2. rem.(a)], as the generator of the Z2 subgroup in a Z2 × S3 group of symmetries
(the factor S3 is the group of other symmetries aforementioned).

Of course, the identity (3) is very easily established from the combinatorial descriptions
of the Littlewood–Richardson coefficients (e.g. the Littlewood–Richardson rule). Similar
identities will be shown to hold for Kronecker and plethysm coefficients, for which akin
combinatorial descriptions are unavailable, which makes them more difficult to prove
without Schur polynomials (or equivalent representation–theoretic considerations).

The Kronecker coefficients, g(λ, µ, ν):

Understanding the Kronecker coefficients is a major open problem in the representation
theory of the symmetric and the general linear group. These coefficients also appear
naturally in some interesting problems in quantum information theory [10, 11], geometric
complexity theory [3, 2], and invariant theory. We show that they also satisfy similar
symmetries in Theorem 6 and Proposition 7:

g(λ, µ, ν) = g(�l,mn(λ),�m,ln(µ),�n,lm(ν)), (4)

when λ ⊆ (l(mn)), µ ⊆ (m(ln)) and ν ⊆ (n(lm)), and

g(λ, µ, ν) = g(λ+ ((km)l), µ+ (kl)m, ν + (k)lm) (5)

for l and m at least the length of λ, µ respectively.
Symmetry (4) has also been shown in [19, Proposition B.1], and identity (5) in [21,

Theorem 3.1]. In both cases, they are established using representation theory.

the electronic journal of combinatorics 22(3) (2015), #P3.15 3



The Plethysm coefficients, aνλ,µ:

The plethysm of two symmetric functions f and g is denoted by f [g]. This operation
was introduced by Littlewood [9] in the context of compositions of representations of the
general linear groups. Plethysm has been shown to have important applications to physics
[22] and invariant theory [6]. We obtain two pairs of symmetries for the coefficients aνλ,µ
in the expansion of sλ[sµ] into Schur functions (Theorem 12 and Proposition 13 on the
one hand, Theorem 14 and Proposition 15 on the other hand) :

aνλ,µ = a
�m|λ|,n(ν)

λ,�m,n(µ)
when µ ⊆ (mn) and ν ⊆ ((m|λ|)n), (6)

aνλ,µ = a
ν+((k|λ|)n)
λ,µ+(kn) when ν has length at most n, (7)

aνλ,µ = a
�ql,n(ν)
�l,r(λ),µ

when λ ⊆ (lr) and ν ⊆ ((ql)n), (8)

aνλ,µ = a
ν+((qk)n)
λ+(kr),µ when when ν has length at most n, (9)

where r is the number of semistandard tableaux of shape ν filled with numbers 1 through
n, and q = r|ν|/n. In both (6) and (8), the symmetries that we obtain involve taking
complements with respect to two rectangles, see Figure 3.

λ �m,n(µ)

µ

m

n �m|λ|,n(ν)

ν
n

m|λ|

�l,r(λ)

λ

l

r

µ �ql,a(ν)

ν
n

ql

Figure 3: The partitions in the symmetry of Theorem 12 or Equation (6) (top) and
Theorem 14 or Equation (8) (bottom)

The Kostka-Foulkes polynomials, Kλ,µ(t):

The Kostka numbers, Kλ,µ, are the coefficients in the decompositions of Schur functions
in the basis of monomial functions

sλ =
∑
µ

Kλ,µ mµ.

Let us recall two important interpretations of the Kostka number Kλ,µ. A combinatorial
one: it counts the number of semistandard tableaux of shape λ and weight µ. And a
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representation–theoretic one: it is equal to the dimension of the weight space of weight µ
in the irreducible representation Sλ(Cn) of GLn(C).

Rather than establishing a symmetry theorem for Kostka numbers, we will do it for the
more general (one variable) Kostka-Foulkes polynomials Kλ,µ(t). These are deformations
of the Kostka numbers, which are recovered by evaluating the Kostka–Foulkes polynomials
at t = 1. The Kostka–Foulkes polynomials are the coefficients in the decompositions of
Schur functions in the basis of Hall–Littlewood polynomials Pµ(X; t):

sλ[X] =
∑
µ

Kλ,µ(t) Pµ(X; t). (10)

In Theorem 19 and Proposition 20 we have obtained the following rectangular symmetries
for the Kostka-Foulkes polynomials:

Kλ,µ(t) = K�k,n(λ),�k,n(µ)(t) when λ, µ ⊆ (kn), and (11)

Kλ,µ(t) = Kλ+(kn),µ+(kn)(t) when µ has length at most n. (12)

These identities still hold for the Kostka numbers Kλ,µ = Kλ,µ(1), by specialization at
t = 1.

