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Abstract

We consider a model for complex networks that was introduced by Krioukov et
al. In this model, N points are chosen randomly inside a disk on the hyperbolic plane
and any two of them are joined by an edge if they are within a certain hyperbolic
distance. The N points are distributed according to a quasi-uniform distribution,
which is a distorted version of the uniform distribution. The model turns out to
behave similarly to the well-known Chung-Lu model, but without the independence
between the edges. Namely, it exhibits a power-law degree sequence and small
distances but, unlike the Chung-Lu model and many other well-known models for
complex networks, it also exhibits clustering.

The model is controlled by two parameters α and ν where, roughly speaking,
α controls the exponent of the power-law and ν controls the average degree. The
present paper focuses on the evolution of the component structure of the random
graph. We show that (a) for α > 1 and ν arbitrary, with high probability, as the
number of vertices grows, the largest component of the random graph has sublinear
order; (b) for α < 1 and ν arbitrary with high probability there is a “giant”
component of linear order, and (c) when α = 1 then there is a non-trivial phase
transition for the existence of a linear-sized component in terms of ν.

Keywords: random graphs on the hyperbolic plane; component structure; giant
component; phase transition.
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1 Introduction

The term “complex networks” describes a class of large networks which exhibit the fol-
lowing fundamental properties:

1. they are sparse, that is, the number of their edges is proportional to the number of
nodes;

2. they exhibit the small world phenomenon: almost all pairs of vertices that are in
the same component are within a short distance from each other;

3. clustering is present: two nodes of the network that have a common neighbour are
somewhat more likely to be connected with each other;

4. their degree distribution is scale free. This means that its tail follows a power law.
There has been extensive experimental evidence (see for example [2]) which suggests
that many networks that emerge in applications have a degree distribution whose
tail follows a power law with exponent between 2 and 3.

The books of Chung and Lu [10] and of Dorogovtsev [7] are excellent references for a
detailed discussion of these properties.

During the last 15 years a number of models have been developed in a series of attempts
to capture these features. Among the first such models is the preferential attachment
model. This is a class of models of randomly growing graphs whose aim is to capture a basic
feature of such networks: nodes which are already popular tend to become more popular as
the network grows. It was introduced by Barabási and Albert [2] and subsequently defined
and studied rigorously by Bollobás, Riordan and co-authors (see for example [6], [5]).

Another extensively studied model was defined by Chung and Lu [8], [9]. Here every
vertex has a weight which effectively corresponds to its expected degree and every two
vertices are joined independently of every other pair with probability that is proportional
to the product of their weights. If these weights follow a power-law distribution, then it
turns out that the resulting random graph has power-law degree distribution. This model
is a special case of an inhomogeneous random graph.

All these models have their shortcomings. Namely, none of them succeeds in incor-
porating all the above features. For example, the Chung–Lu model exhibits a power law
degree distribution (provided the weights of the vertices are suitably chosen) and average
distance of order O(log logN) (when the exponent of the power law is between 2 and 3,
see [8]), but it does not exhibit clustering. This is also the situation in the Barabási-Albert
model.

In the case of the Chung-Lu model the absence of clustering is essentially due to the
fact that pairs of vertices form edges independently. On the contrary, the presence of
clustering requires the edges not to appear independently. If two edges share a common
endvertex, then the probability that their other two endvertices are joined must be higher
compared to that where we assume nothing about these edges. This property is naturally
present in random graphs that are created over metric spaces, such as random geometric
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graphs. In this context, the vertices are a random set of points in a given metric space
and any two of them are adjacent if their distance is smaller than a certain distance.

Recently Krioukov et al. [19] introduced a model which naturally exhibits these typical
features. In this model, a random network is created on the hyperbolic plane (we will see
the detailed definition shortly). In particular, Krioukov et al. [19] determined the degree
distribution showing that it is scale free and its tail follows a power law, whose exponent is
determined by one of the parameters of the model. The exponent can take any value that
is at least 2. Furthermore, they consider the clustering properties of the resulting random
network. A numerical approach in [19] suggests that the (local) clustering coefficient is
positive and it is determined by one of the parameters of the model. These characteristics
have been verified rigorously by Gugelmann, Panagiotou and Peter [12].

The basic hypothesis of Krioukov et al. [19] was that the hyperbolic geometry underlies
complex networks. In particular, the heterogeneity of the nodes, whose expression is
the power law degree distribution, is in fact the expression of an underlying hyperbolic
geometry. Complex networks do exhibit some sort of hierarchy in the sense that their
nodes/members form groups which are further organised into subgroups etc. Thus, there
is a hidden tree-like structure and the hyperbolic geometry is the natural space which can
accommodate such a structure.

The aim of the present work is the study the component structure of such a random
graph and more specifically the number of vertices that are contained in a largest compo-
nent of the graph. One of our main findings is that for the range of the parameters of the
random graph model where the exponent of the power law is larger than 3, the random
graph typically consists of many relatively small components, no matter how large the
average degree of the graph is. This is in sharp contrast with the classical Erdős-Rényi
model (see [3]) as well as with the situation on random geometric graphs on Euclidean
spaces (see [20]) where the dependence on the average degree is crucial. However, we
show that the structure of the random geometric graph is significantly different when
the exponent of the power law is smaller than 3. In fact, we show that in this case a
giant component exists with high probability, that is, a component containing a positive
fraction of the vertices of the random graph.

1.1 The model

We start by recalling some facts about the hyperbolic plane H. The hyperbolic plane
is an unbounded surface of constant negative curvature −1. There are several ways to
represent it in two dimensions, including the half-plane model, the Beltrami-Klein disk
model and the Poincaré disk model. In the Poincaré disk model, we equip the unit
disk D := {(x, y) ∈ R

2 : x2 + y2 < 1} with the metric determined1 by the differential

form ds2 = 4 dx2+dy2

(1−x2−y2)2
. The book of Stillwell [22] covers the basic theory of hyperbolic

geometry. In this paper we find it helpful to draw pictures in the native model of H.
This is obtained from the Poincaré disk model by multiplying each point (x, y) ∈ D by

1This means that the length of a curve γ : [0, 1] → D is given by
∫ 1

0

√
(γ′

1
(t))2+(γ′

2
(t))2

1−γ2

1
(t)−γ2

1
(t)

dt.
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a scalar that equals the ratio of the distance to the origin in the hyperbolic metric, over
the distance to the origin in the euclidean metric (in the case of the origin itself we define
this ratio to equal one). This produces a model of H that fills all of R2. It lacks many of
the properties that make the classical models of H elegant to work with, but it does allow
us to see more detail in visualizations of the graph model we are about to introduce. To
the best of our knowledge the native model was first introduced by Krioukov et al. [19].

Basic facts about H that we will rely on heavily in the paper are that in H a disk
of radius r (i.e. the set of points at hyperbolic distance at most r from a given point)
has area equal to 2π(cosh(r) − 1) and circumference length equal to 2π sinh(r). Another
important fact that we will rely on in the paper is the hyperbolic cosine rule. It states that
if A,B,C are distinct points on the hyperbolic plane, and we denote by a the distance
between B,C, by b the distance between A,C, by c the distance between A,B and by γ the
angle (at C) between the shortest AC- and BC-paths, then cosh(c) = cosh(a) cosh(b) −
cos(γ) sinh(a) sinh(b).

We are now ready to introduce the model we will be studying in this paper. We will
name it the Krioukov-Papadopoulos-Kitsak-Vahdat-Boguñá-model, after its inventors.
For convenience we will abbreviate this to KPKVB-model throughout the rest of the
paper. The model has three parameters: the number of vertices N , which we think of as
large, and α, ν > 0 which we think of as fixed. Given N, ν, α, we compute R := 2 log(N/ν).
We now select N points independently at random from the disk of radius R centred at the
origin O, which we denote by DR, according to the following probability distribution. If
the random point u has polar coordinates (r, θ), then θ, r are independent, θ is uniformly
distributed in (0, 2π] and the probability distribution of r has density function given by:

ρ(r) =

{

α sinhαr
coshαR−1

if 0 6 r 6 R,

0 otherwise.
(1.1)

Note that when α = 1, then this is simply the uniform distribution on DR.
An alternative way to view this distribution is as follows. If we multiply the differen-

tial form in the Poincaré disk model by a factor 1/α2 then we obtain (a model of) the
hyperbolic plane Hα of curvature −α2. It can be seen that the above probability distribu-
tion corresponds precisely to a point taken uniformly at random from the disk of radius
R around the origin in Hα. (We however treat these points as points of the ordinary
hyperbolic plane.) The set of N points we have thus obtained will be the vertex set of our
random graph and we denote it by VN . The KPKVB-random graph, denoted G(N ;α, ν),
is formed when we join each pair of vertices, if and only if they are within (hyperbolic)
distance R. Figure 1 shows an example of such a random graph on N = 1000 vertices.

We should mention that Krioukov et al. in fact had an additional parameter ζ in
their definition of the model. In their definition, the points were taken inside a disk of
radius Rζ := (2/ζ) log(N/ν) on the hyperbolic plane Hζ of curvature −ζ2, and the points
were generated according to (1.1) with Rζ in place of R. In this case the random graph
is denoted by G(N ; ζ, α, ν). However, it turns out that there is no need for the extra
parameter ζ. The following lemma, which we prove in Appendix A, shows that we can
take ζ = 1 without any loss of generality. We remind the reader that a coupling of two

the electronic journal of combinatorics 22(3) (2015), #P3.24 4



Figure 1: Simulation of the KPKVB-model with N = 1000, α = .9, ν = 2. (Depicted in
the native model.)

random objects X, Y is a common probability space for a pair of objects (X ′, Y ′) whose
marginal distributions satisfy X ′=d X, Y ′=d Y .

Lemma 1.1. Let α, α′, ζ, ζ ′ > 0 be such that ζ/α = ζ ′/α′. For every ν and N ∈ N,
there exists a coupling between G(N ; ζ, α, ν) and G(N ; ζ ′, α′, ν) such that G(N ; ζ, α, ν) =
G(N ; ζ ′, α′, ν).

Thus, the previous lemma states that one can define G(N ; ζ, α, ν) and G(N ; ζ ′, α′, ν) on
a common probability space in such a way that the two graphs are isomorphic (with
probability one). Let us also remark that edge-set of G(N ;α, ν) is decreasing in α and
increasing in ν in the following precise sense.

