
Nondeterministic automatic complexity of

overlap-free and almost square-free words

Kayleigh K. Hyde
Schmid College of Science & Technology

Chapman University
Orange, California, U.S.A.

khyde@chapman.edu

Bjørn Kjos-Hanssen∗

Department of Mathematics
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, U.S.A.

bjoernkh@hawaii.edu

Submitted: Nov 25, 2014; Accepted: Jul 30, 2015; Published: Aug 14, 2015

Mathematics Subject Classifications: 68R15, 68Q30

Abstract

Shallit and Wang studied deterministic automatic complexity of words. They
showed that the automatic Hausdorff dimension I(t) of the infinite Thue word
satisfies 1/3 6 I(t) 6 1/2. We improve that result by showing that I(t) = 1/2.
We prove that the nondeterministic automatic complexity AN (x) of a word x of
length n is bounded by b(n) := bn/2c+ 1. This enables us to define the complexity
deficiency D(x) = b(n) − AN (x). If x is square-free then D(x) = 0. If x is almost
square-free in the sense of Fraenkel and Simpson, or if x is a overlap-free binary word
such as the infinite Thue–Morse word, then D(x) 6 1. On the other hand, there is
no constant upper bound on D for overlap-free words over a ternary alphabet, nor
for cube-free words over a binary alphabet.

The decision problem whether D(x) > d for given x, d belongs to NP ∩ E.

1 Introduction

The Kolmogorov complexity of a finite word w is, roughly speaking, the length of the
shortest description w∗ of w in a fixed formal language. The description w∗ can be
thought of as an optimally compressed version of w. Motivated by the non-computability
of Kolmogorov complexity, Shallit and Wang [9] studied a deterministic finite automaton
analogue. A more recent approach is due to Calude, Salomaa, and Roblot [1].

Definition 1 (Shallit and Wang [9]). The automatic complexity of a finite binary string
x = x1 · · ·xn is the least number AD(x) of states of a deterministic finite automaton M
such that x is the only string of length n in the language accepted by M .

∗This work was partially supported by a grant from the Simons Foundation (#315188 to Bjørn Kjos-
Hanssen).

the electronic journal of combinatorics 22(3) (2015), #P3.22 1

q0start q1 q2
0 1

1

0

Figure 1: A witnessing automaton for the inequality AD(011100) 6 4. All missing tran-
sitions go to a dead state q3 which is not shown.

This complexity notion has the following two properties:

1. Most of the relevant automata end up having a “dead state” whose sole purpose is
to absorb any irrelevant or unacceptable transitions.

2. The complexity of a string can be changed by reversing it. For instance,

AD(011100) = 4 < 5 = AD(001110). (1)

Equation 1 was verified by a computer program; for the idea and a partial proof see
Figure 1. The anonymous referee of this article raised the question, which we have
not been able to answer, whether the complexity of a string and its reverse can be
arbitrarily far apart.

If we replace deterministic finite automata by nondeterministic ones, these properties
disappear. The nondeterministic automatic complexity turns out to have other pleasant
properties, such as a sharp linear upper bound.

Technical ideas and results. In this paper we develop some of the properties of
nondeterministic automatic complexity. As a corollary we get a strengthening of a result
of Shallit and Wang [9] on the complexity of the infinite Thue–Morse word t. Moreover,
viewed through an NFA lens we can, in a sense, characterize the complexity of t exactly.
A main technical idea is to extend [9, Theorem 9] which said that not only do squares,
cubes and higher powers of a word have low complexity, but a word completely free of such
powers must conversely have high complexity. The way we strengthen their results is by
considering a variation on square-freeness and cube-freeness, overlap-freeness. This notion
also goes by the names of irreducibility and strong cube-freeness in the combinatorial
literature. We also take up an idea from [9, Theorem 8] and use it to show that the
natural decision problem associated with nondeterministic automatic complexity is in E
= DTIME(2O(n)). This result is a theoretical complement to the practical fact that the
nondeterministic automatic complexity can be computed reasonably quickly; to see it
in action, for strings of length up to 23 one can view automaton witnesses and check
complexity using the following URL format

the electronic journal of combinatorics 22(3) (2015), #P3.22 2

http://math.hawaii.edu/wordpress/bjoern/complexity-of-110101101/

and check one’s comprehension by playing a Complexity Guessing Game at

http://math.hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/

Let us now define our central notion and get started on developing its properties. Recall
that a nondeterministic finite automaton (NFA) is assumed to have no ε-transitions, i.e.,
it is not an NFA− ε.

Definition 2. The nondeterministic automatic complexity AN(w) of a word w is the
minimum number of states of an NFA M accepting w such that there is only one accepting
path in M of length |w|.

The minimum complexity AN(w) = 1 is only achieved by words of the form an where
a is a single letter.

Theorem 3 (Hyde [5]). The nondeterministic automatic complexity AN(x) of a string x
of length n satisfies

AN(x) 6 b(n) := bn/2c+ 1.