The bijection in the solution of Exercise 7.41 in [16] gives a bijective proof of (11) for
the Kostka numbers. But this does not generalize to a bijective proof for the identity for
the Kostka-Foulkes polynomials.

Note that it is immediate to obtain a bijective proof of (12) for the Kostka numbers,
that is easy to adapt for the Kostka–Foulkes polynomials (charactarized combinatorially
as the generating function for the charge of semistandard Young tableaux).

The symmetry (11) may also be deduced from a much more elaborate result by Shi-
mozono and Weyman on the Poincaré polynomials of graded characters of isotopic com-
ponents of a natural family of GL(Cn)–modules supported in the closure of a nilpotent
conjugacy class [15, Eq. (2.16)].

2 Algebraic tools

We assume that the reader is familiar with the various algebraic structures on the space
of symmetric functions, Sym, and in particular, with its main bases. For background
information see [8, 12, 16]. We mainly follow the notation of [16], except for the fact that
we draw our Ferrers diagrams using the French notation.

Let P+(n) be the set of all weakly decreasing sequences (λ1, λ2, . . . , λn) of nonnegative
integers. When dealing with weakly decreasing sequences of integers, it will be convenient
not to distinguish between sequences that differ only by trailing zeros. Therefore P+(n)
represents as well the set of integer partitions with length at most n. Given any two
integer partitions λ and µ, λ ⊆ µ stands for the inclusion of the corresponding Ferrers
diagrams, λ′ is the conjugate of λ, and λ+ µ is the partition whose parts are the λi + µi.
We use `(λ) to denote the number of nonzero parts of λ, i.e., its length. Last, (kn) stands
for the sequence with n terms all equal to k.
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Let X = {x1, x2, . . .} be a countable set of independent variables. For n > 0, we set
Xn = {x1, x2, . . . , xn}. The ring of symmetric polynomials, Z[x1, x2, . . . , xn]Sn , admits as a
linear basis the Schur polynomials, sλ[Xn] = sλ(x1, x2, . . . , xn), indexed by all λ ∈ P+(n).
They are defined by

s(λ1,λ2,...,λn)[X] =
det(x

λj+j−1
i )16i,j6n

det(xj−1i )16i,j6n
. (13)

This is Jacobi’s definition of Schur polynomials as “bialternants” [12, I.§3.(3.1)].
Let us consider now Z[x±11 , x±12 , . . . , x±1n ]Sn , the ring of symmetric Laurent polynomi-

als in n variables. Let P(n) be the set of all weakly decreasing sequences of integers
(λ1, λ2, . . . , λn). (Compared to the definition of P+(n), we dropped the requirement of
nonnegativity). We define the Schur Laurent polynomials sλ[Xn], for λ ∈ P(n), again by
(13). Denote by Xn

∨ the set of the inverses of the variables, i.e., Xn
∨ = { 1

x1
, 1
x2
, . . . , 1

xn
}.

For any sequence λ ∈ P(n) and any integer k, define the new sequence

�k,n(λ) = (k − λn, k − λn−1, . . . , k − λ1).

This sequence is also in P(n). This extends the definition given in the introduction, when
λ is a partition that fits in the diagram of (kn). In that case, �k,n(λ) is also a partition,
“complement” of λ in the rectangle.

It is immediate to check from (13) the following properties:

Lemma 1. For all λ ∈ P(n) and all integers k, we have

sλ+(kn)[Xn] = (x1x2 · · ·xn)ksλ[Xn]. (14)

and
sλ[Xn

∨] = s�0,n(λ)[Xn]. (15)

Formula (15) is well known, see [8, (I.4.12.)], [16, Ex. 7.41] or [19, B].

Proposition 2. The Schur Laurent polynomials sλ[Xn], for λ ∈ P(n), are a basis for
Z[x±11 , x±12 , . . . , x±1n ]Sn.