Lemma 1.2. Let α, α′, ν, ν ′ > 0 be such that α > α′ and ν 6 ν ′. For every N ∈ N, there
exists a coupling such that G(N ;α, ν) is a subgraph of G(N ;α′, ν ′).

The proof of Lemma 1.2 is given in Appendix B.
Krioukov et al. [19] focus on the degree distribution of G(N ;α, ν), showing that when

α > 1
2

this follows a power law with exponent 2α + 1. They also discuss clustering on
a smooth version of the above model. Their results have been verified rigorously by
Gugelmann et al. [12]. Note that when α = 1, that is, when the N vertices are uniformly
distributed in DR, the exponent of the power law is equal to 3. When 1

2
< α < 1, the

exponent is between 2 and 3, as is the case in a number of networks that emerge in
applications such as computer networks, social networks and biological networks (see for
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example [2]). They have also shown that the average degree of the random graph can be
“tuned” through the parameter ν.

Throughout the paper, we will be using the notion of the type of a vertex. For a vertex
u ∈ VN , its type tu is defined to be equal to R − ru where ru is the radius of u in DR.
Similarly, a point p ∈ DR of radius rp has type tp = R− rp. We note the following lemma,
making it easier to work with the distribution of the types.

Lemma 1.3. Uniformly for 0 6 t < 0.99R we have

ρ̄(t) := ρ(R− t) = (1 + oR(1))αe−αt. (1.2)

Proof. Using the pdf in Equation 1.1, we get

ρ(R− t) = α
sinh(α(R− t))

cosh(αR) − 1
= α

eα(R−t) − e−α(R+t)

2

2

eαR + e−αR − 2

= α
eα(R−t) − e−α(R+t)

eαR + e−αR − 2
= α

(1 + o(1))eα(R−t)

(1 + o(1))eαR

= (1 + o(1))αe−αt.

1.1.1 G(N ;α, ν) and the Chung-Lu model

The notion of inhomogeneous random graphs was introduced by Söderberg [21] but was
defined more generally and studied in great detail by Bollobás, Janson and Riordan in [4].
In its most general setting, there is an underlying compact metric space S equipped with a
measure µ on its Borel σ-algebra. This is the space of types of the vertices. A kernel κ is a
bounded real-valued, non-negative function on S×S, which is symmetric and measurable.
It is assumed that the vertices of the random graph are points in S. If x, y ∈ S, then the
corresponding vertices are joined with probability that is equal to κ(x,y)

N
∧ 1, where N is

the total number of vertices, independently of every other pair. The points that are the
vertices of the graph are approximately distributed according to µ. More specifically, the
empirical measure induced by the N points converges weakly to µ as N → ∞.

Of particular interest is the case where the kernel function can be factorised and can
be written as κ(x, y) = t(x)t(y) – this is called a kernel of rank 1. Here, the function t(x)
represents the weight of a vertex of type x and, in fact, it is approximately its expected
degree. The special case where t(x) follows a distribution that has a power law tail was
considered by Chung and Lu in a series of papers [8], [9] (see also [14]).

In the random graph G(N ;α, ν) the probability that two vertices are adjacent has this
form. The proof of this fact relies on Lemma 2.1, which we will state and prove later.
This provides an approximate characterization of what it means for two points u, v to
have hyperbolic distance at most R in terms of their relative angle, which we denote by
θu,v.

As we shall see later in Lemma 2.1, two vertices u and v of types tu and tv are within
distance R (essentially) if and only if θu,v < 2νetu/2etv/2/N . Hence, conditional on their
types the probability that u and v are adjacent is proportional to etu/2etv/2/N .
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But Lemma 1.3 shows that the type of a vertex is approximately exponentially dis-
tributed. Thus, if we set t(u) = etu/2, then P(t(u) > x) = P(tu > 2 ln x) ≍ e−2α lnx =
1/x2α. In other words, the distribution of t(u) has a power-law tail with parameter 2α+1.
Thus, the random graph G(N ;α, ν) can be seen as a dependent version of the Chung-Lu
model that emerges naturally from the hyperbolic geometry of the underlying space. The
fact that this is a random geometric graph gives rise to the existence of local clustering,
which is missing in the Chung-Lu model. There, most vertices have tree-like neighbour-
hoods.

In fact, it can shown that the degree of a vertex u in G(N ;α, ν) that has type tu is
approximately distributed as a Poisson random variable with parameter proportional to
etu/2.

1.2 Component structure of G(N ;α, ν)

This paper focuses on the component structure of G(N ;α, ν) and, in particular, the size
of its largest component. We denote by |L1| the size of a largest connected component of
G(N ;α, ν).

Among the key findings of Erdős and Rényi on the theory of random graphs is the
emergence of a component of linear order in a uniformly chosen random graph on N
vertices and M edges, usually denoted by G(N,M). Erdős and Rényi [13] showed that
N/2 is the critical number of edges for the appearance of a component whose number of
vertices is proportional to N . That is, with probability 1−o(1), if M

N
< 1−ε

2
, for ε > 0, then

every component of G(N,M) contains at most C lnN vertices, for some C = C(ε) > 0,
but if M

N
> 1+ε

2
, then there exist constants c1, c2 depending on ε such that the largest

component of G(N,M) has at least c1N vertices whereas every other component contains
at most c2 lnN vertices. In the latter case, the largest component is also known as the
giant component. See [3] or [16] for a detailed exposition and analysis of the emergence
of the giant component.

For (euclidean) random geometric graphs it is known that there exists a critical value
c for the average degree such that the size of the biggest component is sublinear if the
expected average degree is less than c and linear for expected average degree greater than
c. The exact value of c remains unknown. For more information on giant components in
random geometric graphs see [20].

In this contribution, we show that when α crosses 1 a “phase transition” occurs. More
specifically, if α > 1, then asymptotically almost surely (a.a.s.), that is, with probability
1 − o(1) as N → ∞, |L1| is bounded by a function which is sublinear in N , whereas if
α < 1, then |L1| is proportional to N .

Theorem 1.4. Let α, ν be positive real numbers. The following hold:

• if α > 1, then a.a.s. |L1| < 8R2 log3 R N1/α.

• if α < 1, then there exists c = c(α, ν) > 0 such that a.a.s. |L1| > cN .

Recently, Kiwi and Mitsche [18] showed that the second largest component is in fact
at most poly-logarithmic in N , and at least logarithmic in N .
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Figure 2: Sets of the points of distance R from certain points. (Depicted in the native
model.)

The previous theorem shows there is a phase-change at α = 1. The next result shows
that inside this phase-change, when α = 1, the existence or not of a giant component
depends on the value of ν.

Theorem 1.5. Assume that α = 1. There exist constants π
8
6 ν0 6 ν1 6 20π such that

the following hold:

• If ν < ν0, then a.a.s. |L1| 6 N
log logR

.

• If ν > ν1, then a.a.s. |L1| > N/610.

We now proceed with some auxiliary results and the proof of the above theorems.

2 Auxiliary results

We start by deriving some tools that help to approximate the probability that two points
are adjacent in the graph. Let us first remark that the shape of the set of all point of DR

within distance R of a given point varies greatly depending on the type of the point. See
Figure 2 for a depiction.

In particular, when the type of the point is small, then the set of points of DR at
distance R from it resembles a “long and very thin balloon” in the native model. The
following lemma is crucial to many computations in the paper.

Lemma 2.1. For any ε > 0 there exists an N0 > 0 and a c0 > 0 such that for any
N > N0 and u, v ∈ DR with tu + tv < R− c0 the following hold.

• If θu,v < 2(1 − ε) exp
(

1
2
(tu + tv −R)

)

, then d(u, v) < R.

• If θu,v > 2(1 + ε) exp
(

1
2
(tu + tv −R)

)

, then d(u, v) > R.
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Proof. We begin with the hyperbolic law of cosines:

cosh(d(u, v)) = cosh(R− tu) cosh(R− tv)

− sinh(R− tu) sinh(R− tv) cos(θu,v).

The right-hand side of the above becomes:

cosh(R− tu) cosh(R− tv) − sinh(R− tu) sinh(R− tv) cos(θu,v)

=
e2R−(tu+tv)

4

[(

1 + e−2(R−tu)
) (

1 + e−2(R−tv)
)

−
(

1 − e−2(R−tu)
) (

1 − e−2(R−tv)
)

cos(θu,v)
]

=
e(2R−(tu+tv))

4

[

1 − cos(θu,v) + (1 + cos(θu,v))
(

e−2(R−tu) + e−2(R−tv)
)

+O
(

e−2(2R−(tu+tv))
)]

.

(2.1)

Therefore,

cosh(d(u, v)) 6

e(2R−(tu+tv))

4

[

1 − cos(θu,v) + 2
(

e−2(R−tu) + e−2(R−tv)
)

+ O
(

e−2(2R−(tu+tv))
)]

.

Since tu + tv < R − c0, the last error term is O(N−4). Also, it is a basic trigonometric

identity that 1− cos(θu,v) = 2 sin2
(

θu,v
2

)

. The latter is at most
θ2u,v
2

. Therefore, the upper

bound on θu,v yields:

cosh(d(u, v))

6
e2R−(tu+tv)

4

(

θ2u,v
2

+ 2
(

e−2(R−tu) + e−2(R−tv)
)

+ O

(

1

N4

))

6
e(2R−(tu+tv))

4

(

2(1 − ε)2etu+tv−R + 2
(

e−2(R−tu) + e−2(R−tv)
))

+ O (1)

= (1 − ε)2
eR

2
+

1

2

(

etu−tv + etv−tu
)

+ O(1)

< (1 − ε)2
eR

2
+ ε

eR

2
+ O(1) <

eR

2
,

for N sufficiently large and c0 such that e−c0 < 1
2
ε, since tu+tv < R−c0 and tu, tv > 0. This

implies that tu−tv, tv−tu < R−c0 and, therefore, 1
2

(etu−tv + etv−tu) < 1
2

(

eR−c0 + eR−c0
)

<

ε eR

2
. Also, since cosh(d(u, v)) > 1

2
ed(u,v), it follows that d(u, v) < R.

To deduce the second part of the lemma, we consider a lower bound on (2.1) using
the lower bound on θu,v:

cosh(d(u, v)) >
e2R−(tu+tv)

4
(1 − cos(θu,v)) + O(1)

>
e2R−(tu+tv)

4

(

1 − cos
(

2(1 + ε)e
1
2
(tu+tv−R)

))

+ O(1).

