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Abstract

We prove that if the vertices of a complete graph are labeled with the elements
of an arithmetic progression, then for any given vertex there is a Hamiltonian path
starting at this vertex such that the absolute values of the differences of consecutive
vertices along the path are pairwise distinct. In another extreme case where the
label set has small additive energy, we show that the graph actually possesses a
Hamiltonian cycle with the property just mentioned. These results partially solve
a conjecture by Z.-W. Sun.

1 Introduction

In this paper we consider the following conjecture posed by Z.-W. Sun, formulated among
other open problems in [5, Conjecture 3.1].

Conjecture 1. Let A = {a1, a2, . . . , an} be a set of n distinct real numbers. Then there
is a permutation b1, b2, . . . , bn of a1, . . . , an with b1 = a1 such that the n− 1 numbers

|b2 − b1|, |b3 − b2|, . . . , |bn − bn−1|

are pairwise distinct.

Similar problems have been studied in [2] and [1, 3, 4], see Section 4.
If we consider the complete graph on {a1, a2, . . . , an}, in order for the conjecture to

be true we need to find for every element ai a Hamiltonian path starting at ai, such that
the absolute differences of consecutive vertices along the path are pairwise distinct.

the electronic journal of combinatorics 22(3) (2015), #P3.20 1



As Z.-W. Sun pointed out in [5, Theorem 1.1], ordering the elements a1 < a2 < · · · < an
we can easily find such an Hamiltonian path starting from a1 or an: if n = 2k is even we
can consider the permutations

(a1, an, a2, an−1, . . . , ak−1, ak+2, ak, ak+1)

(an, a1, an−1, a2, . . . , ak+2, ak−1, ak+1, ak),

and if n = 2k − 1 is odd consider the permutations

(a1, an, a2, an−1, . . . , ak−1, ak+1, ak)

(an, a1, an−1, a2, . . . , ak+1, ak−1, ak).

If the cardinality of A−A = {ai− aj : ai, aj ∈ A} is large, then heuristically it should
be easy to find Hamiltonian paths as required, whereas this should be an harder task for
structured sets, where |A− A| can be as small as |A| − 1.

However, we are able to prove that the conjecture holds in these cases.

Theorem 2. Conjecture 1 holds if A is an arithmetic progression.

Moreover, as expected, the conjecture holds if the set A does not have a particular
additive structure.

Theorem 3. If A is a set of real numbers with E(A,A) = c|A|2 for c < 5/2, where
E(A,A) is the additive energy of A, then there exists a Hamiltonian cycle on the complete
graph whose vertices are labeled with the elements of A such that the absolute values of
the differences of consecutive vertices along the path are pairwise distinct. In particular,
Conjecture 1 holds in this case.

2 Proof of Theorem 2

Without loss of generality let A = [n] := [1, n]∩Z be the set of the first n positive integers.
Fix an element s ∈ [n]. In order to prove Theorem 2, we need a permutation a =

(a1, . . . , an) of [1, n] with a1 = s such that the n− 1 differences

|a2 − a1|, . . . , |an − an−1|

are pairwise distinct.
Denote the set of absolute differences of the permutation a as d(a) := {|ai+1 − ai| :

1 6 i 6 n− 1}. We want to find an a of [1, n] such that |d(a)| = n− 1.

Definition 4. Let Sn be the set of permutations on [n]. We say that a permutation
a = (a1, . . . , an) ∈ Sn is a good permutation of the first kind if the absolute values of the
differences |a2 − a1|, . . . , |an − an−1| are pairwise distinct and

a2i <

⌈
n+ 1

2

⌉
6 a2i+1 whenever 0 6 i 6 n/2.
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Similarly, we say that a permutation a = (a1, . . . , an) ∈ Sn is a good permutation of the
second kind if the absolute values of the differences |a2 − a1|, . . . , |an − an−1| are pairwise
distinct and

a2i+1 6

⌊
n+ 1

2

⌋
< a2i whenever 0 6 i 6 n/2.

