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Abstract

In this paper, we introduce the Jones polynomial of a graph G = (V,E) with k
components as the following specialization of the Tutte polynomial:

JG(t) = (−1)|V |−kt|E|−|V |+kTG(−t,−t−1).

We first study its basic properties and determine certain extreme coefficients. Then
we prove that (−∞, 0] is a zero-free interval of Jones polynomials of connected
bridgeless graphs while for any small ε > 0 or large M > 0, there is a zero of the
Jones polynomial of a plane graph in (0, ε), (1 − ε, 1), (1, 1 + ε) or (M,+∞). Let
r(G) be the maximum moduli of zeros of JG(t). By applying Sokal’s result on zeros
of Potts model partition functions and Lucas’s theorem, we prove that

qs − |V |+ 1

|E|
6 r(G) < 1 + 6.907652∆G

for any connected bridgeless and loopless graph G = (V,E) of maximum degree ∆G

with qs parallel classes. As a consequence of the upper bound, X.-S. Lin’s conjecture
holds if the positive checkerboard graph of a connected alternating link has a fixed
maximum degree and a sufficiently large number of edges.

Keywords: graph; Jones polynomial; real zeros; complex bound

∗Supported by NIE AcRf (RI 2/12 DFM).
†Corresponding author, supported by NSFC (No. 11271307).

the electronic journal of combinatorics 22(3) (2015), #P3.23 1



1 Introduction

Let TG(x, y) be the Tutte polynomial of the graph G [27]. We shall first give the definition
of the Jones polynomial of a graph. Let G = (V,E) be a graph with k components. The
Jones polynomial of G is defined to be

JG(t) = (−1)|V |−kt|E|−|V |+kTG(−t,−t−1). (1)

This definition is motivated by the connection between the Jones polynomial [15] of
an oriented connected alternating link and the Tutte polynomial of the positive plane
graph formed from an alternating link diagram of the link via the classical checkerboard
coloring. To be precise, let L be a connected oriented link which admits an alternating link
diagram D. Let VL(t) be the Jones polynomial of L. Let TG+(D) be the Tutte polynomial
of G+(D), the positive checkerboard graph constructed from D. Then [24]

VL(t) = (−1)wt
b−a+3w

4 TG+(D)(−t,−t−1), (2)

where w is the writhe of the link diagram D, a (resp. b) is the number of vertices (resp.
regions) of G+(D).

Zeros of Jones polynomials of links (i.e. plane graphs) have been studied. In [28, 5, 9,
10], some families of links are considered. In [4, 13], the unit-circle theorem is obtained.
In [14], the authors proved that zeros of Jones polynomials of pretzel links are dense in
the whole complex plane. There has been a great deal of work on zeros of the chromatic
polynomial (more generally, the Potts model partition function), which is also a partial
evaluation of the Tutte polynomial. See, for example, [23] and references therein. In this
paper, we try to use the method of studying (di)chromatic zeros to study zeros of the
Jones polynomial of graphs, hoping to obtain some similar results.

In the next section we provide some basic properties of the Jones polynomial of graphs,
some of which are specializations of properties of the Tutte polynomial or generalizations
of properties of the Jones polynomial of alternating links (equivalently, planar graphs).
We obtain several results on zeros of the Jones polynomial of graphs in Section 3. In par-
ticular, we prove that (−∞, 0] is a zero-free interval of the Jones polynomial of connected
bridgeless graphs while for any small ε > 0 or large M > 0, there is a zero of the Jones
polynomial of a plane graph in (0, ε), (1− ε, 1), (1, 1 + ε) or (M,+∞).

Let G be a connected graph. Let z1, z2, · · · , zq be all the zeros of JG(t). Define the
Jones spectral radius of G to be

r(G) = max
16i6q
{|zi|}.

By using Sokal’s result [22] and imitating Brown’s method [3], we succeed in obtaining
an upper bound and a lower bound for r(G). Let G = (V,E) be a connected bridgeless
and loopless graph of maximum degree ∆G with qs parallel classes. In Section 4, we prove
that

qs − |V |+ 1

|E|
6 r(G) < 1 + 6.907652∆G. (3)

the electronic journal of combinatorics 22(3) (2015), #P3.23 2



As an application of the upper bound, we discuss a conjecture stated by X.-S. Lin’s in
[17], a paper partially written before he passed away in 2007. We conclude the paper in
Section 5 with two unsolved problems for further study.

2 Basic properties

It is obvious that JEn(t) = 1 for the edgeless graph En with n vertices and when a graph
contains at least one edge, we have the following deletion-contraction recurrence which
can be used to compute the Jones polynomial for any graph and thus can also be viewed
as an alternative definition.