Proof sketch. If x has odd length, it suffices to carefully consider the automaton in Figure
2. If x has even length, a slightly modified automaton can be used.

q1start q2 q3 q4 . . . qm qm+1

x1 x2 x3 x4 xm−1 xm

xm+1

xm+2xm+3xn−3xn−2xn−1xn

Figure 2: A nondeterministic finite automaton that only accepts one string x =
x1x2x3x4 · · ·xn of length n = 2m+ 1.

Definition 4. The complexity deficiency of a word x of length n is

Dn(x) = D(x) = b(n)− AN(x).

The distribution of AN(w) for w of length n 6 23 is given in Table 1. The notion of
deficiency is motivated by the experimental observation that about half of all strings have
deficiency 0.

2 Time complexity

Definition 5. Let DEFICIENCY be the following decision problem.
Given a binary word w and an integer d > 0, is D(w) > d?

the electronic journal of combinatorics 22(3) (2015), #P3.22 3

http://math.hawaii.edu/wordpress/bjoern/complexity-of-110101101/
http://math.hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/

n
\k

1
2

3
4

5
6

7
8

9
10

11
12

23
2

6
20

58
16

4
43

0
25

40
14

25
2

80
96

2
44

22
78

21
60

66
2

56
87

23
4

22
2

6
20

58
16

4
50

2
28

46
16

02
4

94
73

2
45

13
68

20
89

41
8

15
39

16
4

21
2

6
20

58
17

6
49

6
31

68
18

72
0

10
80

42
50

47
94

14
61

67
0

20
2

6
20

58
16

4
43

0
38

14
23

32
8

11
58

96
52

91
48

37
57

10
19

2
6

20
58

16
4

58
2

49
96

26
54

2
14

06
68

35
12

50
18

2
6

20
58

18
8

59
8

56
92

29
99

0
13

60
24

89
56

6
17

2
6

20
58

20
0

51
4

71
02

37
04

2
86

12
8

16
2

6
20

58
16

4
75

2
77

38
34

32
0

22
47

6
15

2
6

20
58

22
6

90
8

85
30

23
01

8
14

2
6

20
58

24
4

12
70

96
68

51
16

13
2

6
20

64
25

0
20

76
57

74
12

2
6

20
58

28
2

20
90

16
38

11
2

6
20

58
56

4
13

98
10

2
6

20
64

58
8

34
4

9
2

6
20

78
40

6
8

2
6

20
13

0
98

7
2

6
22

98
6

2
6

26
30

5
2

6
24

4
2

6
8

3
2

6
2

2
2

1
2

0
1

T
ab

le
1:

T
h
e

n
u
m

b
er

of
st

ri
n
gs

of
le

n
gt

h
0
6
n
6

23
h
av

in
g

n
on

d
et

er
m

in
is

ti
c

au
to

m
at

ic
co

m
p
le

x
it

y
k
.

the electronic journal of combinatorics 22(3) (2015), #P3.22 4

2.1 NP

Theorem 6 is not surprising; we do not know whether DEFICIENCY is NP-complete.

Theorem 6. DEFICIENCY is in NP.

Proof. Shallit and Wang [9, Theorem 2] showed that one can efficiently determine whether
a given DFA uniquely accepts w among string of length |w|. Hyde [5, Theorem 2.2]
extended that result to NFAs, from which the result easily follows.

2.2 E

Definition 7. Suppose M is an NFA with q states that uniquely accepts a word x of
length n. Throughout this paper we may assume that M contains no edges except those
traversed on input x. Consider the almost unlabeled transition diagram of M , which
is a directed graph whose vertices are the states of M and whose edges correspond to
transitions. Each edge is labeled with a 0 except for an edge entering the initial state as
described below.

We define the accepting path P for x to be the sequence of n + 1 edges traversed in
this graph, where we include as first element an edge labeled with the empty string ε that
enters the initial state q0 of M .

We define the abbreviated accepting path P ′ to be the sequence of edges obtained from
P by considering each edge in order and deleting it if it has previously been traversed.

Lemma 8. Let v be a vertex visited by an abbreviated accepting path P ′ = (e0, . . . , et).
Then v is of one of the following five types.

1. In-degree 1 (edge ei), out-degree 1 (edge ei+1).

2. In-degree 2 (edges ei and ej with j > i), out-degree 1 (ei+1).

3. In-degree 1 (edge ei), out-degree 2 (edges ei+1 and ej, j > i+ 1).

4. In-degree 2 (edges ei and ej with j > i), out-degree 2 (ei+1 and ej+1).

5. In-degree 1 (edge et), out-degree 0.1

Proof. The out-degree and in-degree of each vertex encountered along P ′ are both 6 2,
since failure of this would imply non-uniqueness of accepting path. Since all the edges of
M are included in P , the list includes all the possible in-degree, out-degree combinations.
We can define i by the rule that ei is the first edge in P ′ entering v. Again, since all the
edges of M are included in P , ei+1 must be one of the edges contributing to the out-degree
of v, if any, and ej must also be as specified in the types.