The set of good permutations will be denoted by Gn.

The next lemma shows some properties of the set Gn which will be needed for the
proof of Theorem 2.

Lemma 5. Let a = (a1, . . . , an) ∈ Gn. Then the following hold:

1. The permutation b = {bi} given by bi = n+ 1− ai, for 1 6 i 6 n, is in Gn.

2. If a is a good permutation of the first kind, then b = (b1, . . . , bn) defined by

b2i−1 = a2i−1 −
⌊n

2

⌋
, 1 6 i 6 (n+ 1)/2,

b2i = a2i +

⌊
n+ 1

2

⌋
, 1 6 i 6 n/2

is a good permutation of the second kind.

3. If a is a good permutation of the second kind, then b = (b1, . . . , bn) defined by

b2i−1 = a2i−1 +
⌊n

2

⌋
, 1 6 i 6 (n+ 1)/2,

b2i = a2i −
⌊
n+ 1

2

⌋
, 1 6 i 6 n/2

is a good permutation of the first kind.

Proof. 1. Suppose a is a good permutation of the first kind. Then, for b = (b1, . . . , bn)
given by bi = n+ 1− ai, for 1 6 i 6 n, we have

b2i+1 6 n+ 1−
⌈
n+ 1

2

⌉
=

⌊
n+ 1

2

⌋
, 0 6 i 6 n/2

b2i > n+ 1−
⌈
n+ 1

2

⌉
=

⌊
n+ 1

2

⌋
, 0 6 i 6 n/2,

and so b is a good permutation of the second kind.

Similarly, if a is a good permutation of the second kind, b = (b1, . . . , bn) given by
bi = n+ 1− ai, for 1 6 i 6 n is a good permutation of the first kind.

2. Since 0 < a2i <
⌈
n+1
2

⌉
6 a2i+1 6 n, for 0 6 i 6 n/2, we have

1 =

⌈
n+ 1

2

⌉
−
⌊n

2

⌋
6 b2l+1 6 n−

⌊n
2

⌋
=

⌊
n+ 1

2

⌋
,
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⌊
n+ 1

2

⌋
< b2l <

⌊
n+ 1

2

⌋
+

⌈
n+ 1

2

⌉
= n+ 1,

so that, in order to show that that b is a good permutation of the second kind, we
are left to check that for 0 6 i 6 n− 1, |bi+1 − bi| are pairwise distinct. This is true
since

bi+1 − bi =

{
ai+1 − ai − n if i ∈ [1, n− 1] is even,

ai+1 − ai + n if i ∈ [1, n− 1] is odd.

In either case, |bi+1 − bi| = n − |ai+1 − ai|, and, since for 0 6 i 6 n − 1 |ai+1 − ai|
are pairwise distinct, so are |bi+1 − bi|.

3. Same proof as in point 2.

We can now prove the main result, which clearly implies Theorem 2.

Theorem 6. If n 6≡ 1 mod 4 then for every s ∈ [n] there exists a good permutation
a = (a1, . . . , an) of [n] with a1 = s.

If n ≡ 1 mod 4 then for every s ∈ [n] there exists a permutation a = (a1, . . . , an) of
[n] with a1 = s and |d(a)| = n − 1. Moreover, if s 6= 1

2

(⌊
n+1
2

⌋
+ 1
)

one can find a good
permutation starting from s.

Proof. The proof goes by induction on n. Because of the first part of Lemma 5 we can
prove it just for starting points s 6

⌊
n+1
2

⌋
.