(2.2)
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Using again that 1 − cos(θ) = 2 sin2
(

θ
2

)

we deduce that

1 − cos
(

2(1 + ε)e
1
2
(tu+tv−R)

)

= 2 sin2

(

1

2
4(1 + ε)2etu+tv−R

)

.

Since tu + tv < R− c0, it follows that tu + tv −R < −c0. So the latter is

sin

(

1

2
4(1 + ε)2etu+tv−R

)

> 2
(

1 +
ε

2

)2

etu+tv−R,

for N and c0 large enough, using the Taylor’s expansion of the sine function around 0.
Substituting this bound into (2.2) we have

cosh(d(u, v)) >
(

1 +
ε

2

)2 eR

2
+ O(1).

Thus, if d(u, v) 6 R, the left-hand side would be smaller than the right-hand side which
would lead to a contradiction.

We will define approximating areas of the circle of radius R around a given point u,
motivated by Lemma 2.1. We call these bounding areas inner and outer tube of the point
u.

Definition 2.2. For a given point u ∈ DR and for ε and N0 as in Lemma 2.1 we call the
sets

• T−
u :=

{

v ∈ DR : θu,v 6 2(1 − ε) exp
(

1
2
(tu + tv −R)

)}

the inner tube and

• T+
u :=

{

v ∈ DR : θu,v 6 2(1 + ε) exp
(

1
2
(tu + tv −R)

)}

the outer tube

of the point u.

Although by our definition there is no unique inner and outer tube, we will talk of the
inner and outer tube. These should always be for suitably chosen ε and N0 in the given
context. Lemma 2.1 shows that, for sufficiently large graphs, all points in the inner tube
of a typical vertex u (that is, a vertex of low type) are of distance at most R of u and all
vertices of distance at most R of u are within the outer tube of u. We will use outer and
inner tubes to derive stochastic bounds on the size of a component.

During our proofs we will also use the following lemma, which states that every vertex
in the neighbourhood of a given vertex u will still be connected to u when we increase tu.

Lemma 2.3. Let u, v and w be points in DR with θu,v = 0 and tu < tv. If d(u, w) < R
then d(v, w) < R.

Proof. Using basic properties of the geometry of the hyperbolic plane, it follows that the
geodesic between two points of radius at most R uses only points of radius at most R.
Also note that the geodesic between the origin and any point is the ray from the origin
through the point. Let O be the origin, and consider vertices u, v, w as in the statement
of the lemma. Consider some isometric mapping which maps w to O. As w ∈ DR, we
have d(O,w) 6 R. By the requirements of the lemma, d(u, w) 6 R. So O and u are
within the disk of radius R around w, and so is their geodesic. Since θu,v = 0, it follows
that v lies on this geodesic and therefore d(v, w) 6 R.
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3 Theorem 1.4: the subcritical case

To show the first part of Theorem 1.4, we construct a process that exposes the angle that
the component of a given vertex v covers. We already discussed that vertices that are
close to the centre have a higher expected degree than those close to the periphery. The
connectivity in a hyperbolic random geometric graph highly depends on the structure
of the sub-graph that is induced by vertices of high type. When α > 1

2
, the types of

all vertices of G(N ;α, ν) are bounded away from R a.a.s. This is made precise in the
following lemma.

Lemma 3.1. Let ω : N → N be an increasing function such that ω(N) → ∞ as N → ∞.
With probability 1 − o(1) all vertices in VN have type at most 1

2α
R + ω(N).

The proof of this lemma can be found in [11] (Corollary 2.2). Thus, it suffices to
consider vertices of type no larger than this bound. Note that all vertices have type
smaller than and asymptotically bounded away from R/2, since α > 1. We will consider
a vertex u of type 1

2α
R + ω(N) and analyse a breadth exploration process, through which

we will bound the total angle of the component which contains u: if C(u) denotes the
connected component u belongs to, we define

Θ(u) := max {θu,v : v ∈ C(u)} .

This quantity represents the “width” of the component u belongs to from the point of view
of u itself. When working with this we generally need to double it as it only considers the
direction of maximum extent but we need to take both into account. Let 0 6 θc(u, v) < 2π
be the angle between the points u and v, in clockwise direction from the point u. We
define a bounding path, which is a path on DR that is not crossed by any edge. The length
of a bounding path essentially bounds the number of vertices of the component in which
it is rooted. In particular, if a bounding path induces a partition of DR into two parts,
one of which covers an angle of at most o(1), then a.a.s. any component in this part will
be of sublinear size.

Definition 3.2. We call a series of points P = (p1, p2, . . . , pm) in DR a bounding path
for G(N ;α, ν), if the following hold:

(i) The points p1 and pm are on the boundary of DR, i.e. their radius is R. Also,
θp1,p2 = θpm−1,pm = 0.

(ii) For even i, we have θc(p1, pi) < θc(p1, pi+1) and tpi = tpi+1
, while for odd i we have

θc(p1, pi) = θc(p1, pi+1) and tpi 6= tpi+1
.

(iii) Let A∪B be the partition of DR incurred by P , using radial lines to connect vertices
that only differ in type and arcs to connect vertices that only differ in angle. Let
B be the part containing the origin and let A contain all points on the connections.
There is no pair of adjacent vertices a ∈ A and b ∈ B in G(N ;α, ν).
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Note that (ii) ensures that P does not cross itself, so it does partition the disk into
two parts and (iii) makes sense. Also, for 1 < i < m and any vertex v with θv,pi = 0
and tv < tpi , the component of G(N ;α, ν) that v belongs to covers an angle of at most
θc(p1, pm).

We will now proceed with the definition of the breadth exploration process that we will
use to get a short bounding path. Note that 1

2α−1
< 1 as 1 < 2α− 1 ⇔ α > 1. We choose

ε > 0 small enough so that 1
λ

:= 2α − 1 − ε > 1. Throughout this section we will need
several small constants ε. We will assume that we choose one ε for all these and require
N to be large enough to satisfy everything. Given some constant C > 0, let i0 be the
minimum i such that λi

(

1
2α
R + ω(N)

)

< C. Note that Cλ := λi0
(

1
2α
R + ω(N)

)

> λC.
We partition the disk DR into three bands:

B0 ={v ∈ DR :
1

2α
R + ω(N) < tv 6 R}

BCλ
={v ∈ DR : Cλ < tv 6

1

2α
R + ω(N)}

B− ={v ∈ DR : 0 6 tv 6 Cλ}

By Lemma 3.1 a.a.s. B0 does not contain any vertices. We define two phases for our
random process, one on BCλ

and one on B−. We start the process from a point u ∈ DR with
0 < tu 6 1

2α
R + ω(N); in fact, due to Lemma 2.3 we may assume that tu = 1

2α
R + ω(N).

Phase I Letting ti := λi
(

1
2α
R + ω(N)

)

, we partition BCλ
into i0 bands

B(i)
Cλ

= {v ∈ DR : ti < tv 6 ti−1}

We know that there exists iu ∈ {1, . . . , i0} such that u ∈ B(iu)
Cλ

. We consider the
domain of attraction around u:

Au := T+
u ∩ BCλ

=

{

v : θu,v 6 2(1 + ε)ν
e

1
2
(tu+tv)

N
, v ∈ BCλ

}

and for i = 1, . . . , i0 we let A(i)
u denote the set of points in Au ∩ B(i)

Cλ
that are in the

clockwise direction from u.

By Lemma 2.1, the domain of attraction A(i)
u contains all points of the band B(i)

Cλ

that are within distance R in clockwise direction of the point u, but not every point
in A(i)

u must necessarily be within distance R of u. We define the first phase of the
breadth exploration process in the clockwise direction started at u as follows. Note
that the auxiliary points defined in the process do not necessarily (in fact, with
probability 1 they do not) correspond to vertices of the graph.

1. v := u and Θ′ := 0; let iv be such that v ∈ B(iv)
Cλ

;
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2. let j0 be the smallest i such that A(i)
v contains a vertex;

if such an index does not exist, then go to Phase II;

if j0 6 iv, the goto Step 5; (we then say that a backward jump occurs)

3. let Θ̂1 := 2ν(1 + ε) e
1/2(tv+tj0−1)

N
. Let w be the point of polar coordinates (R −

tj0−1, θv − Θ̂1).

4. go to Step 2, setting v := w and Θ′ := Θ′ + Θ̂1;

5. let v′ be the point of polar coordinates (R − t0, θv − 2ν(1 + ε) e
1
2 (tv+t0)

N
); set

v := v′;

Phase II

1. let v and Θ′ have their final values after the execution of Phase I;

2. let w ∈ DR be the point of type Cλ and θv,w = 2ν(1 + ε) e
1/2(tv+Cλ)

N
in the

clockwise direction;

3. set Θ′ := Θ′ + 2ν(1 + ε) e1/2(tv+Cλ)

N
and let T+

w be the half-tube containing every

point u that has relative angle at most 2ν(1 + ε) e1/2(tu+Cλ)

N
with w in clockwise

direction;

4. if T+
w is empty, then exit;

else start the process again from Step 2 of Phase I with Θ′ := Θ′ + 2ν(1 +

ε) e1/2(t0+Cλ)

N
and v of polar coordinates (R− t0, θw − 2ν(1 + ε) e1/2(t0+Cλ)

N
).

Note that this process does not involve any points of type higher than t0. Indeed, this is
not necessary as by Lemma 3.1 a.a.s. all vertices in VN have types no more than t0.

We call a single execution of Steps 2-4 of Phase I a round. A maximal series of
consecutive rounds is called a cycle. Thus, if at the end of a cycle a backward jump
occurs, then Phase I proceeds to Step 5, initiating a cycle starting at a point of type
t0. This ensures that no matter where the backward jump takes place, vertices that are
within distance R from the new root will be covered.

The set of rounds up to the end of Phase II is called an epoch. Hence, an epoch consists
of repeated cycles, whose repetitions stop with an execution of Phase II. The breadth
exploration process starting at a vertex/point u is the process consisting of repeated
epochs with the initial root v being the point of type t0 and relative angle with respect to
u that is equal to 0. (Thus, in fact, the process does not start from u but at the “image”
of u that has type t0.)