Lemma 8 implies that Definition 9 makes sense.

1This type was omitted by Shallit and Wang.

the electronic journal of combinatorics 22(3) (2015), #P3.22 5

Definition 9. For 0 6 i 6 t+ 1 and 0 6 n 6 t+ 1 we let E(i, n) be a string representing
the edges (ei, · · · , en). The meaning of the symbols is as follows: 0 represents an edge.
A left bracket [represents a vertex that is the target of a backedge. A right bracket]
represents a backedge. The symbol + represents a vertex of out-degree 2. When i > n,
we set E(i, n) = ε. Next, assuming we have defined E(j,m) for all m and all j > i, we can
define E(i, n) by considering the type of the vertex reached by the edge ei. Let ai ∈ {0, ε}
be the label of ei.

1. E(i, n) := aiE(i+ 1, n).

2. E(i, n) := ai[E(i+ 1, j − 1)]E(j + 1, n).

3. E(i, n) := ai + E(i+ 1, n).

4. E(i, n) := ai[+E(i+ 1, j − 1)]E(j + 1, n).

5. E(i, n) := aiE(i+ 1, n).

Lemma 10. The abbreviated accepting path can be reconstructed from E(0, t).

We do not include the proof of Lemma 10; instead, Figure 3 gives an example of an
automaton and the computation of E(0, t).

Lemma 11.
|E(a, b)| 6 2(b− a+ 1).

Proof of Lemma 11. The four rules are

1. E(i, n) = aiE(i+ 1, n)

2. E(i, n) = ai[E(i+ 1, j − 1)]ajE(j + 1, n)

3. E(i, n) = ai + E(i+ 1, n)

4. E(i, n) = ai[+E(i+ 1, j − 1)]ajE(j + 1, n)

So either
|E(i, n)| 6 2 + |E(i+ 1, n)|

or
|E(i, n)| 6 4 + |E(i+ 1, j − 1)|+ |E(j + 1, n)|.

So if by induction hypothesis |E(a, b)| 6 2(b− a+ 1) then

|E(i, n)| 6 2 + 2(n− i− 1 + 1) = 2(n− i+ 1)

or
|E(i, n)| 6 4 + 2(j − 1− i− 1 + 1) + 2(n− j − 1 + 1) = 2(n− i+ 1).

the electronic journal of combinatorics 22(3) (2015), #P3.22 6

E(i, n) Computation
E(0, 12) εE(1, 12) = E(1, 12)
E(1, 12) a1[E(2, 11)]a12E(13, 12)
E(13, 12) ε
E(2, 11) a2E(3, 11)
E(3, 11) a3E(4, 11)
E(4, 11) a4E(5, 11)
E(5, 11) a5[E(6, 10)]a11E(12, 11)
E(6, 10) a6E(7, 10)
E(7, 10) a7 + E(8, 10)
E(8, 10) a8[E(9, 9)]a10E(11, 10)
E(9, 9) a9 + E(10, 9) = a9+
E(8, 10) a8[a9+]a10
E(7, 10) a7 + a8[a9+]a10
E(6, 10) a6a7 + a8[a9+]a10
E(5, 11) a5[a6a7 + a8[a9+]a10]a11

(a) The + marks the place of a loopback.

q0start

q1

q2

q3

q4

q5

q6

q7

q8

q9

0

1

0

0

0

1

1

0

01

1

1

(b) Complexity witness for the string
0100011001010101111100, one of the
2,655,140 simple strings of length n =
22.

Figure 3: The code is E(0, 12) = a1[a2a3a4a5[a6a7 + a8[a9+]a10]a11
]
a12

where (a1, . . . , a12) =

(0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1). In reduced form, E(0, 12) = 0[0000[00 + 0[0+]]].

the electronic journal of combinatorics 22(3) (2015), #P3.22 7

Theorem 12. DEFICIENCY is in E.

Proof. Let w be a word of a length n, and let d > 0. To determine whether D(w) > d,
we must determine whether there exists an NFA M with at most bn

2
c − d states which

accepts w, and accepts no other word of length n. Since there are prima facie more than
single-exponentially many automata to consider, we consider instead codes E(0, t) as in
Definition 9. By Lemma 10 we can recover the abbreviated accepting path P ′ and hence
M from such a code. The number of edges t is bounded by the string length n, so by
Lemma 11

|E(0, t)| 6 2(t+ 1) 6 2(n+ 1);

since there are four symbols this gives

42(n+1) = O(16n)

codes to consider. Finally, to check whether a given M accepts uniquely takes only
polynomially many steps, as in Theorem 6.

Remark 13. The bound 16n counts many automata that are not uniquely accepting; the
actual number may be closer to 3n based on computational evidence.

3 Powers and complexity

In this section we shall exhibit infinite words all of whose prefixes have complexity de-
ficiency bounded by 1. We say that such a word has a hereditary deficiency bound of
1.