Proof. Any g ∈ Z[x±11 , x±12 , . . . , x±1n ]Sn can be written in the form f/(x1x2 · · ·xn)k for f a
symmetric polynomial and k an integer. The polynomial f expands as a linear combina-
tion of Schur polynomials. Dividing by (x1x2 · · ·xn)k expresses g as a linear combination
of Schur Laurent polynomials by (14). Therefore the Schur Laurent polynomials generate
Z[x±11 , x±12 , . . . , x±1n ]Sn .

Given any linear relation between Schur Laurent polynomials, we obtain a linear re-
lation between Schur polynomials, with the same coefficients, by multiplying by a big
enough power of (x1x2 · · ·xn). This shows that the Schur Laurent polynomials are lin-
early independent.

Remark 3 (Representation–theoretic interpretation of (15)). Let V be a complex vector
space of dimension n. The Schur polynomials in n variables are the formal characters of
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the irreducible polynomial representations of GL(V ), the Sλ(V ) for λ ∈ P+(n). The Schur
Laurent polynomials are the formal characters of its rational irreducible representations.

Relation (14) corresponds to the isomorphism

Sλ+(kn)(V ) ∼= Sλ ⊗Dk

where Dk is the one dimensional representation where g ∈ GL(V ) acts as the multiplica-
tion by det(g)k.

The Schur Laurent polynomial sλ[Xn
∨] is the formal character of the dual representa-

tion Sλ(V ∗). The identity (15) means that

Sλ(V ∗) ∼= S�0,n(λ)(V ).

We will now exploit (14) and (15) systematically to produce symmetries for the
Littlewood–Richardson coefficients, the Kronecker coefficients and the plethysm coeffi-
cients. In Section 6, we will extend (14) and (15) to Hall–Littlewood polynomials, to
produce symmetries for the Kostka–Foulkes polynomials.

3 Littlewood–Richardson coefficients

In this section we will prove the rectangular symmetries for the Littlewood-Richardson
coefficients. Let n be a nonnegative integer and λ and µ be two partitions. If we specialize
(1) at Xn = {x1, x2, . . . , xn}, we get

sλ[Xn]sµ[Xn] =
∑

ν:`(ν)6n

cνλ,µsν [Xn]. (16)

If `(λ) or `(µ) is bigger than n, then the left–hand side is zero. Then all coefficients cνλ,µ
in the right–hand side are zero. We assume now that λ and µ have length at most n. Let
us replace each xi with 1/xi. We obtain

sλ[Xn
∨]sµ[Xn

∨] =
∑

ν:`(ν)6n

cνλ,µsν [Xn
∨].

By (15), this can be written as

s�0,n(λ)[Xn]s�0,n(µ)[Xn] =
∑

ν:`(ν)6n

cνλ,µs�0,n(ν)[Xn].

Let l > λ1 and m > µ1. Let us multiply both sides with (x1x2 · · ·xn)l+m. We get, by
(14),

s�l,n(λ)[Xn]s�m,n(µ)[Xn] =
∑

ν:`(ν)6n

cνλ,µs�l+m,n(ν)[Xn].

Now, let ν be a partition with length at most n. If ν1 > l+m, then s�l+m,n(ν)[Xn] is not a
Schur polynomial, and thus does not appear in this expansion. In this case cνλ,µ = 0. Else

cνλ,µ = c
�l+m,n(ν)
�l,n(λ),�m,n(µ)

.

We have proved the following theorem.
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Theorem 4. Let l, m, n be nonnegative integers and λ, µ and ν be three partitions such
that `(ν) 6 n, λ1 6 l and µ1 6 m. If λ ⊆ (ln), µ ⊆ (mn) and ν ⊆ ((l +m)n) then

cνλ,µ = c
�l+m,n(ν)
�l,n(λ),�m,n(µ)

. (2)

Else cνλ,µ = 0.

Note that the involution ω (that sends the elementary symmetric function ei to the
complete sum hi, see [12] I.§2) produces a similar symmetry with respect to three rectan-
gles of the same width, instead of height.

In addition, we obtain the following translational symmetry for cνλ,µ by multiplying

(16) and (x1x2 · · ·xn)k and using (14).

Proposition 5. Let n > 0 and k be integers and λ, µ, ν be partitions such that n > `(ν)
and λ+ (kn) is a partition ( i.e λn + k > 0). If `(λ) 6 n and ν + (kn) is a partition, then

cνλ,µ = c
ν+(kn)
λ+(kn),µ, (3)

else cνλ,µ = 0.