Theorem 1. Let G = (V,E) be a graph and e ∈ E. Then

JG(t) =


tJG/e(t) if e is a bridge of G,
−JG−e(t) if e is a loop of G,
tJG−e(t)− JG/e(t) otherwise,

where G− e and G/e are graphs obtained from G by deleting and contracting the edge e,
respectively. In particular, JG(t) is a polynomial with integer coefficients.

Proof. The result follows directly from the following deletion-contraction formula for the
Tutte polynomial:

TG(−t,−t−1) =


−t TG/e(−t,−t−1) if e is a bridge of G,
−t−1 TG−e(−t,−t−1) if e is a loop of G,
TG−e(−t,−t−1) + TG/e(−t,−t−1) otherwise.

See, for example, [2].

Theorem 2. Let G be a plane graph and G∗ be the planar dual of G. Then

JG∗(t) = (−t)|E|JG(t−1). (4)

Proof. This follows directly from the following duality formula for the Tutte polynomial:

TG∗(x, y) = TG(y, x).

See, for example, [2].

Theorem 3. Let G = (V,E) be a graph. Then the terms in JG(t) alternate in sign.

Proof. Let KG(t) = (−1)|E|JG(−t). From Theorem 1, we obtain

KG(t) =


tKG/e(t) if e is a bridge of G,
KG−e(t) if e is a loop of G,
tKG−e(t) +KG/e(t) otherwise.

Now it suffices to show that the coefficients in KG(t) are all non-negative. We shall prove
this by induction on the number of edges ofG. It holds trivially whenG = En. We suppose
that it holds for all graphs with fewer than m edges and let G be a connected graph with m
edges. By the above deletion-contraction formula for KG(t) and the inductive hypothesis,
it is obvious that the coefficients of KG(t) are all non-negative.
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Remark 4. It is possible for some coefficient of KG(t) to be zero. For example, KCn(t) =
tn + tn−1 + · · · + t2 + 1 for the n-cycle Cn (n > 2). Furthermore, it is not difficult for us
to derive from Theorems 14 and 15 in [2] that the coefficients of KG(t) are all positive for
all connected non-separable graphs which are neither cycles nor dual graphs of cycles.

Let G = (V,E) be a graph. A parallel class of G is a maximal subset of E all of
which have the same endvertices. A series class of G is a maximal subset of E such that
the removal of any two edges of the subset will increase the number of components of
the graph. Both parallel classes and series classes partition the edge set E. In the case
of a plane graph, a parallel class is exactly a series class of its dual graph. A parallel or
series class will be called trivial if it contains only one edge. Let the Tutte polynomial
evaluation of the graph G

TG(−t,−t−1) = ant
n + an+1t

n+1 + · · ·+ am−1t
m−1 + amt

m, (5)

with an 6= 0, am 6= 0 and n 6 m. In [6], Dasbach and Lin proved:

Lemma 5. Let G = (V,E) be a connected loopless graph with qs parallel classes and q̃s
nontrivial parallel classes. Then in (5), m = |V | − 1 and

(1) am = (−1)|V |−1,

(2) am−1 = (−1)|V |−1(|V | − 1− qs),

(3) am−2 = (−1)|V |−1

[(
qs − |V |+ 2

2

)
+ q̃s − tri

]
, where tri is the number of trian-

gles of the parallel reduction obtained from G by deleting all edges but one for every
parallel class of G.

Proof. See Proposition 2.1 of [6]. By checking the proof, one finds that the ‘planarity’
condition in Proposition 2.1 is actually not needed and thus Lemma 5 follows.

Now we investigate the value of n and the two coefficients an and an+1 in Eq. (5), to
obtain a ‘dual’ result of Lemma 5. Let G = (V,E) be a connected bridgeless graph. S ⊂ E
is said to be a pairwise-disconnecting set if |S| > 2 and the deletion of any two members
of S disconnects the graph.. The notion of pairwise-disconnecting set was introduced in
[1]. The following three statements on pairwise-disconnecting sets are all obvious.
ST1: Any k-edge connected graph (k > 3) does not contain any pairwise-disconnecting
set.
ST2: When |S| = 2, S is a pairwise-disconnecting set if and only if S is a 2-edge cut of
G.
ST3: Any subset with cardinality greater than 1 of a pairwise-disconnecting set S is also
a pairwise-disconnecting set.

Proposition 6. Let G = (V,E) be a connected bridgeless graph, S ⊂ E and |S| > 2.
Then the following are equivalent:
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• S is a pairwise-disconnecting set.

• S = {e1, e2, · · · , ek} is a set of edges in a cycle such that G−S = G1∪G2∪· · ·∪Gk

and each Gi (i = 1, 2, · · · , k) is connected, as shown in Fig. 1.

• k(G− S) = |S|.

Fig. 1: S = {e1, e2, · · · , ek} and G− S = G1 ∪G2 ∪ · · · ∪Gk and each Gi (i = 1, 2, · · · , k)
is connected.