Recall that Θ(u) is the maximum relative angle between any two vertices in the com-
ponent that contains u. We prove the following lemma:

Lemma 3.3. For any vertex u ∈ VN of type less than t0, if Θ′ denotes the maximum of
the angles gained during the breadth exploration process started at u in the clockwise and
the anticlockwise direction, then Θ(u) 6 2 · Θ′.
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Proof. Using the breadth exploration process in the clockwise direction, we get a series
of root points - these are the vertices in the beginning of Phase I. Let u1, . . . , um be
the part of this series that corresponds to the last cycle, i.e. there was a backwards
jump before u1 and there is no more backwards jump from there on. Let ûi be the
radial projection of the point ui to type tui+1

. The series u1, û1, u2, û2, . . . , ûm−1, um thus
always alters between changing the type and relative angle, as required in condition (ii).
Similarly, in anticlockwise direction, we get the series u′

1, û
′
1, u

′
2, û

′
2, . . . , û

′
ℓ−1, u

′
ℓ. Letting

ûm and û′
ℓ be the radial projections of um and u′

ℓ to the boundary of DR, we get the path
P = (û′

ℓ, u
′
ℓ, û

′
ℓ−1, . . . , u

′
1, u1, . . . , ûm−1, um, ûm). If the breadth exploration process only

uses a total angle that is o(1), which is the case a.a.s., then (i) and (ii) are naturally true
if u1 6= u′

1. If u1 = u′
1 (implying u1 = u = u′

1), almost surely (with probability 1) we can
push u1 in clockwise direction by some small amount to fix this problem without causing
further problems elsewhere (i.e. all the adjacencies of u1 stay the same).

To prove that P is a bounding path for G(N ;α, ν) we need to show that there is no
pair of vertices (v, w) such that v ∈ A, w ∈ B and v ∼ w. Assume for a contradiction
that there is such an edge vw. Without loss of generality we only consider the series P1 =
(u1, û1, u2, û2, . . . , ûm−1, um). If θc(p1, w) 6 θc(p1, um), then there are two consecutive root
points, ui and ui+1 such that θc(p1, ui) < θc(p1, w) 6 θc(p1, ui+1). By Lemma 2.3 and since
tui+1

< tw, we have d(ui, w) < d(ui, ui+1) 6 R, a contradiction to the choice of ui+1 as the
next root vertex.

Now assume that θc(p1, w) > θc(p1, um). By Lemma 2.3 and as v ∈ A, there is an
i > 1 such that θc(p1, ûi−1) < θc(p1, v) 6 θc(p1, ui)(where, for convenience, û0 = u′). But
as v ∈ A, we have tv 6 tui

, so by Lemma 2.3 and the fact that decreasing angles decreases
the distance we have that ui is adjacent to w. By the choice of ui+1 in the breadth
exploration process, we thus have θc(p1, w) 6 θc(p1, ui+1) 6 θc(p1, um) and tw < tui+1

,
so w ∈ A, a contradiction. Note that i < m since as ui is adjacent to w the breadth
exploration process cannot have stopped at ui.

So using the breadth exploration process twice we indeed find a bounding path. In
particular, the angle gained in both direction gives a slice of the disk that contains the
entire component of u.

We now want to bound from above the angle that can be gained during the execution
of the process. Note that increasing the type of a vertex u will keep intact all the edges
incident to u. Thus if u′ is a vertex replacing u, of type tu′ > tu and with relative angle 0
to u, we have Θ(u′) > Θ(u). This justifies the choice of the type in the following lemma.

Lemma 3.4. Let u ∈ DR be a point having tu = t0. If the breadth exploration process
starts at point u, then by the end of it Θ′ 6 R2 log3 RN1/α−1 with probability 1−o

(

N1/α−1
)

Proof. Let us consider the breadth exploration process started at a vertex u having type
t0 = 1

2α
R+ω(N). For an ε > 0 we let Tε denote the first round at the end of which Θ′ > ε

if there is such a round, otherwise Tε = ∞. We also denote by u0(t) the root vertex at
the beginning of the tth round and let iu0 > 0 denote the index of the band this vertex
belongs to. We will first bound from below the probability that the exploration process
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does not backtrack during the tth round. Let B
(iu0 )
t be the indicator random variable that

is equal to 1 if and only if backtracking does occur during the tth round assuming that
the root vertex is in iu0 .

Claim 3.5. For ε ∈ (0, 2π), let t < Tε. There exists a constant K = K(α, ν) > 0 such
that for any N that is sufficiently large we have

Pr
[

B
(iu0 )
t = 0

]

> exp
(

−Ke−
ε
2
tiu0

)

.

Proof of Claim 3.5. Let us write u0 = u0(t). For t < Tε we give a stochastic upper bound

on the number of vertices that belong to ∪iu0
j=0A(j)

u0 . Hence, we will be able to give a lower
bound on the probability that this region is empty. In other words, we will bound from
below the probability that no backtracking occurs during the tth round. Let Nt denote
the number of vertices that have not been exposed at the beginning of the tth round.

Using Lemma 1.3, the probability that one of them will belong to ∪iu0
j=0A(j)

u0 is bounded
from above by

2ν(1 + ε)α

2π − Θ′

∫ t0

tiu0

e
1
2
(tu0+s)

N
e−αsds 6

2ν(1 + ε)α

2π − ε

∫ t0

tiu0

e
1
2
(tu0+s)

N
e−αsds

6
4ν(1 + ε)α

(2π − ε)(2α− 1)

etu0/2

N
e(1/2−α)tiu0

6
4ν(1 + ε)α

(2π − ε)(2α− 1)

e
1
2
(tiu0−1+tiu0

)−αtiu0

N
=: p

(iu0 )
t .

Hence, the number of vertices which during round t will fall into ∪iu0
j=0A(j)

u0 is binomially

distributed with parameters Nt, p
(iu0 )
t . In turn, this is stochastically bounded from above

by a binomially distributed random variable with parameters N, p
(iu0 )
t . Note also that if

the number of vertices that fall into ∪iu0
j=0A(j)

u0 is positive, then backtracking occurs. Hence,

the probability of backtracking during round t is at least Pr
[

Bin(N, p
(iu0 )
t ) = 0

]

.

Recall that tiu0−1 = 1
λ
tiu0 = (2α− 1 − ε) tiu0 , whereby

1

2
(tiu0−1 + tiu0 ) =

1

2
(2α− 1 − ε + 1) tiu0 =

1

2
(2α− 1 − ε + 1) tiu0

=
(

−ε

2
+ α

)

tiu0 .

This shows that p
(iu0 )
t = O( 1

N
), justifying the following exponential approximation.

Setting K ′ = 4ν(1+ε)α
(2π−ε)(2α−1)

, we obtain an asymptotic estimate on the probability of
backtracking:

Pr
[

Bin(N, p
(iu0 )
t ) = 0

]

=
(

1 − p
(iu0 )
t

)N

= exp
(

−K ′e
1
2
(tiu0−1+tiu0

)−αtiu0 (1 + o(1))
)

.
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Hence, we obtain

Pr
[

Bin(N, p
(iu0 )
t ) = 0

]

=
(

1 − p
(iu0 )
t

)N

= exp
(

−(1 + o(1))K ′e−
ε
2
tiu0

)

> exp
(

−2K ′e−
ε
2
tiu0

)

,

for any N sufficiently large, uniformly over all possible values of iu0 . (The latter is the
case since always tiu0 < R/2.) Taking K = 2K ′, the claim now follows.

Now, observe that the above claim implies that the probability of no backtracking at
a certain round can become very close to 1. Indeed, note that tu0 > λC and, therefore,
the exponent on the right-hand side of the bound obtained in Claim 3.5 can be made as
close to 0 as we want, provided we choose C large enough. Moreover, if tu0 is bounded
from below by a function of N that increases as N → ∞, then the probability of no
backtracking is in fact 1 − o(1). These observations are key to the deduction of the first
part of the lemma.

We first show that provided that Θ′ is much less than ε, the number of cycles within
an epoch is essentially stochastically dominated by a geometrically distributed random
variable that has probability of success 1 − ε, provided that the parameter C = C(ε) is
large enough. Suppose that an epoch starts with Θ′ 6 g(N) where g(N) = o(1).

Recall that a cycle starts at a vertex that has type t0 = 1
2α
R + ω(N). Let TCλ

denote
the random variable that is the length of a cycle. We say that a cycle is successful if it
exits to Phase II. Note that a cycle is successful, that is, no backtracking occurs, if and

only if B
(iu0 )
t = 0, for all t 6 TCλ

.
We will bound the probability that, conditional on Θ′ 6 g(N) at the beginning of the

epoch, the number of cycles is at least R. In particular, we will show that for every ε
there exists a C such that this probability is at most εR−1.

Claim 3.6. Let g(N) = o(1). For every ε > 0 there exists a C = C(ε) such that for any N
sufficiently large, conditional on Θ′ 6 g(N) at the beginning of an epoch, with probability
at least 1 − εR−1 the total angle gained during the epoch is at most 2R log2 RN1/α−1.

Proof. To bound this probability, we will repeatedly apply Claim 3.5. However, in order
to this we need to ensure that Θ′ does not exceed ε whenever at most R cycles have been
executed.

Hence, we first need to give an upper bound on the angle that is gained during the
execution of a cycle. If Θ′

TCλ
denotes this angle, then

Θ′
TC

< 2ν(1 + ε)

i0
∑

i=0

e
1
2
(ti+ti+1)

N
.

But for all i we have ti <
1
2α
R + ω(N). Hence, ti + ti+1 <

1
α
R + 2ω(N), whereby

e
1
2
(ti+ti+1)

N
<

e
1
2
R 1

α
+ω(N)

N
= eω(N) N

1
α
−1.
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Using this with ω(N) = log log
1
2 R, the above sum can be further bounded from above by

Θ′
TC

< 2ν(1 + ε)(i0 + 1)elog log
1
2 R N

1
α
−1

i0=O(logR)

6 log2 R
N1/α

N
, (3.1)

if N is large enough. Therefore, after r 6 R cycles the angle gained will be at most
R log2 RN1/α

N
< ε, for any N that is sufficiently large. Note also that this quantity bounds

the total angle that is gained during an epoch consisting of at most R cycles.
Hence, applying Bayes’ rule repeatedly, Claim 3.5 implies that

Pr
[

B
(iu0 )
t = 0, ∀t < TCλ

]

>

i0
∏

i=0

exp
(

−Ke−
ε
2
ti
)

. (3.2)

Let ai := e−
ε
2
ti and note that since ti = λit0 we have for i 6 i0

ai−1

ai
= e−

ε
2
t0(λi−1−λi) = e−

ε
2
t0λi( 1

λ
−1) 6 e−

ε
2
t0λi0( 1

λ
−1)

6 e−
ε
2
λC( 1

λ
−1).