3.1 Square-free words

Lemma 14. Let x and y be strings over an arbitrary alphabet with xy = yx. Then there
is a string z and integers k and ` such that x = zk and y = z`.

Lemma 14 is proved in Shallit [8, Theorem 2.3.3] and is originally due to Lyndon and
Schuetzenberger [6].

Definition 15. A word x is a factor in a word y if y = uxv for some words u and v. In
this case we also say that y contains x.

We will use the following simple strengthening from DFAs to NFAs of a fact used in
[9, Theorem 9].

Theorem 16. If an NFA M uniquely accepts w of length n, and visits a state p at least
k+1 times, where k > 2, during its computation on input w, then w contains a kth power.

Proof. Let w = w0w1 · · ·wkwk+1 where

• w0 is the portion of w read before the first visit to the state p,

the electronic journal of combinatorics 22(3) (2015), #P3.22 8

• wi is the portion of w read between visits number i and i + 1 to the state p for
1 6 i 6 k, and

• wk+1 is the portion of w read after the last visit to the state p.

Thus |wi| > 1 for each 1 6 i 6 k, but it is possible to have |w0| = 0 (|wk+1| = 0) since
the initial (final) state of M ’s on input w computation may be p.

For any permutation π on 1, . . . , k, M accepts w0wπ(1) · · ·wπ(k)wk+1. Let 1 6 j 6 k
be such that wj has minimal length and let

ŵj = w1 · · ·wj−1wj+1 · · ·wk.

Then M also accepts
w0wjŵjwk+1 and w0ŵjwjwk+1.

By uniqueness,
w0wjŵjwk+1 = w = w0ŵjwjwk+1

and so
wjŵj = ŵjwj.

By Lemma 14, wj and ŵj are both powers of a string z. Since |ŵj| > (k− 1)|wj|, wjŵj is
at least a kth power of z, so w contains a kth power of z.

Theorem 17 (Extended Pigeonhole Principle). If aq + d pigeons are placed in q pigeon-
holes where d > 0, then it cannot be the case that all pigeonholes have at most a pigeons;
in fact, either

• there is a pigeonhole with at least a+ d pigeons; or

• there is a pigeonhole with at least a+ d− 1 pigeons, and another with a+ 1 pigeons;
or

• there is a pigeonhole with at least a+ d− 2 pigeons, and another with a+ 2 pigeons;
or

• there is a pigeonhole with at least a + d − 2 pigeons, and two others with a + 1
pigeons; or

• all pigeonholes have at most a+ d− 3 pigeons (which is impossible if a+ d− 3 6 a
and d > 0).

Proof. Consider the maximum number of pigeons in a pigeonhole m. If m > a + d we
are in Case 1. If m = a+ d− 1, we consider all the other pigeons and pigeonholes; there
are then q − 1 pigeonholes and aq + d− (a+ d− 1) = a(q − 1) + 1 pigeons. By the plain
Pigeonhole Principle, there is a pigeonhole with at least a+ 1 pigeons. If m = a+ d− 2,
we repeat the argument, consider the maximum number of pigeons in a pigeonhole other
than a given one with the maximum number of pigeons.

the electronic journal of combinatorics 22(3) (2015), #P3.22 9

We next strengthen a particular case of [9, Theorem 9] to NFAs.

Theorem 18. A square-free word has deficiency 0.

Proof. Suppose w is a word of length n = 2k or n = 2k + 1, of deficiency d. Then
there is a witnessing automaton M with q = k + 1 − d states. Since n + 1 > 2k + 1 =
2(k + 1 − d) + 2d − 1 = 2q + (2d − 1), by the Extended Pigeonhole Principle (Theorem
17), there is a state p which is visited 2 + (2d− 1) = 3 times t1 < t2 < t3, during the n+ 1
times of the computation of M on input w (and is not visited at any other times in the
interval [t1, t3]). By Theorem 16, w contains a square.

Corollary 19. There exists an infinite word of hereditary deficiency 0.

Proof. There is an infinite square-free word over the alphabet {0, 1, 2} as shown by Thue
[11]. The result follows from Theorem 18.

3.2 Cube-free and overlap-free words

Definition 20. For a word u, let first(u) and last(u) denote the first and last letters of
u, respectively. An overlap is a word of the form uu first(u) (or equivalently, last(u)uu).
A word w is overlap-free if it does not contain any overlaps.

Definition 21 (Thue-Morse morphism). Let {0, 1}∗ denote the set of all finite binary
words. A morphism is a function ν : {0, 1}∗ → {0, 1}∗ which is a homomorphism with
respect to concatenation, in the sense that

ν(xy) = ν(x)ν(y)

for all x, y ∈ {0, 1}∗. The Thue-Morse morphism is the unique morphism µ satisfying

µ(0) = 01, µ(1) = 10.