Proof. We first prove that if k(G− S) = |S|, then all edges of S occur on a cycle of G as
shown in Fig. 1. It holds when |S| = 2 and now we suppose |S| > 3 and f ∈ S. Because
k(G − S) = |S| we have k(G − S + f) = |S − f | and f is a bridge of G − S + f . By
the inductive hypothesis the edges S − f occur on a cycle of G. Suppose that G becomes
G1, G2, · · · , G|S−f | when S− f is deleted. Then f belongs to some Gi and is also a bridge
of Gi. Hence, all edges of S occur on a cycle of G.

It is clear that if all edges of S occur on a cycle of G as shown in Fig. 1, then S is a
pairwise-disconnecting set.

Finally we prove that if S is pairwise-disconnecting set, then k(G−S) = |S|. It holds
when |S| = 2 and now we suppose |S| > 3 and f ∈ S. Then S − f is also a pairwise-
disconnecting set. By the inductive hypothesis we have k(G − S + f) = |S − f |. Let
g ∈ S − f . Then {f, g} is a 2-edge cut of G. Hence, f is a bridge of G − g and also a
bridge of G−S+f . Therefore, we have k(G−S) = k(G−S+f)+1 = |S−f |+1 = |S|.

A pairwise-disconnecting set SM is said to be maximal if no pairwise-disconnecting set
contains it as a proper subset. Note that maximal pairwise-disconnecting sets are exactly
nontrivial maximal series classes.

Proposition 7. Let G be a connected bridgeless graph. For any given pairwise-
disconnecting set S of G, there exists a unique maximal pairwise-disconnecting set SM
of G containing S.
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Proof. The existence follows from the definition of pairwise-disconnecting sets directly.
To prove the uniqueness, we suppose that there are two distinct maximal pairwise-
disconnecting sets S1

M and S2
M of G such that S ⊂ SiM (i = 1, 2). Let e, f ∈ S and

g ∈ S2
M −S1

M . Then {e, f} is a 2-edge cut of G. Suppose that G−e−f = G1∪G2. With-
out loss of generality we suppose that g ∈ E(G2). Since e, f, g ∈ S2

M , {e, g} is a 2-edge
cut of G, which implies that g must be a bridge of G2. We suppose that G2−g = G′2∪G′′2.
See Fig. 2 (a). Let h ∈ S1

M − e− f . We shall show that {h, g} is a 2-edge cut of G. Since
e, f, h ∈ S1

M , {e, h} is a 2-edge cut of G, which implies that h must be a bridge of G1 or
G2. There are two cases.
Case 1. h is a bridge of G1. Suppose that G1−h = G′1∪G′′1, then G−g−h is disconnected
as shown in Fig. 2 (b).
Case 2. h is a bridge of G2. Without loss of generality, we suppose that h ∈ G′2, then h is
also a bridge of G′2. Suppose that G′2−h = G′21∪G′22, then G− g−h is also disconnected
as shown in Fig. 2 (c).
Hence, S1

M ∪ {g} is a pairwise-disconnecting set, which contradicts the maximality of
S1
M .

Fig. 2: The proof of Proposition 7.

Lemma 8. Let G = (V,E) be a connected bridgeless graph with qr series classes. Then
in (5), n = −|E|+ |V | − 1 and

(1) an = (−1)|E|−|V |+1,

(2) an+1 = (−1)|E|−|V |+1(−|V |+ 1 + |E| − qr).
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Proof. Recall that

TG(−t,−t−1) =
∑
F⊆E

(−t− 1)k(F )−1(−t−1 − 1)|F |−|V |+k(F )

=
∑
F⊆E

(−1)|F |−|V |+1(1 + t)k(F )−1(t−1 + 1)|F |−|V |+k(F ).

It is clear that k(F )− 1 > 0. Thus we obtain

(1 + t)k(F )−1 = 1 + (k(F )− 1)t+

(
k(F )− 1

2

)
t2 + · · · .

Since |F |− |V |+k(F ) is the nullity of the subgraph (V, F ) of G = (V,E), 0 6 |F |− |V |+
k(F ) 6 |E| − |V |+ 1. Now

(t−1 + 1)|F |−|V |+k(F ) = t−(|F |−|V |+k(F )) + (|F | − |V |+ k(F ))t−(|F |−|V |+k(F )−1)

+

(
|F | − |V |+ k(F )

2

)
t−(|F |−|V |+k(F )−2) + · · · .