Thus, if C is large enough, then

i0
∑

i=0

e−
ε
2
ti < e−

ε
2
ti0

∞
∑

i=0

e−
ε
2
i·C(1−λ)

ti0>λC

< 2e−
ε
2
λC .

Substituting this bound into the right-hand side of (3.2) we obtain

Pr
[

B
(iu0 )
t = 0, ∀t 6 TCλ

]

> exp
(

−2Ke−
ε
2
λC

)

> 1 − 2Ke−
ε
2
λC > 1 − ε, (3.3)

choosing C large enough so that the last inequality holds. Hence, the probability that
backtracking occurs before TCλ

is at most ε, for C = C(ε) that is sufficiently large. In
other words, the probability that the cycle is not successful conditional on Θ′ 6 g(N) at
the beginning of the epoch is at most ε. Therefore, the conditional probability of having
R cycles during the epoch is at most εR−1.

As we pointed out above the total angle that was gained above during the execution
of the R cycles is no more than R log2 RN1/α−1. During Phase II, the angle gained is at
most

4ν(1 + ε)
e

1
2
(t0+Cλ)

N
6 4ν(1 + ε)e

1
2
(Cλ+ω(N)) e

1
2α

1
2
R

N
= o

(

N
1
α
−1
)

.

Hence, an epoch having at most R cycles adds at most 2R log2 RN1/α−1 to Θ′, provided
that N is sufficiently large.

Now, we will show that as long as Θ′ has not grown too much, the probability that an
epoch is the final one is asymptotically bounded away from 0. To see this, we will bound
from above the probability that T+

v , that was defined in Step 3 of Phase II, contains at
least one vertex conditional on Θ′ 6 ε. In particular, conditional on this, the probability
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that a given vertex whose exact position in DR has not been exposed yet belongs to T+
v

is at most

2να(1 + ε)

2π − ε

∫ t0

0

e
1
2
(Cλ+t)

N
e−αtdt >

2να(1 + ε)

2π − ε

eCλ/2

N

∫ ∞

0

e(
1
2
−α)tdt

1/α<2
=

4να(1 + ε)

(2α− 1)(2π − ε)

eCλ/2

N
=: pII = O(

1

N
).

Under the above conditioning, the number of vertices that belong to T+
v is stochastically

bounded from above by a binomially distributed random variable with parameters N, pII
Hence, the probability that T+

v is empty conditional on Θ′ 6 ε is at least

(1 − pII)
N = exp

(

− 4ν(1 + ε)

(2α− 1)(2π − ε)
eCλ/2(1 + o(1))

)

> exp

(

− 4ν(1 + ε)

π(2α− 1)
eCλ/2

)

=: δ,

provided that ε < π and N is sufficiently large.
Now, we set E := ⌊−1−1/α

ln δ
R⌋. We will finish the proof by showing that the probability

that less than E epochs take place each having at most R cycles is 1 − o
(

N1/α−1
)

. This
together with Claim 3.6 imply that with this probability the total angle gained during
the process is at most 2ER log2 RN1/α−1.

Indeed, the probability of having E epochs each one having at most R cycles is at
least

δE > δ−
1−1/α
ln δ

R = exp ((1/α− 1) R) = O(N2(1/α−1)),

and the latter is o
(

N1/α−1
)

. Also, arguing as in the proof of Claim 3.6, we deduce that
the probability that there exists one among the first E cycles having more than R cycles
is at most EεR = o(N1/α−1), provided that ε is chosen small enough.

The above lemma together with Lemma 3.3 imply that

Lemma 3.7. For any u ∈ VN we have Θ(u) 6 R2 log3 RN1/α−1 with probability 1 −
o
(

N1/α−1
)

.

We will now deduce the first part of Theorem 1.4 from Lemma 3.7. Let B denote the
set of vertices u for which Θ(u) > 2R2 log3 RN1/α−1 - we call these vertices bad. Thus,
Lemma 3.7 implies that

E [|B|] = o(N1/α).

Markov’s inequality in turn implies that for any δ > 0 we have that with probability
1 − o(1)

|B| < δN1/α. (3.4)

Assume now that G(N ;α, ν) has a component C of order greater than 8R2 log3 RN1/α.
Hence, on the event (3.4), there is at least one (in fact, many) vertex u ∈ C in this
component that is not bad.
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A sector of DR is the area between two radii of DR of relative angle which is less than
π - we call this angle the angle of the sector. Hence, since u is not bad, it turns out that
there is a sector of angle at most 2R2 log3 RN1/α−1 which contains at least 4R2 log3 RN1/α

vertices (in fact, our assumption implies that it contains almost twice as many vertices as
this). But the next lemma shows that this is not the case with probability 1 − o(1) and
the first part of Theorem 1.4 follows.

Lemma 3.8. Let θ : N → R be a non-negative function such that θ(N) = o(1) but
Nθ(N)

ln(1/θ(N))
→ ∞ as N → ∞. Then a.a.s. there is no sector of angle θ(N) that contains at

least 2Nθ(N) vertices.

Proof. Consider a partition P of DR into 2π/θ(N) sectors of angle θ(N). If DR contains
a sector as in the statement of the lemma, then one of the sectors in P must contain at
least Nθ(N) vertices. Now, note that the number of vertices is a sector σ ∈ P , which
we denote by Ns, is binomially distributed with parameters N and θ(N)/2π. Hence,
E(Nσ) = 1

2π
Nθ(N) and since Nθ(N) → ∞ and applying a Chernoff-type bound we

deduce that
Pr

[

Nσ > Nθ(N)
]

= exp (−Ω(Nθ(N))) .

Therefore, using Markov’s inequality we obtain:

Pr
[

∃ σ ∈ P : Nσ > Nθ(N)
]

6
2π

θ(N)
exp (−Ω(Nθ(N))) = o(1),

which concludes the proof of the lemma.

4 Theorem 1.4: the supercritical case

In this section, we will show the second part of Theorem 1.4. Namely, we shall assume
that α < 1 and with |L1| denoting the size of a largest component of G(N ;α, ν), we will
show that there exists a c = c(α, ν) such that a.a.s. |L1| > cN .

4.1 Proof overview

We will consider a set of homocentric bands in DR. The innermost band consists of those
vertices of type at least R/2. Note that the subgraph of G(N ;α, ν) that is induced by
the vertices which belong to this part of DR is a clique. This follows from the triangle
inequality, which implies that the distance between any two vertices there is at most R.
The remaining bands are determined by a sequence of numbers ti, with t0 = R/2 and ti
defined by the following recursion:

ti − 2 ln

(

4π

ν(1 − ε)4
ti

)

= λti−1, (4.1)

if 0 < ti < ti−1. where now λ := 2
(

α− 1
2

)

– we assume that α > 1
2
. The bands are now

as follows:

B0 = {v ∈ DR : R/2 < tv 6 R} and Bi = {v ∈ DR : ti < tv 6 ti−1}.
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We shall assume that i < T , where T = T (α, ν, ε) and ε is a positive real number which
we will assume to be small enough for the purposes of our calculations. We will determine
T in Subsection 4.2. Observe that (4.1) implies that provided that ti > ν(1 − ε)4/(4π),

ti > λit0 for i > 0. (4.2)

We denote by Ni the set of vertices which belong to the ith band, for i > 0, and let Ni

denote its size. Furthermore, for i > 0 we denote by N ′
i the set of vertices in Bi that

have at least one neighbour in N ′
i−1 – here we set N ′

0 = N0. We say that these belong to
the active area of Bi. This definition together with the fact that a clique is formed in N ′

0

imply that the graph induced by
⋃T

i=0 N ′
i is connected and contains

∑T
i=0 |N ′

i | vertices.
Our aim is to show that a.a.s. this quantity is linear in N . We let N ′

i = |N ′
i |.

More specifically, we show that the number of vertices in N ′
i stochastically dominates

the number of vertices in a subset of Bi that has arc Θi. This makes working with sizes
a lot easier, as implications for the size of N ′

i can be deduced from the angle Θi−1. In
particular, with probability 1 − o

(

1
lnN

)

N ′
i−1 > Ni−1

Θi−1

2π
(1 − ε). (4.3)

The proof of this can be found in Section 4.4. Next we argue (cf. Section 4.4) that
conditional on N ′

i−1 as above and Θi−1 > π with high probability Θi is at least a certain
fraction of Θi−1.

Lemma 4.1. Conditional on Ni−1 ∈ (1 ± ε)E [Ni−1], on Θi−1 > π as well as on N ′
i−1

satisfying (4.3) with probability 1 − o
(

1
lnN

)

we have

Θi > Θi−1

(

1 − e−γti
)

, (4.4)

for some constant γ = γ(α, ν, ε) > 0, uniformly for i = 1, . . . , T .

Note that we take Θ0 := 2π.
To derive the stochastic domination we will assume that the following conditions hold:

• any vertex of type t with ti > R/2 is of type R/2;

• any vertex of type t with ti < t 6 ti−1 is of type ti.

Lemma 2.3 ensures that for a vertex v ∈ Bi−1 the area consisting of all points that belong
to Bi and have distance R from v becomes smaller, if the type of v within the bounds of
Bi−1 decreases. Now, using the first part of Lemma 2.1, we can use the inner tubes to
obtain a further lower bound on this area. In particular, we will consider only vertices
that fall within the inner tube of v ∈ N ′

i−1 assuming that the type of v is ti−1 and deduce
a stochastic lower bound on the size of N ′

i .
Using concentration arguments we will show that a.a.s. N ′

i >
1
2
N Θi

2π
(e−αti − e−αti−1).

Hence, if T is such that
T
∏

i=0

(

1 − e−γti
)

>
1

2
, (4.5)
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and for some C > 0
tT 6 C, (4.6)

then it will follow by (4.4) that

T
∑

i=0

N ′
i >

1

2
N

(

e−αtT − e−αt0
)

T
∏

i=0

(

1 − e−γti
)

> cN,

for some c = c(α, ν).