By means of the symmetry cνλ,µ = cνµ,λ, we obtain cνλ,µ = c
ν+(kl)

λ,µ+(kl)
.

4 Kronecker coefficients

In this section, we apply Formula (15) to derive a rectangular symmetry for the Kronecker
coefficients. The symmetry (6) was also found by Stembridge [19]. The method is basically
the same, except for the presentation: where Stembridge uses representations of general
linear groups we use their formal characters (symmetric Laurent polynomials).

We start with the following description of the Kronecker cofficients: let X and Y
be two independent set of variables x1, x2, . . . and y1, y2, . . .. Let f [XY ] stand for the
evaluation of the symmetric function f at all products xiyj, this is a symmetric function
in X and in Y and expands in the basis of the sλ[X]sµ[Y ]. Then, for all partitions ν, (see
[12, I.§7.(7.9)])

sν [XY ] =
∑
λ,µ

g(λ, µ, ν)sλ[X]sµ[Y ].

Let l and m be nonnegative integers and ν a partition. We specialize the above identity
at the finite sets of variables Xl and Ym and we get

sν [XlYm] =
∑

g(λ, µ, ν)sλ[Xl]sµ[Ym], (17)

where the sum is over all pairs of partitions λ and µ such that `(λ) 6 l and `(µ) 6 m.
If lm > `(ν) then the left–hand side is zero. In this case all coefficients in the expansion
are zero. We now assume that lm 6 `(ν). We replace each variable by its inverse. Since
(XlYm)∨ = Xl

∨Ym
∨, we get

sν [Xl
∨Ym

∨] =
∑

g(λ, µ, ν)sλ[Xl
∨]sµ[Ym

∨].
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By (15), this means that

s�0,lm(ν)[XlYm] =
∑

g(λ, µ, ν)s�0,l(λ)[Xl]s�0,m(µ)[Ym].

Let n ∈ Z. We multiply the previous identity by (
∏

i,j xiyj)
n. Note that∏

i,j

xiyj = (x1x2 · · · xl)m(y1y2 · · · ym)l,

thus (∏
i,j

xiyj

)n

= (x1x2 · · ·xl)mn(y1y2 · · · ym)ln.

By (14), we get

s�n,lm(ν)[XlYm] =
∑

g(λ, µ, ν)s�mn,l(λ)[Xl]s�ln,m(µ)[Ym].

Let us assume now that n > ν1, so that the left–and side is a Schur polynomial. We see
that if λ 6⊂ ((mn)l) or µ 6⊂ ((ln)m) then g(λ, µ, ν) = 0, and else

g(λ, µ, ν) = g(�mn,l(λ),�ln,m(µ),�n,lm(ν))

We reformulate this in a more symmetric way by applying it rather to the conjugates of
λ and µ:

g(λ′, µ′, ν) = g(�mn,l(λ
′),�ln,m(µ′),�n,lm(ν))

= g((�l,mn(λ))′, (�m,ln(µ))′,�n,lm(ν))

We also use the identity g(α′, β′, γ) = g(α, β, γ) for any three partitions. We get the
following theorem.

Theorem 6. Let l, m and n be three nonnegative integers and λ, µ and ν be three
partitions such that λ1 6 l, µ1 6 m, ν1 6 n. If λ ⊆ (lmn), µ ⊆ (mln) and ν ⊆ (nlm), then

g(λ, µ, ν) = g(�l,mn(λ),�m,ln(µ),�n,lm(ν)). (4)

Else g(λ, µ, ν) = 0.

Similarly as for the Littlewood-Richardson coefficients, we also obtain the following
translational symmetry for the Kronecker coefficients, by multiplying (17) by (

∏
i,j xiyj)

n

and using (14).

Proposition 7. Let λ, µ and ν be partitions. Let l > 0, m > 0 and k ∈ Z be integers such
that l > `(λ), m > `(µ) and ν + (kmn) is a partition ( i.e. has no negative components).
If `(ν) 6 lm and λ+ ((km)l) and µ+ ((kl)m) are partitions, then

g(λ, µ, ν) = g(λ+ ((km)l), µ+ (kl)m, ν + (k)lm) (5)

and else g(λ, µ, ν) = 0.
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The case of three rectangles

An important class of Kronecker coefficients are those indexed by rectangular partitions.
They are important in quantum information theory to model entanglement [10, 11] and
also to advance the program of Geometric Complexity Theory [3].