Note that G is connected and bridgeless, so |F | − |V | + k(F ) = |E| − |V | + 1 if
and only if F = E. Hence, n = −|E| + |V | − 1 and an = (−1)|E|−|V |+1. Furthermore,
|F | − |V | + k(F ) = |E| − |V | if and only if F = E − e for e ∈ E or, by Proposition 6
F = E − S, where S is a pairwise-disconnecting set of G. Thus,

an+1 = (−1)|E|−|V |+1(|E| − |V |+ 1) + (−1)|E|−|V ||E|+
∑
E−S

(−1)|E−S|−|V |+1

= (−1)|E|−|V |+1(−|V |+ 1) +
∑
E−SM

∑
S⊂SM

(−1)|E−S|−|V |+1

(By Proposition 7)

= (−1)|E|−|V |+1(−|V |+ 1 +
∑
SM

(|SM | − 1))

= (−1)|E|−|V |+1(−|V |+ 1 + |E| − qr).

Theorem 9. Let G = (V,E) be a connected bridgeless and loopless graph. Then, with
notation as above,

JG(t) = b0 + b1t+ b2t
2 + · · ·+ b|E|−2t

|E|−2 + b|E|−1t
|E|−1 + b|E|t

|E|, (6)

where (−1)|E|−ibi is a non-negative integer for i = 0, 1, 2, · · · , |E| and in particular,

b0 = (−1)|E|,

b1 = (−1)|E|(−|V |+ 1 + |E| − qr),

b|E|−2 =

(
qs − |V |+ 2

2

)
+ q̃s − tri,

b|E|−1 = |V | − 1− qs,
b|E| = 1.
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Proof. This follows from Theorems 1 and 3, and Lemmas 5 and 8.

Lemma 10. Let G be a connected plane graph. Then

JG(1) = (−1)|E|−|V |+1(−2)µ(G)−1, (7)

where µ(G) is the number of left-right paths of G (or equivalently, the number of cross-
ing circuits of the medial graph M(G) of G and the number of components of the link
represented by D(G)).

Lemma 10 follows from results by Martin [18] and Las Vergnas [16], see also [19]. In
fact, µ(G)− 1 is exactly the dimension of the bicycle space of G [20, 21].

3 Real and non-real zeros

Let G be a connected bridgeless and loopless graph with p vertices, q edges, and qs
parallel classes. Let zk = xk + iyk (k = 1, 2, · · · , q) be zeros of JG(t) of the graph G.
Then, according to Theorem 9, we have

(1) JG(t) =
∏q

k=1(t− zk).

(2) Let
∑

+ zk (resp.
∑
− zk) indicates the sum of those zk, k = 1, 2, · · · , q whose real

parts are positive (resp. negative). Then
∑

+ zk (resp.
∑
− zk) is a positive (resp.

negative) real number.

(3)
∑
zk = qs − p+ 1 > 0.

(4)
∏q

k=1 zk = 1.

Now we start to discuss the real and non-real zeros of the Jones polynomial of a graph.

Theorem 11. Let G be a connected bridgeless and loopless graph. Then

(1) JG(t) has no negative real zeros.

(2) JG(t) has no rational zeros.

Proof. Theorem 11 (1) follows directly from Theorem 3. Note that the extreme coefficients
of JG(t) are both±1, so by the Rational Root Theorem, only±1’s may be possible rational
roots. However 1 is not a zero by Lemma 10 and −1 is not a zero either by Theorem 11
(1). Thus Theorem 11 (2) holds.

Remark 12. The results in Theorem 11 on zeros of the Jones polynomial of knots and links,
i.e. the case of the Jones polynomial of a planar graph have been obtained previously.
See Theorem 3.1 in [25].

Corollary 13. Let G be a connected bridgeless and loopless graph. If the number of edges
of G is odd, then JG(t) has a (positive and irrational) real zero.
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It is natural to look for a small positive ε such that any z ∈ (0, ε) is not a zero of the
Jones polynomials of a graph. In the following we shall show such an ε does not exist.

Let Gn be the 3-regular planar graph shown in the upper part of Fig. 3. It is called
the Gustin current graph, see [7]. Note that Gn has 2n+ 2 vertices and 3n+ 3 edges. We
will show that for any ε > 0, there exists an integer n such that JGn(t) has a root in (0, ε).

Fig. 3: The graph Gn (upper) and the graph Hn (down)
.

Let NG(t) = (−1)|E|JG(t) = (−1)|E|+|V |−1t|E|−|V |+1TG(−t,−t−1). Then NG(t) can be
obtained using the following recurrence relations:

NG(t) =


1, if G = K1;
−tNG/e(t), if e is a bridge of G;
NG−e(t), if e is a loop of G;
−tNG−e(t) +NG/e(t), if e is not a bridge nor a loop of G.

Note that if G is bridgeless, NG(t) is a polynomial with constant term equal to 1, i.e.,
NG(0) = 1. Using this property, we see that NG(t) has a root in (0, a) if NG(a) < 0, and
a > 0.