Theorem 22 (Shelton and Soni [10]). Let a > 0. The words µa(00) and µa(001001) are
overlap-free squares of lengths 2a+1, 3 · 2a+1, respectively2.

Example 23 (Examples of Theorem 22.). The following overlap-free squares exemplify
the first few possible lengths, 2, 4, 6, 8 and 12:

00, µ(00) = 0101, 001001, µ2(00) = 01100110,

µ(001001) = 010110010110.

Theorem 22 is used in the proof of the following result.

Theorem 24 (Shelton and Soni [10]). Let ` be a positive integer. The following are
equivalent.

2 There is a minor typo in Shelton and Soni’s paper (line 10 of page 98), equivalent to writing µa(001)
instead of µa(001001).

the electronic journal of combinatorics 22(3) (2015), #P3.22 10

1. There exists an overlap-free binary word y and a word x such that y contains xx
and ` = |xx|.

2. ` ∈ {2a : a > 1} ∪ {3 · 2a : a > 1}.

Lemma 25. If a cube www contains another cube xxx then either |x| = |w|, or xx first(x)
is contained in the first two consecutive occurrences of w, or last(x)xx is contained in the
last two occurrences of w.

Proof. We prove the contrapositive. Suppose xx first(x) is not contained in the first two
consecutive occurrences of w, and last(x)xx is not contained in the last two occurrences
of w. Then the middle last(x)x first(x) of the factor xxx has last(w)w first(w) as a factor,
and hence |x| > |w|.

Theorem 26. The deficiency of cube-free binary words is unbounded.

Proof. Given k, we shall find a cube-free word x with D(x) > k. Pick a number n such
that 2n > 2k + 1. Let w := µn(0), which is a word of length ` := 2n. By Theorem 22,
ww is overlap-free. Let x = wwŵ where ŵ is the proper prefix of w of length |w| − 1. By
Lemma 25, x is cube-free. The complexity of x is at most |w| as we can just make one
loop of length w, with code (Theorem 12)

[w1 · · ·w`−1]w`
.

And so

D(x) >

⌊
|x|
2

⌋
+ 1− |w| > |x|

2
− |w|

=
3|w| − 1

2
− |w| = |w|

2
− 1

2
> k.

3.3 Overlap-free words

Theorem 27 (Thue [11]). The infinite Thue–Morse word

t = t0t1 · · · = 0110 1001 1001 0110 · · ·

given by

b =
∑

bi2
i, bi ∈ {0, 1} =⇒ tb =

∑
bi mod 2,

is overlap-free.

Lemma 28. Fix j and k and let tx denote the xth bit of the Thue–Morse word. The
function

f(u) = tx(u)−1 where x(u) = 3k−j(3u+ 2)

is eventually nonconstant.

the electronic journal of combinatorics 22(3) (2015), #P3.22 11

Proof. Gelfond [4] showed that t has no infinite arithmetic progressions (see also Mor-
genbesser, Shallit, Stoll [7]).

Lemma 29. For each k > 1 there is a sequence x1,k, . . . , xk,k of positive integers such
that

k∑
i=1

aixi,k = 2
k∑
i=1

xi,k =⇒ a1 = · · · = ak = 2.

Let tj denote bit j of the infinite Thue–Morse word. Then we can ensure that

1. xi,k + 1 < xi+1,k and

2. txi,k 6= txi+1,k
for each 1 6 i < k.

Proof. Let
x1,1 = 1.

Given x1,k−1, . . . , xk−1,k−1, we let xi,k = 3xi,k−1 for i < k and xk,k = 3uk−1 + 2 for a
sufficienctly large number uk−1. Reducing the equation

k∑
i=1

aixi,k = 2
k∑
i=1

xi,k

modulo 3, we see that ak ≡ 2 (mod 3). If ak > 5 then∑
i

aixi,k > 5xk,k = 15uk−1 + 10

> 6
∑
i<k

xi,k−1 + 6uk−1 + 4 = 2
∑
i<k

xi,k + 2(3uk−1 + 2) = 2
∑
i6k

xi,k;

provided

3uk−1 + 2 > 2
∑
i<k

xi,k−1

so we conclude ak = 2. Then we can cancel ak, divide by three and reduce to the induction
hypothesis.

Thus our numbers are
x1,2 = 3, x2,2 = 3u1 + 2,

x1,3 = 32, x2,3 = 3(3u1 + 2), x3,3 = 3u2 + 2

and in general
xj,k = 3k−j(3uj−1 + 2)

To ensure (1) we just take uj−1 sufficiently big. To ensure (2), we apply Lemma 28.