The following corollary also appears in [19, (C.1)].

Corollary 8. Let k and d be nonnegative integers. If k 6 d2,

g((dk), (dk), (dk)) = g((dd
2−k), (dd

2−k), (dd
2−k)) (18)

and when k > d2, this Kronecker coefficient is zero.

Proof. Set l = m = n = d in Theorem 6 and λ = µ = ν = (dk).

Remark 9 (Representation–theoretic interpretation of Corollary 8.). Let V be a complex
vector space of dimension d. Consider the exterior algebra:

Λ (V ⊗ V ⊗ V ) =
d3⊕
i=0

Λi (V ⊗ V ⊗ V )

The group GL(V )×GL(V )×GL(V ) acts on this exterior algebra. The Kronecker coeffi-
cient g(λ′, µ′, ν ′) is the multiplicity of its irreducible representation Sλ(V )⊗Sµ(V )⊗Sν(V ).
In particular, Λi (V ⊗ V ⊗ V ) contains non–trivial invariants for SL(V )×SL(V )×SL(V )
if and only if there exists an integer k such that i = kd. Then the dimension of the sub-
space of invariants is the rectangular Kronecker coefficient g((dk), (dk), (dk)). Equation
(18) follows from the SL(V ⊗ V ⊗ V ) natural isomorphism

Λi (V ∗ ⊗ V ∗ ⊗ V ∗) ∼= Λd3−i (V ⊗ V ⊗ V ) .

Example 10 (Weight reduction for Kronecker coefficients). The naive algorithm to com-
pute a Kronecker coefficient g(λ, µ, ν) consists in converting Schur functions in power
sums. Indeed, in the power sums basis, Kronecker products are trivial. This is the al-
gorithm used, for instance, currently in SAGE [17] and the Maple package SF [18]. The
cost of the computation depends then mainly on the weight of λ, µ and ν. (Note that
other algorithms are available and efficient for partitions of short height, regardless of the
weight, see for instance [5]).

Theorem 6 shows that g(λ, µ, ν) is equal to other Kronecker coefficients, that may be
of smaller weight. Precisely, let N = |λ| = |µ| = |ν|. Then the weight of the Kronecker
coefficient g(�l,mn(λ),�m,ln(µ),�n,lm(ν)) (i.e. the weight of the indexing partitions) is
lmn − N . We can take l = λ1, m = µ1 and n = ν1, the computation is reduced to the
computation of a Kronecker coefficient of weight λ1µ1ν1 −N . Last, we may make use of
the symmetries under conjugation

g(λ, µ, ν) = g(λ, µ′, ν ′) = g(λ′, µ, ν ′) = g(λ′, µ′, ν)
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to reduce the computation to the computation of a Kronecker coefficient whose weight is
the smallest among

K
λ1
`(λ)

−N, K
µ1

`(µ)
−N, K

ν1
`(ν)

−N, and K
λ1µ1ν1

`(λ)`(µ)`(ν)
−N

where K stands for `(λ)`(µ)`(ν).

5 Plethysm coefficients

The plethysm coefficients are the coefficients aνλ,µ of the plethysms of two Schur functions,
expanded in the Schur basis:

sλ[sµ] =
∑
ν

aνλ,µsν . (19)

While there are algorithms for computing aνλ,µ (see for example [4, 23]), no satisfying
combinatorial description has been found. In this section we describe two rectangular
symmetries satisfied by the plethysm coefficients.

5.1 Preliminaries on plethysm

It will be useful to extend the plethysm operation to the case when f is a symmetric
function but g = g(x1, x2, . . .) is any formal series. This is done by means of the following
two rules:

1. the map f 7→ f [g] is a morphism of algebras.

2. for any positive integer n, pn[g] = g(xn1 , x
n
2 , . . .) (here pn is the n–th power sum

symmetric function).

This determines f [g] for any symmetric function f , since the algebra of symmetric func-
tions with rational coefficients is freely generated by the power sums pn. When g is a
symmetric function, f [g] defined as above coincides with the plethysm of f with g, see
[12, I.§8.] or [16, Def. A.2.6].