If s = 1 the permutation (1, n, 2, n − 1, . . . ,
⌊
n+1
2

⌋
+ δ), where δ = 1 if n is even and

δ = 0 if n is odd, is clearly a good permutation.
Take 2 6 s 6 1

2

⌊
n+1
2

⌋
. We consider two cases:

Case 1: n− 2s 6≡ 1 mod 4.
Then we consider the following permutation on the set [1, s] ∪ [n− s+ 1, n]:

b = (s, n− s+ 1, s− 1, n− s+ 2, . . . , 1, n),

with d(b) = [n− 2s+ 1, n− 1].
We now want to complete b with the remaining elements from A in order to get the

required good permutation a ∈ Gn.
Choose the next element as α = 2s 6

⌊
n+1
2

⌋
in order to get the absolute difference

n− 2s.
By the induction hypothesis we can find a good permutation c of [1, n − 2s] starting

from s, so that d(c) = [1, n− 2s− 1].
Let a be the juxtaposition of b and s+ c = (c1 + s = 2s, c2 + s, . . . , cn−2s + s), i.e. a is

the permutation

(s, n− s+ 1, s− 1, n− s+ 2, . . . , 1, n, c1 + s, c2 + s, . . . , cn−2s + s).
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Since

s 6
1

2

⌊
n+ 1

2

⌋
=

1

2

⌊
n− 2s+ 1

2

⌋
+
s

2

implies

s 6

⌊
n− 2s+ 1

2

⌋
,

we have that c is a good permutation of the second kind and hence a satisfies

a2i+1 6

⌊
n+ 1

2

⌋
< a2i for 0 6 i 6 n/2,

so that a is a good permutation of the second kind starting from s.
Case 2: n− 2s+ 1 6≡ 1 mod 4.
Arguing in similar way as Case 1, start from the permutation b on the elements of

[1, s] ∪ [n− s+ 2, n] defined as

b = (s, n− s+ 2, s− 1, n− s+ 3, . . . , 2, n, 1),

so that d(b) = [n− 2s+ 2, n− 1], and take the next element as α = n− 2s+ 2 in order
to get the absolute difference n− 2s+ 1.

Using the inductive hypothesis we find a good permutation c of [1, n− 2s+ 1] starting
from n− 3s+ 2, with d(c) = [1, n− 2s].

Let a be the juxtaposition of b and s+ c = (c1 + s = 2s, c2 + s, . . . , cn−2s+1 + s), i.e. a
is the permutation

(s, n− s+ 2, s− 1, n− s+ 3, . . . , 2, n, 1, c1 + s, c2 + s, . . . , cn−2s+1 + s).

Since our hypotheses on s imply that n − 3s + 2 >
⌈
n−2s+2

2

⌉
we get that c is a good

permutation of the first kind and, since

s+ c2i <

⌊
n+ 1

2

⌋
+ 1 =

⌈
n+ 2

2

⌉
6 s+ c2i+1,

then a is a good permutation of the second kind, as required.
Since for every n and s 6 1

2

⌊
n+1
2

⌋
either n − 2s or n − 2s + 1 is not congruent to 1

modulo 4, the result is proven in these cases.
Suppose now 1

2

⌊
n+1
2

⌋
< s 6

⌊
n+1
2

⌋
. Then s′ = n+ 1− s−

⌊
n
2

⌋
< 1

2

⌊
n+1
2

⌋
+ 1, and by

Lemma 5 we are done unless n ≡ 1, 2 modulo 4 and s = 1
2

⌊
n+1
2

⌋
+ 1

2
.

In these cases however, we can exhibit explicit permutations satisfying the requests of
the Theorem.

Case 1: n ≡ 1 mod 4.
Consider the permutation

(s, n− s+ 2, s− 1, n− s+ 3, . . . , 2, n, 1, n− 2s+ 2 =

⌈
n+ 1

2

⌉
,
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⌈
n+ 1

2

⌉
+ 1,

⌈
n+ 1

2

⌉
− 1, . . . , n− s+ 1).

Case 2: n ≡ 2 mod 4.
Consider the permutation

(s, n− s+ 2, s− 1, n− s+ 3, . . . , 2, n, 1, n− 2s+ 2 =

⌈
n+ 1

2

⌉
,

⌈
n+ 1

2

⌉
− 1,

⌈
n+ 1

2

⌉
+ 1, . . . , s+ 1, n− s+ 1).