Now we want to find an expression for NGn(t). For this purpose, we need to make use
of another two graphs Hn and Qn. Let Hn be the graph, shown in lower part of Fig. 3,
obtained from Gn by deleting the vertex v2n+2 and Qn be the graph obtained from Hn by
adding an edge parallel to the edge joining v2n−1 and v2n.
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Lemma 14.
NH1(t) = 1 + t2 − t3,

NH2(t) = 1− t+ t2 − t3 + t4 + t2(1− t)NH1(t),

and for n > 3, we have

NHn(t) = (1− t)(1 + t2)NHn−1(t) + t3NHn−2(t). (8)

Proof. For convenience let hn = NHn(t) and qn = NQn(t). Note that H1 is actually K3

and so we have h1 = 1 + t2 − t3. When n > 2, we have

hn = (t2 − t3)hn−1 + qn−1

and
qn = t2hn−1 − thn + qn−1.

It is easy to check that q1 = 1− t+ t2− t3 + t4. Thus h2 = 1− t+ t2− t3 + t4 + t2(1− t)h1.
For n > 2, we have

hn+1 − hn = t2(1− t)(hn − hn−1) + (qn − qn−1)

= t2(1− t)(hn − hn−1) + t2hn−1 − thn,

implying that
hn+1 = (1− t)(1 + t2)hn + t3hn−1.

Lemma 15. For n > 3,

NGn(t) = (1− t)2NGn−1(t)− t2NGn−2(t)− t3NHn(t)− t5NHn−1(t).

Proof. We write gn for NGn(t). For i = 1, 2, let ei be the edge joining vertices v2n+2 and
v2n−2+i. Then for n > 2,

gn = NGn/e1/e2(t)− tN(Gn−e1)/e2(t)− tN(Gn/e1)−e2(t) + t2NGn−e1−e2(t).

Note that NGn/e1/e2(t) = gn−1, NGn−e1−e2(t) = −tNHn(t) and N(Gn−e1)/e2(t) =
N(Gn/e1)−e2(t) = NTn(t), where Tn is the graph obtained from Hn by adding an edge
joining v2n and v2n+1. Thus

gn = gn−1 − 2tNTn(t)− t3hn.

For n > 2, we also have

NTn(t) = NTn/e3(t)− tNTn−e3(t)

= gn−1 + t2N(Tn−e3)/e4(t)

= gn−1 + t2(NTn−1(t) + t2hn−1),
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implying that NTn(t)− t2NTn−1(t) = gn−1 + t4hn−1, where e3 is the edge joining v2n−1 and
v2n and e4 is the edge joining v2n−1 and v2n−3. Hence, for n > 2, we have

gn+1 − t2gn = gn − 2tNTn+1(t)− t3hn+1 − t2(gn−1 − 2tNTn(t)− t3hn)

= gn − t3hn+1 − t2(gn−1 − t3hn)− 2t(NTn+1(t)− t2NTn(t))

= gn − t3hn+1 − t2(gn−1 − t3hn)− 2t(gn + t4hn),

implying that
gn+1 = (1− t)2gn − t2gn−1 − t3hn+1 − t5hn.

Lemma 14 implies that NHn(t) > 0 for all n > 1 when t ∈ (0, 1). So, by Lemma 14,
for all n > 3,

NHn(t) > (1− t)NHn−1(t),

implying that
NHn(t) > (1− t)n−2NH2(t)

and of course
NHn(t) + t2NHn−1(t) > (1− t)n−2NH2(t).

Lemma 16. For any t ∈ (0, 1), there exists m such that NGm(t) < 0.

Proof. Let t ∈ (0, 1) be fixed. Suppose that the result fails. Thus gn > 0 for all n. Then,
by Lemma 15, for all n > 3,

gn 6 (1− t)2gn−1 − t3hn − t5hn−1

6 (1− t)2gn−1 − t3(1− t)n−2h2,

implying that

gn 6 (1− t)2(n−2)g2 − t3h2

n−2∑
i=1

(1− t)2(n−2−i)(1− t)i

= (1− t)2(n−2)g2 − t3(1− t)n−2h2

n−2∑
i=1

(1− t)n−2−i

= (1− t)2(n−2)g2 − t2(1− t)n−2h2(1− (1− t)n−2)

= (1− t)n−2
(
(1− t)n−2(g2 + t2h2)− t2h2

)
,

where the last expression will be negative when n is sufficiently large because t2h2 > 0, a
contradiction.

Theorem 17. For any 0 < ε < 1, there is an integer m > 0 such that NGm(t) has a zero
in (0, ε).

Proof. Note that NGn(0) = 1 for all n > 1. By Lemma 16, there is an integer m such
that NGm(ε) < 0. Thus the polynomial NGm(t) has a zero in (0, ε).
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In Lemma 14, if we assume the linearly recursive relation (8) holds for n = 2, then
NH0(t) = 1. The characteristic equation of the linearly recursive relation (8) is

x2 − (1− t)(1 + t2)x− t3 = 0.