Theorem 30. The complexity deficiency of overlap-free words over an alphabet of size
three is unbounded.

the electronic journal of combinatorics 22(3) (2015), #P3.22 12

Proof. Let d > 1. We will show that there is a word w of deficiency D(w) > d. Let
k = 2d− 1. For each 1 6 i 6 k let xi = xk+1−i,k where the xj,k are as in Lemma 29. Note
that since xi,k + 1 < xi+1,k, we have xi > xi+1 + 1. Let

w =

(
2

x1−1∏
i=1

ti

)2

tx1

(
2

x2−1∏
i=1

ti

)2

tx2

(
2

x3−1∏
i=1

ti

)2

· · · txk−1

(
2

xk−1∏
i=1

ti

)2

= λ1tx1λ2 · · · txk−1
λk

where λi = (2τi)
2, τi =

∏xi−1
j=1 tj, and where ti is the ith bit of the infinite Thue–Morse word

on {0, 1}, which is overlap-free (Theorem 27). Let M be the NFA with code (Theorem
12)

[+0x1−1]0[+0x2−1]0 · · · 0 ∗ [+0xk−1],

where ∗ indicates the accept state. Let X =
∑k

i=1 xi. Then M has k − 1 + X edges but
only q = X states; and w has length

n = k − 1 + 2X = 2(d− 1) + 2X,

giving n/2 + 1 = d+X.
Suppose v is a word accepted by M . Then M on input v goes through each loop of

length xi some number of times ai > 0, where

k − 1 +
k∑
i=1

aixi = |v|.

If additionally |v| = |w|, then by Lemma 29 we have a1 = a2 = · · · = ak, and hence v = w.
Thus

D(w) > bn/2 + 1c − q = d+X −X = d.

Below we prove that w is overlap-free.

Proof that the word w in Theorem 30 is overlap-free. Suppose a word uu is contained in
w.

Proof that the number of 2s in uu is either 0 or 2. Let o1, . . . , o2a denote
the occurrences of 2s in uu and suppose a > 1. Let δi = oi+1 − oi. Then the sequence
(δ1, · · · , δa) is an interval in the sequence

(x1 − 1, x1, x2 − 1, x2, . . . , xk−1 − 1, xk−1, xk − 1).

Since xi > xi+1 + 1, in particular |xi − xi+1| > 1 and so this sequence is injective,
i.e., no two entries are the same. But (o1, · · · , oa) = (oa+1 − |u|, · · · , o2a − |u|). So
δa+1 = oa+2 − oa+1 = o2 − o1 = δ1 which implies a = 1.

So either Case 1 or Case 2 below obtains. Case 1: The number of 2s in uu is
zero. Then certainly uu first(u) is not contained in w, since the infinite Thue–Morse word
is overlap-free. Case 2: The number of 2s in uu is two. Then we have one of the
following two cases.

the electronic journal of combinatorics 22(3) (2015), #P3.22 13

1. uu is contained in a word of the form

t1 · · · txi 2 t1 · · · txi+1−1 2 t1 · · · txi+1
.

We guard against that by making sure that

• txi 6= txi+1−1 (Lemma 29) and

• 2 6= txi+1
(the Thue–Morse word uses only the letters 0 and 1)

2. uu is contained in a word of the form

t1 · · · txi−1 2 t1 · · · txi 2 t1 · · · txi+1−1.

Since uu contains exactly two 2s and the tj are not 2s, it follows that uu = a2b2c
where a, b, c are words over the binary alphabet {0, 1}. Then u = a2b1 = b22c
where b = b1b2, so a = b2, c = b1 and so actually u = a2c and t1 · · · txi = b = ca.
Here then |ca| = xi. If |a| 6 2 then consequently

xi − 2 6 |c| 6 xi+1 − 1,

which contradicts xi+1 < xi − 1. If |a| > 2 then we appeal to Lemma 31.

Lemma 31. txi−2txi−1 2 t1 · · · txi2 cannot be a factor of a square having only two 2s.

Proof. The Thue–Morse word is a concatenation of disjoint occurrences of the words 01
and 10. Each of these two words are of the form zz where z = 1 − z. The idea now is
that if xi is odd then say it ends in a lone 0 and 2, 02; then adding the next control bit
will give something ending in 012, preventing a square.

More precisely, since t1 · · · txi−12 having odd or even length ends in say zz2 or zza2
respectively, and then t1 · · · txi−1txi2 ends in zzb2 or zzaa2, respectively; either way
t1 · · · txi−12 and t1 · · · txi−1txi2 are incompatible.

Definition 2 yields the following lemma.

Lemma 32. Let (q0, q1, · · ·) be the sequence of states visited by an NFA M given an input
word w. For any t, t1, t2, and ri, si with

(p1, r1, . . . , rt−2, p2) = (qt1 , . . . , qt1+t)

and
(p1, s1, . . . , st−2, p2) = (qt2 , . . . , qt2+t),

we have ri = si for each i.

Note that in Lemma 32, it may very well be that t1 6= t2.