3 Proof of Theorem 3

In order to prove 3, we show that for a randomly chosen Hamiltonian cycle on the graph
under consideration, with positive probability all absolute differences along the cycle are
pairwise distinct.

Let (A− A)+ := (A− A) ∩ N. For a random circular permutation a = (a1, . . . , an) of
A, let d(a) = {|a2 − a1|, . . . , |an − an−1|, |a1 − an|}.

Then
E(|d(a)|) =

∑
d∈(A−A)+

P (d ∈ d(a)). (1)

Fix d ∈ (A−A)+. Let Xi be the event |ai − ai−1| = d for i = 2, . . . , n, and X1 be the
event |a1 − an| = d.

Then

P (d ∈ d(a)) = P (X1 ∪ · · · ∪Xn) >
n∑

i=1

P (Xi)−
∑

16i<j6n

P (Xi ∩Xj) (2)

by inclusion-exclusion.
Let s(d) = |{a ∈ A : a−d, a+d ∈ A}| be the number of 3-terms arithmetic progressions

of difference d contained in A, and r(x) := |{(a, a′) ∈ A× A : a− a′ = x}|. We have the
following elementary estimate.

Lemma 7. Let |A| = n. Then
∑

d∈(A−A)+
s(d) 6 n2/4.

Proof. If A = {a1 < · · · < an} then ai can be the middle term of no more than min(i −
1, n− i) three terms arithmetic progressions. Hence

∑
d∈(A−A)+

s(d) 6 2

bn+1
2 c∑

i=1

(i− 1) 6
n2

4
.
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We can now compute the probabilities of the events Xi and Xi ∩Xj in order to get a
lower bound for E(|d(a)|).

P (Xi) =
2r(d)

n(n− 1)
for 1 6 i 6 n,

P (Xi ∩Xj) =

{
2s(d)

n(n−1)(n−2) if 1 6 i = j − 1 6 n− 1,
4r(d)(r(d)−1)

n(n−1)(n−2)(n−3) if 1 6 i < j − 1 6 n− 1.

Putting these equalities in 1 and 2 we get

E(|d(a)|) >
2
∑

d∈(A−A)+
r(d)

n− 1
−

2
∑

d∈(A−A)+
s(d)

(n− 1)(n− 2)
+

−
2
∑

d∈(A−A)+
r(d)(r(d)− 1)

n(n− 3)

> n− 1

2

n2

(n− 1)(n− 2)
− E(A,A)− 2n2 + n

n(n− 3)
.

Then, if n is sufficiently large and A satisfies E(A,A) = cn2 for some c < 5/2, we have
E(|d(a)|) > n − 1, and hence there exists a Hamiltonian cycle a of A with |d(a)| = n as
required.

4 A problem of Marco Buratti

In [1, 3, 4], the authors consider the following variant of Conjecture 1.
Fix an odd prime p, and consider the complete graph Kp on {0, . . . , p−1}. Define the

length of an edge [x, y] of Kp as l(x, y) = min(|x− y|, p− |x− y|).
Marco Buratti posed the following conjecture:

Conjecture 8. Let p = 2n + 1 be an odd prime, and L be a list of 2n elements, each
from the set {1, 2, . . . , n}. Then there exists an Hamiltonian path a = (a1, . . . , ap) on Kp

such that l(a) := {l(a1, a2), . . . , l(ap−1, ap)} = L.

A solution to this conjecture seems, at present day, very far. Only partial results,
showing the existence of such Hamiltonian paths for specific families of lists have been
obtained so far.

Clearly, Theorem 2 implies the validity of Conjecture 8 for the list
L = {1, 1, 2, 2, . . . , n, n}, that is the list where each element in {1, . . . , n} is present exactly
two times.

Moreover, not only the conjecture holds in this case, but there exist at least p Hamil-
tonian paths which realize the list L, one for each starting point in {0, . . . , p− 1}.
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