For any fixed real t > 1, it has two non-equal solutions L1 and L2:

L1(t) =
1

2
[(1− t)(t2 + 1) +

√
t6 − 2t5 + 3t4 + 3t2 − 2t+ 1]

L2(t) =
1

2
[(1− t)(t2 + 1)−

√
t6 − 2t5 + 3t4 + 3t2 − 2t+ 1].

Thus, there exist A(t) and B(t) such that for all n > 0,

NHn(t) = A(t)[L1(t)]n +B(t)[L2(t)]n.

By the given condition on NH0(t) and NH1(t), it is easy to find A(t) and B(t):

A(t) =
1 + t2 − t3 − L2(t)

L1(t)− L2(t)
; B(t) = −1 + t2 − t3 − L1(t)

L1(t)− L2(t)
.

Now we claim:
For any real t > 1, A(t) > 0, B(t) > 0, L1(t) > 0 and L2(t) < 0.
The above claim is shown. As an example, we show that B(t) > 0. It is clear that

L1(t)− L2(t) > 0 for t > 1. So B(t) > 0 if and only if L1(t)− (1 + t2 − t3) > 0. Observe
that

L1(t)− (1 + t2 − t3) =
1

2

(
t3 − t2 − t− 1 +

√
t6 − 2t5 + 3t4 + 3t2 − 2t+ 1

)
and

t3 − t2 − t− 1 +
√
t6 − 2t5 + 3t4 + 3t2 − 2t+ 1

= (t− 1)2(t+ 1)− 2 +
√
t6 − 2t5 + 3t4 + 3t2 − 2t+ 1

= (t− 1)2(t+ 1)− 2 +
√

4 + (t− 1)(t5 − t4 + 2t3 + 2t2 + 5t+ 3)

> (t− 1)2(t+ 1)− 2 +
√

4

> 0

for t > 1.
Since L1(t) + L2(t) = (1 − t)(1 + t2) < 0, L1(t) > 0 and L2(t) < 0 for t > 1, we have

L2(t)
L1(t)

< −1. Hence, for any fixed t > 1,

NHn(t) = A(t)[L1(t)]n +B(t)[L2(t)]n

= [L1(t)]n
[
A(t) +B(t)

(
L2(t)

L1(t)

)n]
< 0

for all sufficiently large odd n. In addition, by Lemma 14, it is easy to prove NHn(1) = 1
for all n > 0. Thus,
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Theorem 18. For any ε > 0, there exists an integer m such that for all odd n > m,
NHn(t) has a real zero in (1, 1 + ε).

Remark 19. By Theorem 2, for any small ε, there is a real zero of a Jones polynomial in
(1− ε, 1) and for any large M > 0, there is a real zero in (M,+∞).

Now we consider non-real zeros of Jones polynomials.

Theorem 20. Let G be a connected bridgeless and loopless nontrivial graph with notations
above. If

tri <

(
qs − p+ 2

2

)
+ q̃s −

q − 1

2q
(p− 1− qs)2,

then JG(t) has a non-real zero.

Proof. Theorem 20 follows from the following theorem (see [8]): let f(x) =
∑n

k=0 akx
k =

anx
n + an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0 be a polynomial of degree n > 2 with real

coefficients, a necessary condition for all zeros of f(x) to be real is k
n−k+1

n−k
k+1

a2
k−ak−1ak+1 >

0 for each k = 1, 2, · · · , n − 1. Taking k = n − 1, if n−1
2n
a2
n−1 − anan−2 < 0 which is

equivalent to the condition in Theorem 20 for JG(t) via Theorem 9, then JG(t) has a
non-real zero.

Corollary 21. Let G be a connected bridgeless simple triangle-free non-trivial graph.
Then JG(t) has a non-real zero.

Proof. In this case the parallel reduction of G is itself, qs = q and q̃s = 0. Note that
c(G) = q − p+ 1 > 0 since G is bridgeless and non-trivial. Thus,(

qs − p+ 2
2

)
+ q̃s −

q − 1

2q
(p− 1− qs)2

=

(
c(G) + 1

2

)
− q − 1

2q
c2(G)

=
1

2q
c2(G) +

c(G)

2
> 0.

By Theorem 20, Corollary 21 holds.

4 Complex bounds

In this section, we consider lower and upper bounds for r(G).