4.2 The definition of T

Firstly, we will require that ti > B1 where B1 = B1(α, ν, ε) > e is large enough so that
we have

2 ln

(

4π

ν(1 − ε)4
ti

)

< (1 − α) ti. (4.7)

This condition implies that

ti 6 λti−1 + 2 ln

(

4π

ν(1 − ε)4
ti

)

ti6ti−1

< λti−1 + 2 ln

(

4π

ν(1 − ε)4
ti−1

)

(4.7)
< (λ + 1 − α) ti−1 = (2α− 1 + 1 − α) ti−1 = αti−1 < ti−1.

(4.8)

We use (4.8) in order to deduce that if ti > B1, then

e−α(ti−1−ti) < e−ti−1α(1−α). (4.9)

Given ε > 0, let C = C(α, ν, ε) > B1 be such that

e−Cα(1−α) < ε,

ν(1 − ε)4

4π
< C,

if λC < t− 2 ln

(

4π

ν(1 − ε)4
t

)

=: f(t), then f(t) < t,

for all t > C we have 2 ln

(

4π

ν(1 − ε)4
t

)

<
1 − α

2
t,

e−γλC/2

1 − e−γ(1−α)C
<

1

2
,

(4.10)

where γ = γ(α, ε) > 0 will be specified later. Let

T := min{i : ti < C or Θi < π}.

Thus, by (4.8) we deduce that
T = O(logR). (4.11)

the electronic journal of combinatorics 22(3) (2015), #P3.24 21



Hence, (4.9) implies that for any i < T we have

e−α(ti−1−ti)
ti−1>C
< ε. (4.12)

The definition of T also implies that for i < T

ti >
ν(1 − ε)4

4π
,

as required above. Recall that this ensures that the second term in the left-hand side of
(4.1) is positive as

ln

(

4π

ν(1 − ε)4
ti

)

> 0,

and thereby (4.2) holds for all i < T .
Secondly, we will require that

T
∏

i=1

(

1 − e−γti
)

>
1

2
. (4.13)

As we shall see in the next section, this will imply that

Θi > Θ0

T
∏

j=1

(

1 − e−γtj
)

> π. (4.14)

As Θ0 = 2π we need that the product on the right-hand side of the above is at least 1/2.
This will be the case if

T
∑

j=1

e−γtj <
1

2
.

To bound the above sum, we will give an upper bound on the difference of tj − tj−1. We
have

tj − tj−1

(4.8)
< (α− 1)tj−1

tj−1>C,α<1

< (α− 1)C.

Hence, we can write
T
∑

j=1

e−γtj < e−γtT

∞
∑

j=0

e−jγ(1−α)C .

Also by the third condition in (4.10)

λC 6 λtT−1 = tT − 2 ln

(

4π

ν(1 − ε)4
tT

)

< tT , (4.15)

whereby
tT > λC. (4.16)

Therefore,
T
∑

j=1

e−γtj <
e−γλC

1 − e−γ(1−α)C

(4.10)
<

1

2
.
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4.3 Some concentration results

In this sub-section, we will show that the number of vertices that belong to each band
is almost determined. Note that by Lemma 1.3 (since ti 6 R/2, for all i > 0) we have
uniformly for all i

E [Ni] = (1 − o(1))Nα

∫ ti−1

ti

e−αtdt = (1 − o(1))N
(

e−αti − e−αti−1
)

. (4.17)

(Here we take t−1 = R.) We need to show that this quantity grows fast enough as a
function of N . To see that this is indeed the case, we write

E [Ni] = (1 − o(1))Ne−αti
(

1 − e−α(ti−1−ti)
) (4.12)

> Ne−αti(1 − ε). (4.18)

Hence, since ti 6 R/2, it follows that

E [Ni] > (1 − ε)νe
1
2
(1−α)R = Ω(N1−α), (4.19)

which tends to infinity as N grows, since α < 1.
Hence, applying a standard Chernoff bound we deduce that with probability 1 −

exp (−Ω (N1−α)) we have
Ni = (1 ± ε)E [Ni] .

Hence, since T = O (lnR) (cf. (4.8)), a simple first-moment argument shows that with
probability 1 − exp (−Ω (N1−α)) we have

Ni = (1 ± ε)E [Ni] , (4.20)

for all 0 6 i 6 T . In what follows, we shall condition on this event, which we denote by
CN .

4.4 The inductive step

Throughout this section, we will have θ(i) = 2(1 − ε)e
1
2
(ti+ti−1−R), for 0 < i 6 T and

θ(0) = 2(1 − ε). Assume that there are N ′
i−1 vertices in the active area of Bi−1. For a

vertex in v ∈ N ′
i−1 let S(v) denote the arc of angle θ(i) around the projection of v on the

circle of radius R− ti (in other words, the set of points of type ti) - we denote this circle
by Ci. We call this the shadow of v. Let

Si :=
⋃

v∈N ′

i−1

S(v)

denote the union of the shadows of the vertices in N ′
i−1 — this is the active area of the

band Bi. Let Θi be the total angle of Si.
We will determine Θi conditional on Θi−1, assuming that we have not specified which

vertices among those in Ni−1 belong to Si−1. Let S ′
i−1 denote the projection of Si−1 on
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the circle Ci. Note that S ′
i−1 is the disjoint union of arcs each of them having angle which

is at least θ(i−1). Moreover, the total angle covered by S ′
i−1 is Θi−1 as well.

Assuming that the vertices of Ni−1 have all type ti−1, we expose their positions on
Ci−1 and consider the shadows of those points that will fall into Si−1. Recall that this
number is a stochastic lower bound on N ′

i−1, whereby

E
[

N ′
i−1 | Ni−1,Θi−1

]

> Ni−1
Θi−1

2π
.

Furthermore, since Θi−1 > π, as i − 1 < T and Ni−1 = Ω(N1−α), as the event CN is
realised, an application of the Chernoff bound implies that with probability 1 − o

(

1
lnN

)

N ′
i−1 > Ni−1

Θi−1

2π
(1 − ε). (4.21)

We will show that conditional on N ′
i−1 as above and Θi−1 with high probability Θi is at

least a certain fraction of Θi−1.

Lemma 4.2. Conditional on Ni−1 satisfying CN , on Θi−1 as well as on N ′
i−1 satisfying

(4.21), with probability 1 − o
(

1
lnN

)

we have

Θi > Θi−1

(

1 − e−γti
)

,

for some constant γ = γ(α, ν, ε) > 0, uniformly for i = 1, . . . , T .

Proof. To show this statement, we divide each subinterval of S ′
i−1 into segments of angle

ℓi−1 :=
Θi−1

N2
i−1

.

It is possible that each of these subintervals contains at least one segment of smaller angle.
However, each subinterval of S ′

i−1 contains many segments of angle ℓi−1. We denote by
P the collection of all those segments. We will use a bounded-differences concentration
inequality in order to show that with high probability most of them are contained in S(v)
for some v ∈ N ′

i−1.
Firstly, let us bound from below the size of P . Recall that each subinterval of S ′

i−1

has angle at least θ(i−1). Therefore, there are at most Θi−1/θ
(i−1) subintervals. Each such

subinterval contains at most one segment of angle less than ℓi−1. Hence,

|P| >
⌊

Θi−1

ℓi−1

⌋

− Θi−1

θ(i−1)

Θi−1<2π
> N2

i−1 −
2π

θ(i−1)
. (4.22)

But

θ(i−1) = 2(1 − ε)e
1
2
(ti−1+ti−2−R) =

ti−2>ti−1

> 2(1 − ε)e
1
2
(2ti−1−R) = 2ν(1 − ε)

eti−1

N
, (4.23)

and also since CN is realised (4.18) implies that

Ni−1 > (1 − ε)2Ne−αti−1 = (1 − ε)2νeR/2−αti−1 .
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Thus, in this case

N2
i−1θ

(i−1) > Ni−1θ
(i−1) = 2ν(1 − ε)3e(1−α)ti−1

ti−1>R/2

> 2ν(1 − ε)3e(1−α)R/2.

This together with (4.22) imply that

|P| > N2
i−1

(

1 −O
(

Nα−1
))

. (4.24)

It is now immediate that the total angle covered by the union of the segments in P , which
we denote by ΘP , satisfies

ΘP > Θi−1

(

1 −O
(

Nα−1
))

. (4.25)

To be more precise, recall that each subinterval has angle that is at least θ(i−1). Since
the event CN is realised, we have

ℓi−1 =
Θi−1

N2
i−1

(4.18)

6
2π

(1 − ε)2
e2αti

N2
.

Now, (4.23) implies that

ℓi−1

θ(i)
<

(1 − ε)π

ν

e(2α−1)ti

N

1<2α,ti<t0=R/2
<

(1 − ε)π

ν

e(2α−1)R/2

N

=
(1 − ε)π

ν2
e(α−1)R α<1

= o(1).

In other words, uniformly for all i < T , we have θ(i−1) > θ(i) ≫ ℓi−1.
For a segment σ ∈ P , let Eσ denote the event that the segment σ is not covered by

S(v), for all v ∈ N ′
i−1. The probability that the segment is indeed covered for a certain

v ∈ N ′
i−1 is at least θ(i)

Θi−1
> θ(i)

2π
. Hence

Pr
[

Eσ | N ′
i−1,Θi−1

]

6

(

1 − θ(i)

2π

)N ′

i−1

6 exp

(

−θ(i)N ′
i−1

2π

)

(4.21)

6 exp

(

−(1 − ε)
θ(i)Θi−1Ni−1

4π2

)

(Θi−1>π)

6 exp

(

−(1 − ε)
θ(i)Ni−1

4π

)

.

(4.26)

Now, on the event CN , the following holds through (4.18) and (4.20)

θ(i)Ni−1 > 2ν(1 − ε)3e
1
2
(ti+ti−1)−αti−1 .

But by (4.1) we have

1

2
(ti + ti−1) − αti−1 = ln

(

4π

2ν(1 − ε)4
ti

)
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which, if substitute in (4.26) implies that

Pr
[

Eσ | N ′
i−1,Θi−1

]

6 e−ti . (4.27)

Let P ′ denote the subset of segments of P that are covered by S(v), for some v ∈ N ′
i−1.