This allows us to write, when specializing a plethysm of symmetric functions f [g] to
any set of variables Y (in particular finite):

(f [g])[Y ] = f [g[Y ]]

where the left–hand side is a plethysm of symmetric function, specialized at a set of
variables Y , and the right–hand side is an “extended plethysm” of the symmetric function
f with the formal series g(Y ).

We will make use of the following property.

Lemma 11. Let f be a homogeneous symmetric function of degree L and g(x1, x2, . . .) be
a formal series. Let xw be a monomial in x. Then

f [xwg] = xLwf [g].

Proof. It is straightforward to check this when f is a power sum pn, and then to extend
this to any symmetric function f using that f 7→ f [g] is a morphism of algebras.

the electronic journal of combinatorics 22(3) (2015), #P3.15 11



5.2 First pair of symmetries for plethysm coefficients

Let Xn = {x1, x2, . . . , xn} be a set of n variables, where n is a nonnegative integer, and
let λ and µ be two partitions. Evaluating (19) at Xn we get

(sλ[sµ]) [Xn] =
∑

ν : `(ν)6n

aνλ,µsν [Xn].

But (sλ[sµ]) [Xn] = sλ[sµ[Xn]]. Thus

sλ[sµ[Xn]] =
∑

ν : `(ν)6n

aνλ,µsν [Xn]. (20)

If `(µ) > n, then the left–hand side is zero, and thus all coefficients aνλ,µ with `(ν) 6 n
are zero. We assume now that `(µ) 6 n. Replacing each variable by its inverse, we get

sλ[sµ[Xn
∨]] =

∑
ν : `(ν)6n

aνλ,µsν [Xn
∨]. (21)

By (15), we obtain

sλ[s�0,n(µ)[Xn]] =
∑

ν : `(ν)6n

aνλ,µs�0,n(ν)[Xn].

Let m > µ1. We multiply both sides by (x1x2 · · ·xn)Lm, where L = |λ|. Lemma 11 implies
that on the left hand side we have

(x1x2 · · ·xn)Lmsλ[s�0,n(µ)[Xn]] = sλ[(x1x2 · · ·xn)ms�0,n(µ)[Xn]]

= sλ[s�m,n(µ)[Xn]].

Therefore, we obtain that

sλ[s�m,n(µ)[Xn]] =
∑

ν : `(ν)6n

aνλ,µs�mL,n(ν)[Xn].

Let ν be a partition such that `(ν) 6 n. We see that if ν 6⊂ ((mL)n) then aνλ,µ = 0.
Otherwise,

aνλ,µ = a
�mL,n(ν)
λ,�m,n(µ)

.

We have proved the following result.

Theorem 12. Fix nonnegative integers m and n and let λ, µ and ν be partitions such
that µ ⊆ (mn) and `(ν) 6 n. If ν ⊆ ((m|λ|)n), then

aνλ,µ = a
�m|λ|,n(ν)

λ,�m,n(µ)
. (6)

Otherwise aνλ,µ = 0.
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By multiplying Equation (20) by (x1x2 · · ·xn)k|λ| and using Lemma 11 we obtain the
following translational symmetry.

Proposition 13. Let λ, µ and ν be partitions. Let n > 0 and k ∈ Z be integers such that
`(ν) 6 n and µ+ (kn) is a partition.

If ν + ((k|λ|)n) is a partition, then

aνλ,µ = a
ν+((k|λ|)n)
λ,µ+(kn) , (7)

and else aνλ,µ = 0.

5.3 Second pair of symmetries for plethysm coefficients

There is another way to exploit the alphabet of inverses for plethysm coefficients in order
to obtain another rectangular symmetry. Recall that the combinatorial definition of Schur
functions says that,

sµ =
∑
T

xw(T )

where the sum is carried over all semistandard tableaux T of shape µ. The exponent
w(T ) is the weight of T , i.e., its i–th component is the number of occurrences of i in T .
For details see [16, §7.10.1.].

As a consequence,

sµ[Xn] =
∑

T∈Tµ(n)

xw(T )

where Tµ(n) is the set of all semistandard tableaux of shape µ with entries in {1, 2, . . . , n}.
If f is a symmetric function and g a sum of monomials, then f [g] is the specialization

of f at these monomials [12, I.§8]:

f [xω1 + xω2 + . . .] = f(xω1 , xω2 , . . .).