Theorem 22. Let G be a connected bridgeless and loopless graph with p vertices, q edges,
qs parallel classes and q̃s nontrivial parallel classes. Let ∆ = (q − 1)2(qs − p + 1)2 −

2q(q− 1)

[(
qs − p+ 2

2

)
+ q̃s − tri

]
, where tri is the number of triangles of the parallel

reduction of G. Then
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(1) JG(t) has a root z whose real part is at least qs−p+1
q

+
√

∆
q(q−1)

if ∆ > 0;

(2) JG(t) has two (not necessarily distinct) roots z1 and z2 such that the real part of z1

is at least qs−p+1
q

and the imaginary part of z2 is at least
√
−∆

q(q−1)
if ∆ < 0.

Proof. Note that in (6), bq = 1,bq−1 = (p− 1− qs) and bq−2 =

(
qs − p+ 2

2

)
+ q̃s − tri.

Consider the (q − 2)th derivative of JG(t). We obtain

1

(q − 2)!
J

(q−2)
G (t) =

q(q − 1)

2
t2 − (q − 1)(qs − p+ 1)t+ bq−2.

Then qs−p+1
q

+
√

∆
q(q−1)

is one of the roots of the above quadratic. Lucas’s theorem states

that if f is a nonconstant polynomial, then the roots of the derivative f ′ lie in the convex
hull of the roots of f . It follows that the theorem holds.

As a direct consequence, we have:

Corollary 23. Let G = (V,E) be a connected bridgeless and loopless graph with qs parallel
classes. Then

r(G) >
qs − |V |+ 1

|E|
. (9)

Finally we try to find an upper bound. Let G = (V,E) be a graph. Assign to each
edge e ∈ E a complex weight ve. Let ZG(q, {ve}) be the Potts model partition function,
i.e.

ZG(q, {ve}) =
∑
F⊂E

qk(F )
∏
e∈F

ve, (10)

where the summation is over all subsets of E, and k(F ) is the number of components of
the spanning subgraph of G with edge set F .

In [22], Sokal proved the following important result (Corollary 5.2) on zeros of the
Potts model partition function:

Theorem 24. Let G = (V,E) be a loopless graph of maximum degree 6 r, equipped with
complex edge weights {ve}e∈E satisfying |1 + ve| 6 1 for all e. Let vmax = maxe∈E |ve|.
Then all the zeros of ZG(q, {ve}) lie in the disc |q| < C(r)vmax, where C(r) < Kr with
K 6 7.963907.

Remark 25. In [12], the upper bound of the value ofK has been improved to approximately
6.907652.

Lemma 26. Let G = (V,E) be a connected graph. Then

JG(t) = t|E|+1(1 + t)−|V |−1ZG(t+ 2 + t−1,−t−1 − 1). (11)
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Proof. From the rank-generating form of the Tutte polynomial [2], we obtain

JG(t) = (−1)|V |−1t|E|−|V |+1
∑
F⊂E

(−t− 1)k(F )−1(−t−1 − 1)|F |−|V |+k(F )

= t|E|−|V |+1(1 + t)−1
∑
F⊂E

(−1)|F |(t+ 1)k(F )(t−1 + 1)|F |−|V |+k(F )

= t|E|−|V |+1(t+ 1)−1
∑
F⊂E

(−1)|F |(t+ 2 + t−1)k(F )(t−1 + 1)|F |−|V |

= t|E|−|V |+1(t+ 1)−1(t−1 + 1)−|V |
∑
F⊂E

(t+ 2 + t−1)k(F )(−t−1 − 1)|F |

= t|E|+1(1 + t)−|V |−1ZG(t+ 2 + t−1,−t−1 − 1).

Theorem 27. Let G = (V,E) be a connected bridgeless and loopless graph of maximum
degree ∆G. Let z be any complex zero of JG(t). Then |z + 1| < 6.907652∆G.

Proof. By Lemma 26, it suffices to show that any zero z of ZG(t + 2 + t−1,−t−1 − 1)
satisfies |z + 1| < 6.907652∆G. Let z be any fixed zero of ZG(t + 2 + t−1,−t−1 − 1).
Note that ∆G > 2, hence if |z| 6 1, it is clear that |z + 1| < 6.907652∆G. Now we
suppose that |z| > 1. Note that |z| > 1 implies that | − z−1| 6 1. By Theorem 24 and
the following Remark 25, we have |z + 2 + z−1| < 6.907652∆G| − z−1 − 1|, which implies
|z + 1| < 6.907652∆G.

Corollary 28. Let G be a connected bridgeless and loopless graph of maximum degree
∆G. Then

r(G) < 1 + 6.907652∆G. (12)

We have mentioned in the introduction that if we restrict JG(t) to connected plane
graphs, we obtain the Jones polynomial of the corresponding alternating links up to a
factor ±tk for some k. See Eq. (2). In this case Theorem 11 will reduce to a (partial)
result of Theorem 3.1 in [25].