Therefore,
µP ′ := E

[

|P ′| | N ′
i−1,Θi−1

]

> |P|
(

1 − e−ti
)

. (4.28)

For any vertex v ∈ N ′
i−1, S(v) covers at most 2θ(i)/ℓi−1 segments by Lemma 2.1. Thus

changing the position of one vertex in N ′
i−1 changes the number of covered segments by

at most 2θ(i)/ℓi−1. Hence, applying the Hoeffding-Azuma concentration bound (cf. [16]
Theorem 2.25 p. 37) we deduce that

Pr
[

|P ′| < (1 − e−(1−α)ti−1/8)µP ′ | N ′
i−1,Θi−1

]

= exp

(

−Ω

(

µ2
P ′e−(1−α)ti−1/4ℓ2i−1

N ′
i−1(θ

(i))2

))

.

We will show now that

µ2
P ′e−(1−α)ti−1/4ℓ2i−1

N ′
i−1(θ

(i))2
= Ω

(

N
5
4
(1−α)

)

. (4.29)

We will estimate the above quantity up to absolute multiplicative constants – we write
A & B to denote that A/B is bounded from below by some constants that depend only
on α, ν and ε. To derive the above lower bound we will need to deduce a stronger upper
bound on ti in terms of ti−1. By (4.1) we have

ti = λti−1 + 2 ln

(

4π

ν(1 − ε)4
ti

)

ti<ti−1

6 λti−1 + 2 ln

(

4π

ν(1 − ε)4
ti−1

)

ti−1>C, (4.10)
<

(

λ +
1 − α

2

)

ti−1.

(4.30)

Now, we have

µ2
P ′e−(1−α)ti−1/4ℓ2i−1

N ′
i−1(θ

(i))2

(4.15),(4.18),(4.24)

&
N4

i−1e
−(1−α)ti−1/4ℓ2i−1

Ni−1(θ(i))2

& N3
i−1e

−(1−α)ti−1/4

(

Θi−1

N2
i−1

)2
N2

eti+ti−1

(4.13)

&
N2

Ni−1

e−(5−α)ti−1/4−ti

(4.18), ti6ti−1

& Ne−(5−α)ti−1/4−ti+αti−1

(4.30)

& Ne(−(5−α)/4−λ+(1−α)/2+α)ti−1 .

But

−(5 − α)/4 − λ + (1 − α)/2 + α = −(5 − α)/4 − 2α + 1 + (1 − α)/2 + α = 1/4 − 5α/4.

Hence,

µ2
P ′e−(1−α)ti−1/4ℓ2i−1

N ′
i−1(θ

(i))2
& Ne(1−5α)ti−1/4

ti−16R/2,α>1/2

& e
5
4
(1−α)R

2 & N
5
4
(1−α). (4.31)
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Now,
Θi > ℓi−1|P ′|.

Hence, conditional on N ′
i−1 and Θi−1 with probability 1 − o

(

1
lnN

)

we have

Θi > ℓi−1µP ′(1 − e−(α− 1
2)ti−1/2).

We will bound the right-hand side of the above from below as follows:

ℓi−1µP ′(1 − e−(α− 1
2)ti−1/2)

(4.28)

> ℓi−1|P|(1 − e−ti)(1 − e−(α− 1
2)ti−1/2)

(4.24)

> ℓi−1N
2
i−1

(

1 −O
(

Nα−1
))

(1 − e−ti)(1 − e−(α− 1
2)ti−1/2)

= Θi−1

(

1 −O
(

Nα−1
))

(1 − e−ti)(1 − e−(α− 1
2)ti−1/2)

> Θi−1

(

1 −O
(

Nα−1
))

(

1 − e−ti − e−(α− 1
2)ti−1/2

)

.

(4.32)

But by (4.1) we have

1

2

(

α− 1

2

)

ti−1 =
1

4
ti −

1

2
ln

(

4π

ν(1 − ε)4
ti

)

(4.10),(4.16)
>

1

4
(1 − ε)ti.

We substitute this bound into the last expression of (4.32) and deduce the following: there
exists a constant γ = γ(ε) > 0 such that for all N sufficiently large and for all i = 1, . . . , T
we have

Θi > Θi−1

(

1 − e−γti
)

.

4.5 Proof of Theorem 1.4

For i = 1, . . . , T let Ei denote the event that for all 0 6 j 6 i, we have

Θj > Θj−1(1 − e−γtj)

and

N ′
j > Nj

Θj

2π
(1 − ε).

Note that conditional on CN , the latter inequality together with (4.17) and (4.20)
implies that for any N sufficiently large

N ′
j > (1 − ε)3N

(

e−αtj − e−αtj−1
) Θj

2π
.

Now by (4.21) and Lemma 4.2, we have

Pr
[

Ei | Ei−1, CN
]

= 1 − o

(

1

R

)

.
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But as the sequence {ti}i=1,...,T decreases exponentially fast (cf. (4.8)), we have T =
O(lnR). Hence, since the events {Ei}i=1,...,T form a decreasing sequence, we deduce that

Pr
[

ET | CN
]

= 1 − o(1).

On the event ET , we have Θi > π for all i = 1, . . . , T (cf. (4.14)). Therefore,

N ′
i >

1

2
(1 − ε)3N

(

e−αti − e−αti−1
)

.

which in turn implies that

T
∑

i=1

N ′
i >

1

2
(1 − ε)3N

(

e−αtT − e−αt0
)

>
1

2
(1 − ε)3N

(

e−αλC/2 − o(1)
)

.

5 Proof of Theorem 1.5

In the critical case, that is, when α = 1, the probability of having a giant component
turns out to depend on the value of ν. It will be convenient to work with the Poisson
model P(N ;α, ν) in which the vertex set is the set of points of a Poisson point process
inside DR. In Lemma 5.1 below, we show that for certain graph properties, if they hold
a.a.s. in P(N ;α, ν), then this is also the case in the G(N ;α, ν) model.

5.1 Poissonisation

Sometimes it is easier to work under the setting where instead of N (fixed) random points,
our vertex set consists of Po(N) points on DR – of course still sampled independently
according to (1.1). We denote the resulting graph by P(N ;α, ν). The benefit is that in this
way our vertex set consists of a Poisson point process (see for example [17]). In particular,
the numbers of points in any finite collection of pairwise disjoint measurable subsets of DR

are independent Poisson-distributed random variables. The term asymptotically almost
surely (a.a.s.) has the same meaning in this context as before. We prove the following
lemma that allows us to transfer results from the Poisson model into the G(N ;α, ν) model.
Let An denote a set of graphs on Vn := {1, . . . , n} that is closed under automorphisms.
We call a family A = {An}n∈N of graphs (vertex-) non-decreasing, if G − v ∈ An−1 for
any v ∈ V (G) implies G ∈ An. Similarly, we call the family (vertex-) non-increasing, if
G− v /∈ An−1 for any v ∈ V (G) implies G /∈ An.

Lemma 5.1. Assume that α > 0 is fixed. Let A be a (vertex-) non-decreasing family of
graphs. For N large enough we have P(G(N ;α, ν) /∈ A) < 4P(P(N ;α, ν) /∈ A). The same
holds if A is (vertex-) non-increasing.
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Proof. Denote by EPo and E the events that P(N ;α, ν) /∈ A and G(N ;α, ν) /∈ A, respec-
tively. We write

P(EPo) =
∞
∑

N ′=0

P(EPo|Po(N) = N ′) · P(Po(N) = N ′)

>

∞
∑

N ′=N

P(EPo|Po(N) = N ′) · P(Po(N) = N ′)

>

∞
∑

N ′=N

P(EPo|Po(N) = N) · P(Po(N) = N ′),

where we have used in the last line that, since A is non-decreasing, we have P(EPo|Po(N) =
N ′) > P(EPo|Po(N) = N) for N ′ > N . Let us also note that P(EPo|Po(N) = N) = P(E).
Thus,

P(EPo) >
∞
∑

N ′=N

P(E) · P(Po(N) = N ′)

= P(E) · P(Po(N) > N)

>
1

4
· P(E),

where the last line holds N large enough (by an application of, say, the central limit
theorem). The second part of the lemma follows similarly, bounding the sum by taking
only the terms where N ′ > N .

This implies that if P(P(N ;α, ν) /∈ A) = o(1), then P(G(N ;α, ν) /∈ A) = o(1). The
families we consider will be A = {G : G has a component of order at least C} or B =
{G : G has no component of order at least C}, where C does not depend on the number
of vertices in G. In particular, in the second part of Theorem 1.5, having chosen the
parameter N , we consider the family {G : G has a component of order at least N/65},
where |G| = N is not required.

5.2 The subcritical case

We prove the first part of Theorem 1.5 for P(N ;α, ν) by contradiction. Assuming we have
a component of size N

log logR
, then at least N

2 log logR
vertices of type at most T = log logR

must be contained in that component as a.a.s. at most N
2 log logR

vertices have type larger
than T .

We will use a smooth breadth exploration process starting at a point v0 of type at most
log logR, a continuous-type version of the process defined in Section 3:

• Let T0 = tv0 .
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• Recursively for i > 1, if vi−1 has a neighbour in clockwise direction, let v be the
neighbour of vi−1 of highest type in clockwise direction and let Ti be the type of v.
Let θi be the maximum relative angle between vi−1 and any adjacent point of type
Ti. Define vi as the point of type Ti with relative angle θi from vi−1 in the clockwise
direction. We call this the ith root vertex.

• There are three stopping conditions for the process:

(i) vi has no neighbour in the clockwise direction;

(ii) Ti > logR;

(iii) i = log2 logR or the angle between vi and v0 exceeds π.

We define stopping times τ1 and τ2 as the stopping times that correspond to the first
and the second stopping conditions, respectively. Because of the third stopping condition,
we know that 0 6 τi 6 log logR or τi = ∞ for i = 1, 2.

The following two lemmas show that the process stops quickly for a suitable choice of
ν.

Lemma 5.2. For ν < π
8
, starting at a vertex of type at most log logR, we have

P(τ1 < ∞) = 1 − o

((

log logR

logR

)c)

for some c > 0.

Lemma 5.3. For ν < π
8
, starting at a vertex of type at most log logR, we have

P(τ2 < ∞) = o

(

log2 logR

Rc

)

for some 0 < c < 1.

The above process is repeated in the clockwise as well as in the anticlockwise direction.
Parametrising with respect to the initial vertex v, we denote the above stopping times by
τ+1 (v) (τ−1 (v), respectively) and τ+2 (v) (τ−2 (v), resp.). Let also τ+(v) and τ−(v) denote the
stopping times of the two processes.

Using the two lemmas we can prove the first part of Theorem 1.5.