This holds in particular for g = sµ[X].
Let n be a nonnegative integer and λ and µ be partitions. We consider again (21) but

we expand sµ[Xn
∨] in monomials. We get that

sλ[sµ[Xn
∨]] = sλ

 ∑
T∈Tµ(n)

1

xw(T )

 .
Let r = #Tµ(n). Let us assume that r > `(λ). We introduce a new set of variables
Yr = {y1, y2, . . . , yr}. Then (sλ[sµ[Xn

∨]]) is equal to the specialization of sλ[Y
∨] at the

monomials xw(T ) for T ∈ Tµ(n). But

sλ[Yr
∨] = s�0,r(λ)[Yr].

Let l > λ1. Multiplying both sides with (y1y2 · · · yr)l we get

(y1y2 · · · yr)lsλ[Yr∨] = s�l,r(λ)[Yr].
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Let us now specialize at the monomials xw(T ) for T ∈ Tν(n). We get ∏
T∈Tµ(n)

xw(T )

l

sλ[sµ[Xn
∨]] = s�l,r(λ)[sµ[Xn]].

Let us examine the product of the monomials xw(T ). This product is symmetric in the
variables xi (since the sum of the same monomials is symmetric, being equal to sµ[X]).
Therefore there exists an integer q such that∏

T∈Tµ(n)

xw(T ) = (x1x2 · · ·xn)q

Let us compare the total degrees on both sides. On the right–hand side, it is qn. For the
left–hand side, let M = |µ|. Observe that the total degree of each monomial xw(T ) is M .
There are r monomials in the product. Thus, the total degree of the left–hand side is
rM . This yields the equation rM = qn. From this we extract q = rM/n. We have now

(x1x2 · · ·xn)qlsλ[sµ[Xn
∨]] = s�l,r(λ)[sµ[Xn]].

Thus

s�l,r(λ)[sµ[Xn]] =
∑

ν : `(ν)6n

aνλ,µsν [Xn
∨] · (x1x2 · · ·xn)ql,

=
∑

ν : `(ν)6n

aνλ,µs�ql,n(ν)[Xn].

From this we deduce that for ν a partition with length at most n, if ν 6⊂ ((ql)n) then
aνλ,µ = 0 and else

aνλ,µ = a
�ql,n(ν)
�l,r(λ),µ

We have proved the following theorem.

Theorem 14. Let l and n be nonnegative integers and µ, ν, and λ be partitions such
that λ1 6 l, and `(ν) 6 n. Let r be the number of semistandard tableaux of shape µ and
entries in {1, 2, . . . , n}. Then q = r|µ|/n is an integer, and we have that if λ ⊆ (lr) and
ν ⊆ ((ql)n),

aνλ,µ = a
�ql,n(ν)
�l,r(λ),µ

, (8)

and otherwise aνλ,µ = 0.

By multiplying Equation (20) by (x1x2 · · ·xn)qk we obtain the following translational
symmetry.
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Proposition 15. Let λ, µ and ν be partitions. Let n > 0 and k ∈ Z be integers such that
`(ν) 6 n. Let r and q be defined as in Theorem 14. Assume that λ + (kr) is a partition.
If `(λ) 6 r and ν + ((qk)n) is a partition, then

aνλ,µ = a
ν+((qk)n)
λ+(kr),µ , (9)

else aνλ,µ = 0.

Remark 16. The number r = #Tµ(n) is given by the hook–content formula (see [16, pg.
376]).

Example 17 (Weight reduction for Plethysm coefficients). As for Kronecker products
(see example 10), plethysms are trivial in the basis of power sums. Plethysms coefficients
can thus be computed by means of conversions to the power sums basis (this is done
this way in SAGE and SF [17, 18]). When performing such a computation, it is very
helpful to reduce the weight of the symmetric functions involved. This can be done, in
some cases, by means of Theorem 12. The weight for the plethysm coefficient aνλ,µ is
N := |ν| = |λ| · |µ|. Theorem 12 shows that this plethysm coefficient is equal to another
plethysm coefficient with weight µ1`(ν)|λ| −N . We can also make use of the symmetries
([12, I.§8.Ex.1(a)])

aνλ,µ =

{
aν

′

λ,µ′ when |µ| is even,

aν
′

λ′,µ′ when |µ| is odd.