Theorem 33. Overlap-free binary words have deficiency bound 1.

the electronic journal of combinatorics 22(3) (2015), #P3.22 14

Proof. Suppose w is a word satisfying D(w) > 2 and consider the sequence of states
visited in a witnessing computation. As in the proof of Theorem 41, either there is a
state that is visited four times, and hence there is a cube in w, or there are three state
cubes (states that are visited three times each), and hence there are three squares in w.
By Theorem 24, a overlap-free binary word can only contain squares of length 2a, 3 · 2a,
and hence can only contain powers ui where |u| is of the form 2a, 3 · 2a, and i 6 2.

In particular, the length of one of the squares in the three state cubes must divide the
length of another. So if these two state cubes are disjoint then the shorter one repeated
can replace one occurrence of the longer one, contradicting Lemma 32.

So suppose we have two state cubes, at states p1 and p2, that overlap. At p1 then we
read consecutive words ab that are powers a = ui, b = uj of a word u, and since there are
no cubes in w it must be that i = j = 1 and so actually a = b. And at p2 we have words
c, d that are powers of a word v and again the exponents are 1 and c = d.

The overlap means that in one of the two excursions of the same length starting and
ending at p1, we visit p2. By uniqueness of the accepting path we then visit p2 in both of
these excursions. If we suppose the state cubes are chosen to be of minimal length then
we only visit p2 once in each excursion. If we write a = rs where r is the word read when
going from p1 to p2, and s is the word going from p2 to p1, then c = sr and w contains
rsrsr. In particular, w contains an overlap.

Remark 34. In computability theory, the effective Hausdorff dimension dim and effective
packing dimension Dim of a single infinite binary sequence u are defined, and related to
Kolmogorov complexity C. It is shown (see [2, Theorem 13.3.4 and Corollary 13.11.12])
that

dim(u) = lim inf
n

C(u1 · · ·un)

n
, and Dim(u) = lim sup

n

C(u1 · · ·un)

n
.

These results, together with the idea that automatic complexity is a miniaturization of
Kolmogorov complexity, constitute our motivation for making Definitions 35 and 37 below.

Definition 35. For an infinite word u define the deterministic automatic Hausdorff di-
mension of u by

I(u) = lim inf
u prefix of u

AD(u)

|u|
.

and the deterministic automatic packing dimension of u by

S(u) = lim sup
u prefix of u

AD(u)

|u|
.

The connection between effective dimension and automatic dimension is not merely
by analogy, as Theorem 36 shows.

Theorem 36. If x is an infinite word with dim(x) > 0, then I(x) > 0.

Proof. This follows from the Kolmogorov complexity calculation in [9, Theorem 9].

the electronic journal of combinatorics 22(3) (2015), #P3.22 15

For nondeterministic complexity, in light of Theorem 3 it is natural to make the
following definition.

Definition 37. Define the nondeterministic automatic Hausdorff dimension of u by

IN(u) = 2 · lim inf
u prefix of u

AN(u)

|u|

and define SN analogously.

Theorem 38 (Shallit and Wang’s Theorem 18). 1
3
6 I(t) 6 S(t) 6 2

3
.

We are now ready to strengthen Theorem 38.

Theorem 39. I(t) = 1
2
, and IN(t) = SN(t) = 1.

Proof. The inequality I(t) > 1
2

and the fact that IN(t) = SN(t) = 1 follow from the
observation that the proof of Theorem 33 applies equally for deterministic complexity.
The inequality I(t) 6 1

2
was already implicit in the proof of [9, Theorem 18]. Let T (m) =

t0 · · · tm−1. In the table they give, with m = 22n+1, we read off the inequality AD(T (m)) 6
m+ 3− 22n = m

2
+ 3.

3.4 Almost square-free words

Definition 40 (Fraenkel and Simpson [3]). A word whose square factors all belong to
the set {00, 11, 0101} is called almost square-free.

Theorem 41. A word that is almost square-free has a deficiency bound of 1.

Proof. It is easy to verify for words of length at most 3. Suppose now w has length at
least 4. Suppose w is a word of a length n ∈ {2k, 2k + 1} where k > 2, with deficiency
at least 2. Then there are q = k − 1 > 1 states occupied at n + 1 times. So n + 1 ∈
{2k+1, 2k+2} = {2q+3, 2q+4} times. There are at least 2q+3 times and only q states,
so by the Extended Pigeonhole Principle (Theorem 17), we are in one of the following
Cases 1–3.

• Case 1. There is at least one state that is visited at least 5 times. Then by Theorem
16, w contains a fourth power.

• Case 2. There is at least one state p1 that is visited at least 4 times and another
state p2 6= p1 that is visited at least 3 times. Then by Theorem 16, there is a cube
xxx and a square yy in w. Since w has no squares of length > 4, we must have
|xx| 6 4 and |yy| 6 4 and hence 1 6 |x| 6 2 and 1 6 |y| 6 2. We next consider
possible lengths of x and y.