Let L be a connected reduced (equivalently, the corresponding checkerboard graph is
bridgeless and loopless) alternating link with N crossings, λ1,λ2,· · · ,λN be zeros of VL(t)
(treated as a polynomial in the common sense such that VL(0) 6= 0) and let ‖ L ‖=
|λ1|+ |λ2|+ · · ·+ |λN |. In [17], X.-S. Lin claimed that ‖ L ‖> N and posed the following
conjecture:

Conjecture 29. ‖ L ‖ has an upper bound in the order of N1+ε.

Some experimental data on some families of alternating links in favor of the conjecture
have been given by X.-S. Lin himself in [17] and the conjecture also holds for an alternating
link whose positive checkerboard graph can be obtained from a connected plane graph
by subdividing some of its edges uniformly and the times of subdivision are large enough
[13]. Now we apply Corollary 28 to provide more evidence for the conjecture.
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Suppose that L is a connected reduced link diagram and its corresponding positive
checkerboard graph isG which is connected, bridgeless and loopless. Note that the number
N of crossings of L is exactly the number of edges of G. Then

Corollary 30. For any fixed ε > 0, if N = |E(G)| > (1 + 7∆G)
1
ε , then ‖ L ‖< N1+ε.

A connected plane graph with a fixed maximum degree and edge number large enough
exists widely. For example, the dual of a triangulation (i.e. maximal planar graph) is
3-regular and the number of its edges can be large enough, the cylindrical square lattice
Pm × Cn whose maximum degree is 4 and edge number is (2m − 1)n. In the case of
Pn+1

2
× Cn, it corresponds exactly to the ‘weaving’ knot Jn in [17].

5 Concluding remarks

It is known (see [11, 26]) that no graph has a root of its chromatic polyno- mial in
(−∞, 0)∪(0, 1)∪(1, 32/27], and that for any λ > 32/27, there is a graph whose chromatic
polynomial has a real root arbitrary close to λ. It is natural to pose the following problem
for further consideration.

Open Problem 31. Characterize other zero-free intervals of Jones polynomials of con-
nected bridgeless and loopless graphs in the real axis or prove that real zeros of Jones
polynomials of connected bridgeless and loopless graphs are dense in the positive real axis.

Open Problem 32. Does there exist a connected bridgeless and loopless graph G such
that all the zeros of JG(t) are real?

By now, we have not found a connected bridgeless and loopless graph for which all
the zeros of the Jones polynomial are real.

Acknowledgements

We thank Profs. Fuji Zhang and Yichao Chen for some helpful discussions.

References

[1] T. Albertson. The twist numbers of graphs and the Tutte polynomial. See http:

//www.math.csusb.edu/reu/ta05.pdf

[2] B. Bollobás. Modern Graph Theory. Springer, Berlin, 1998.

[3] J. I. Brown. On the roots of chromatic polynomials. J. Combin. Theory Ser. B,
72(2):251–256, 1998.

[4] A. Champanerkar and L. Kofman. On the Mahler measure of Jones polynomials
under twisting. Algebr. Geom. Topol., 5:1–22, 2005.

[5] S.-C. Chang and R. Shrock.Zeros of Jones polynomials for families of knots and links.
Physica A, 301:196–218, 2001.

the electronic journal of combinatorics 22(3) (2015), #P3.23 16

http://www.math.csusb.edu/reu/ta05.pdf
http://www.math.csusb.edu/reu/ta05.pdf


[6] O. Dasbach and X.-S. Lin. A volumish theorem for the Jones polynomial of alter-
nating knots.Pacific J. Math., 231:279–291, 2007.

[7] J. L. Gross and T. W. Tucker. Topological Graph Theory. John Wiley & Sons, 1987.

[8] G. H. Hardy, J. E. Littlewood, and G. Polyá. Inequalitites. Cambridge University
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polyominoes and graphical recombination patterns. J. Math. Chem., 49(1):79–94,
2011.

[11] B. Jackson. A zero-free interval for chromatic polynomials of graphs.Combin. Probab.
Comput., 2:325–336, 1993.

[12] B. Jackson, A. Procacci, and A. D. Sokal. Complex zero-free regions at large |q| for
multivariate Tutte polynomials (alias Potts-model partition functions) with general
complex edge weithts.J. Combin. Theory Ser. B, 103(1):21–45, 2013.

[13] X. Jin and F. Zhang. Zeros of the Jones polynomial for multiple crossing-twisted
links. J. Stat. Phys., 140:1054–1064, 2010.

[14] X. Jin, F. Zhang, F. Dong, and E. G. Tay. Zeros of the Jones polynomial are dense
in the complex plane.Electron. J. Comb., 17(1):R94, 2010.

[15] V. F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bull.
Amer. Math. Soc., 12:103–111, 1985.

[16] M. Las Vergnas. Eulerian circuits of 4-valent graphs imbedded in surfaces. In Alge-
baraic Methods in Graph Theory,Colloquia Mathematica Societais Jànos Bolyai, Vol.
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