Set K = `(µ)`(ν)|λ|. We can obtain, therefore, a reduction to the weight

K ·min

(
µ1

`(µ)
,
ν1
`(ν)

)
−N

6 Kostka–Foulkes polynomials

In this section we use the definition of the Kostka-Foulkes polynomials given in Equation
(10) and the method of previous sections to derive rectangular symmetries for them.

The specialization of Equation (10) at a finite set of variables Xn = {x1, x2, . . . , xn},
with n > `(µ), of the Hall–Littlewood polynomial Pµ is given [12, III.(2.1)] by

Pµ(Xn; t) =
1

vµ,n(t)

∑
w∈Sn

w

(
xµ11 · · ·xµnn

∏
i<j

xi − txj
xi − xj

)
. (22)

where w ∈ Sn permutes the variables xi and

vµ,n(t) =
∏
i

mi(µ)∏
r=1

1− tr

1− t

with mi the number of occurrences of i in the sequence µ, once it has been padded with
zeros to get length n.

As in the case of Schur polynomials, this definition still makes sense perfectly when
µ ∈ P(n) (with possible negative coordinates). We get the following generalization of
(15):

the electronic journal of combinatorics 22(3) (2015), #P3.15 15



Lemma 18. Let µ be a weakly decreasing sequence of integers, of length n, and X =
{x1, x2, . . . , xn}. We have

Pµ(Xn
∨; t) = P�0,n(µ)(Xn; t) (23)

and for any integer k,

Pµ+(kn)(Xn; t) = (x1x2 · · ·xn)k · Pµ(Xn; t). (24)

Proof. Specializing equation (22) at X∨, we get

Pµ(Xn
∨; t) =

1

vµ,n(t)

∑
w∈Sn

w

(
x−µ11 · · ·x−µnn

∏
i<j

x−1i − tx−1j
x−1i − x−1j

)
.

Observe that ∏
16i<j6n

x−1i − tx−1j
x−1i − x−1j

=
∏

16i<j6n

xj − txi
xj − xi

.

Let w0 be the permutation that maps i to n− i+ 1, i.e., the longest permutation. Then

w0

(
x−µ11 · · · x−µnn

∏
16i<j6n

xj − txi
xj − xi

)
= x−µn1 · · ·x−µ1n

∏
i<j

xi − txj
xi − xj

For any sequence µ of length n, the number of times i occurs in µ is equal to the number
of times −i occurs in �0,n(µ). Therefore the factor vµ,n(t) is invariant under changing µ
into �0,n(µ). Equation (23) follows now just by changing the order of summation.

The proof of (24) is straightforward.

Specializing equation (10) at Xn
∨, we get

sλ[Xn
∨] =

∑
µ:`(µ)6n

Kλ,µ(t)Pµ(Xn
∨; t).

Using (15) and Lemma 18, we get

s�0,n(λ)[Xn] =
∑

µ : `(µ)6n

Kλ,µ(t)P�0,n(µ)(Xn; t).

Let k be an integer. Let us multiply both sides with (x1x2 . . . xn)k. We get

s�k,n(λ)[Xn] =
∑

µ : `(µ)6n

Kλ,µ(t)P�k,n(µ)(Xn; t)

since it follows clearly from (22) that (x1x2 . . . xn)kPν(Xn; t) = Pν+(kn)(Xn; t) for any
sequenece ν ∈ P(n).

Assume now that k > λ1. We see that if µ 6⊂ (kn) then Kλ,µ(t) = 0 and else,

Kλ,µ(t) = K�k,n(λ),�k,n(µ)(t).

We have proved the following result.
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Theorem 19. Let k and n be nonnegative integers.
Let λ and µ be partitions such that λ1 6 k and `(µ) 6 n. If λ ⊆ (kn) and µ ⊆ (kn)

then
Kλ,µ(t) = K�k,n(λ),�k,n(µ)(t). (11)

Else Kλ,µ(t) = 0.

Starting again from (10), specializing it at Xn and multiplying with (x1x2 · · ·xn)k, and
using (14) and (24), we get the following result.

Proposition 20. Let n and k be integers, with n > 0. Let λ and µ be partitions, with
`(µ) 6 n and such that λ+ (kn) is a partition.

If `(λ) 6 n and µ+ (kn) is a partition then

Kλ,µ(t) = Kλ+(kn),µ+(kn)(t), (12)

else Kλ,µ(t) = 0.
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