– Subcase |x| = 2. Say x = ab where |a| = |b| = 1. If a 6= b then xxx ∈
{101010, 010101} so 1010 occurs in w, but w does not contain 1010; if
a = b then 0000 or 1111 occurs in w, contra assumption.

the electronic journal of combinatorics 22(3) (2015), #P3.22 16

– Subcase |x| = 1, |y| = 2: In this case, the xxx and yy occurrences must be
disjoint, because the states in a yy occurrence are p2p3p2p3p2 for some p3 which
must be disjoint from p1p1p1p1 when p1 6= p2. But then we can replace these
by p2p3p2p3p2p3p2 and p1p1, respectively, giving two distinct state sequences
leading to acceptance, contradicting Lemma 32.

– Subcase |x| = 1, |y| = 1: In this case again the occurrences of xxx and yy must
be disjoint, since p1 6= p2. We can replace p4

1 and p3
2 by p1 and p6

2, respectively,
again contradicting Lemma 32.

• Case 3. There are at least 3 states p1, p2, p3 (all distinct) that are each visited at
least 3 times. Then by Theorem 16, there are three squares uiui at three distinct
states pi, 1 6 i 6 3. By assumption |uiui| 6 4 so |ui| 6 2.

– Subcase 3.1. |ui| = |uj| = 1 for two values 1 6 i < j 6 3. Then the argument
is entirely analogous to that in Case 2.

– Subcase 3.2 |uj| = |uk| = 2 for two values 1 6 j < k 6 3.

∗ Subsubcase 3.2.1. If disjoint, we can replace u2
j by u2

k to get u4
k, again a

fourth power, by the argument of Subcase 3.1.

∗ Subsubcase 3.2.2. If nondisjoint with full overlap then

pja1pja2pj

and
pkb1pkb2pk

become
pjpkpjpkpjpk

and immediately we get 10101 or 01010 or a fourth power in w;

∗ Subsubcase 3.2.3. If partial overlap only then pja1pja2pj and pkb1pkb2pk
become, by Lemma 32, pjapjapj and pkbpkbpk and then

pjapjpkpjpkbpk

By Lemma 32 again, this must be

pjpkpjpkpjpkpjpk = (pjpk)
4

and so the read word must be of the form abababa, giving an occurrence
of 1010 (if a 6= b) or of a 7th power (if a = b) in w.

Thus all cases are covered and the Theorem is proved.

Corollary 42. There is an infinite binary word having hereditary deficiency bound of 1.

the electronic journal of combinatorics 22(3) (2015), #P3.22 17

Proof. We have two distinct proofs. On the one hand, Fraenkel and Simpson [3] show
there is an infinite almost square-free binary word, and the result follows from Theorem
41. On the other hand, the infinite Thue–Morse word is overlap-free (Theorem 27) and
the result follows from Theorem 33.

Conjecture 43. There is an infinite binary word having hereditary deficiency 0.

Remark 44. We obtained some numerical evidence for Conjecture 43. For instance, we
found that there are 108 binary words of length 18 having hereditary deficiency 0.

References

[1] Cristian S. Calude, Kai Salomaa, and Tania K. Roblot. Finite state complexity.
Theoret. Comput. Sci., 412(41):5668–5677, 2011.

[2] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complex-
ity. Theory and Applications of Computability. Springer, New York, 2010.

[3] Aviezri S. Fraenkel and R. Jamie Simpson. How many squares must a binary sequence
contain? Electron. J. Combin., 2:Research Paper 2, approx. 9 pp. (electronic), 1995.

[4] A. O. Gelfond. Sur les nombres qui ont des propriétés additives et multiplicatives
données. Acta Arith., 13:259–265, 1967/1968.

[5] Kayleigh Hyde. Nondeterministic finite state complexity. Master’s thesis, University
of Hawaii at Manoa, U.S.A., 2013. http://math.hawaii.edu/home/theses/MA_

2013_Hyde.pdf.

[6] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group.
Michigan Math. J., 9:289–298, 1962.

[7] Johannes F. Morgenbesser, Jeffrey Shallit, and Thomas Stoll. Thue-Morse at multi-
ples of an integer. J. Number Theory, 131(8):1498–1512, 2011.

[8] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, New York, NY, USA, 1 edition, 2008.

[9] Jeffrey Shallit and Ming-Wei Wang. Automatic complexity of strings. J. Autom.
Lang. Comb., 6(4):537–554, 2001. 2nd Workshop on Descriptional Complexity of
Automata, Grammars and Related Structures (London, ON, 2000).

[10] R. O. Shelton and R. P. Soni. Chains and fixing blocks in irreducible binary sequences.
Discrete Math., 54(1):93–99, 1985.

[11] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Skrifter I Mat.-Nat. Kl., Christiania, 1:1–67, 1912.

the electronic journal of combinatorics 22(3) (2015), #P3.22 18

http://math.hawaii.edu/home/theses/MA_2013_Hyde.pdf
http://math.hawaii.edu/home/theses/MA_2013_Hyde.pdf

	Introduction
	Time complexity
	NP
	E

	Powers and complexity
	Square-free words
	Cube-free and overlap-free words
	Overlap-free words
	Almost square-free words