Proof of the first part of Theorem 1.5. In what follows, we assume that N is large enough
for all our estimates to hold. For simplicity, we shall denote the set of vertices by VN -
note that this is now a random set of vertices as described above. Let Vhigh = {v ∈ VN :
tv > log logR} and Vlow = VN \Vhigh. In other words, we partition the set of vertices into
two parts: that of vertices of low type and that of vertices of high type. Now, we set

Vsmall = {v ∈ Vlow : τ+1 (v) < ∞, τ+2 (v) = ∞ and τ−1 (v) < ∞, τ−2 (v) = ∞},

and Vlarge = Vlow \ Vsmall. The smooth breadth exploration process started at a vertex
v ∈ Vsmall terminates after at most log2 logR steps and has only had root vertices of type
at most logR. In this case, by Lemma 2.1 the angle gained at every single step is at most
2.5 exp(logR−R/2). Hence, the total angle gained during the process in both directions
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is at most 5 exp(logR − R/2) log2 logR. (This justifies the name Vsmall: the total angle
of the component of v is bounded by this expression which is a decaying function of N .)

Now, Lemmas 5.2 and 5.3 imply that there exists a positive constant c such that for

a vertex v ∈ Vlow we have P(v ∈ Vlarge | v ∈ Vlow) = o
((

log logR
logR

)c)

. Thereby,

E(|Vlarge|) = o

(

N

(

log logR

logR

)c)

.

Hence, by Markov’s inequality, a.a.s.

|Vlarge| 6
N

2 log logR
.

Also, using Lemma 1.3 and the concentration of the Poisson distribution, we can deduce
that a.a.s.

|Vhigh| 6
N

2 log logR
.

Thus, a.a.s.

|Vlarge ∪ Vhigh| 6
N

log logN
.

Now, by Lemma 3.8, a.a.s. every vertex in Vsmall is contained in a component with at
most 10N exp(logR − R/2) log2 logR < 10νR log2 logR vertices. Hence, any component
of large size must be induced by vertices in Vlarge ∪ Vhigh, whereby |L1| 6 N

log logR
.

To prove the lemmas, we simplify the process in a way that allows for any real types,
dropping the 0 6 t 6 R requirement. We use the following cdf and pdf for the type Ti of
vi given the type ti−1 of vi−1:

FTi
(t) = exp

(

−4ν
1.01

π
e

1
2
(ti−1−t)

)

(5.1)

fTi
(t) = 2ν

1.01

π
e

1
2
(ti−1−t) exp

(

−4ν
1.01

π
e

1
2
(ti−1−t)

)

. (5.2)

Claim 5.4. Lemmas 5.2 and 5.3 hold if they hold for the extended and simplified dis-
tribution of types in Equation (5.1), where not finding a next neighbour in the original
distribution corresponds to a negative type in the extended one.

Proof. We prove the result by showing that the given cdf is a lower bound on the actual
cdf at any point. This means there is a coupling in which any vertex of the actual distri-
bution is coupled with a vertex of higher or equal type and same angle in the simplified
distribution. We later prove that the distance we change the type by does not depend on
the type of the active vertex for the vertices that we consider, so a higher type cannot
have a negative influence on the result we want to prove. If the type of a vertex is less
than logR, we can use Lemma 2.1 with ε = 0.009 to get a bound on the relative angle for
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possibly adjacent vertices up to type R − 2 logR < R − logR − c0(0.009) for sufficiently
large N . Note that the expected number of vertices of type larger than R− 2 logR is

N
cosh(2 logR) − 1

cosh(R) − 1
= o(1).

Thus the probability of having such a vertex is o(1) and we can condition on no such
vertex existing. We use outer tubes to estimate the expected value of N t

t0
, the number

of neighbours of type at least t of a vertex of type t0 6 logR, using the outer tubes for
ε = 0.009 as an upper bound, taking N large enough and using Lemma 1.3:

EN t
t0
.N

∫ R−2 logR

t

2
1.009

π
e

1
2
(t0+t′−R)e−t′dt′

6 νe
1
2
R

∫ R−2 logR

t

2
1.01

π
e

1
2
(t0+t′−R)e−t′dt′

= 2ν
1.01

π
e

t0
2

∫ R−2 logR

t

e−
1
2
t′dt′

6 2ν
1.01

π
e

t0
2

∫ ∞

t

e−
1
2
t′dt′

= 4ν
1.01

π
e

1
2
(t0−t).

With this, as we are using the Poisson distribution, we get the following cdf for the
distribution of the next type, given we are at step i with type t0:

FTi
(t) = P(Ti 6 t|Ti−1 = t0) = P(|N t

t0
| = 0)

= exp(−E(N t
t0

)) > exp

(

−4ν
1.01

π
e

1
2
(t0−t)

)

.

To prove the two lemmas we need to introduce new notation. Instead of looking at
the types of the vertices at some step, we analyse the jump Ji = Ti − Ti−1 in some step,
the difference in types from one step to the next. This makes sense as FTi

(t) only depends
on the difference of Ti and t, each jump is distributed as

FJ(j) = exp

(

−4ν
1.01

π
e−

j
2

)

fJ(j) = 2ν
1.01

π
e−

j
2 exp

(

−4ν
1.01

π
e−

j
2

)

.

Starting at a vertex of type T0(= log logR), we write

Ti = T0 +
i

∑

k=1

Jk,

the electronic journal of combinatorics 22(3) (2015), #P3.24 32



where we couple with a sequence of independent random variables having as their cdf the
function FJ . The type Ti is thus coupled with the sum of independent copies of the jump.

We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. We first calculate the following expectation: for s > 0 we have

EesJk =

∫ ∞

−∞

esx2ν
1.01

π
e−

x
2 exp

(

−4ν
1.01

π
e−

x
2

)

dx

= 2ν
1.01

π

∫ ∞

−∞

e(s−
1
2
)x exp

(

−4ν
1.01

π
e−

x
2

)

dx.

Changing variables y = 4ν 1.01
π
e−

x
2 , dy = −2ν 1.01

π
e−

x
2 dx we get esx =

(

4ν 1.01
πy

)2s

and

EesJk = −
∫ 0

∞

(

4ν
1.01

πy

)2s

e−ydy =

(

4ν
1.01

π

)2s ∫ ∞

0

y−2se−ydy

=

(

4ν
1.01

π

)2s ∫ ∞

0

y(1−2s)−1e−ydy =

(

4ν
1.01

π

)2s

Γ(1 − 2s).

Given a starting vertex of type log logR, we calculate, for large N , the probability of
reaching type at least logR in any step i < log logR. For s > 0 arbitrary we have

P(Ti > logR) = P(T0 +
i

∑

k=1

Jk > logR) 6 P(
i

∑

k=1

Jk >
1

2
logR)

= P(es
∑i

k=1 Jk > e
s
2
logR)

6 Ees
∑i

k=1 Jke−
s
2
logR

= e−
s
2
logR

i
∏

k=1

EesJk ,

using Markov’s inequality. Choosing 0 < s < 1
2

arbitrarily, we get some constant C > 1
such that EesJk = C. Thus

P(Ti > logR) 6 e−
s
2
logRC i 6 e−

s
2
logRC log2 logR = o(R−c),

for some 0 < c = c(s) < 1. With this, we can use the union bound to bound the
probability that the smooth breadth exploration process has type at least logR at one of
the first log2 logR steps:

P(∃0 < i 6 log2 logR : Ti > logR) 6

log2 logR
∑

i=1

P(Ti > logR) = o

(

log2 logR

Rc

)

.

We use the same technique to prove Lemma 5.2
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Proof of Lemma 5.2. We would like to determine the probability that the process (Ti)i>0

crosses 0 by step M := log2 logR. We have

P(TM > 0) = P(T0 +
M
∑

k=1

Jk > 0) 6 P(
M
∑

k=1

Jk > − log logR)

s>0
= P(es

∑M
k=1 Jk > e−s log logR)

6 (logR)s
M
∏

k=1

EesJk ,

again using Markov’s inequality. As ν < π
8

and using the calculations from the proof of
Lemma 5.3, we can find 0 < s < 1

2
and 0 < ĉ < 1 such that for 1 6 k 6 M

EesJk 6

(

4ν
1.01

π

)2s

Γ(1 − 2s) = ĉ < 1.

With this we have

P(TM > 0) 6 (logR)sĉlog
2 logR = o

((

log logR

logR

)c)

,

for some c > 0. Thus P(TM < 0) = 1 − o
((

log logR
logR

)c)

.

5.3 The supercritical case

For the second part of Theorem 1.5, we split the disk DR into cells so that the expected
number of vertices in each cell is constant. Furthermore, the cells are defined so that if
two neighbouring cells contain at least one vertex each, then these vertices are adjacent.
With some rules for adjacencies of the cells we can then explore possible components and
estimate the number of vertices in them by the number of cells that correspond to them.

For the discretisation, we define the sequence ti = i log 2 for 0 6 i 6
⌈

R
4 log 2

⌉

=: T .

Using this, we define the bands Bi = {p ∈ DR : ti−1 6 tp < ti}, for 1 6 i 6 T . Let

M = 2T
⌈

2π
2T 0.95e−R/2

⌉

. For each i, we split band Bi into M/2i−1 cells C
(i)
j , starting at

angle 0 with j = 1. Note that the definition of M implies that the projection of a cell in
Bi is exactly split into two in Bi−1. See Figure 3 for an example of the discretisation. As
2T = o(e

R
2 ), it follows that M = 2T 2π

2T 0.95e−R/2 (1 + o(1)), whereby the number of cells in

band i is (1 + o(1)) 2πeR/2

2i−10.95
. We claim the following property:

Lemma 5.5. Any vertex in cell C
(i)
j is adjacent to any vertex in any of the cells C

(i)
j−1,

C
(i)
j+1, C

(i−1)
2·j−1, C

(i−1)
2·j and C

(i+1)
⌈j/2⌉ , where we let C

(i)
0 = C

(i)

M/2i−1 and C
(i)

M/2i−1+1
= C

(i)
1 .

Proof. This configuration of cells is illustrated on the left part of Figure 4. As we consider
vertices of type at most R/4 + log 2, Lemma 2.1 implies that any two of these vertices
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B1

B2

B3

B4

B5

Figure 3: The discretisation of DR.

are connected if their relative angle is at most 1.92e1/2(tu+tv−R), provided that N is large
enough.

The vertices in C
(i)
j have type at least ti−1 = (i − 1) log 2 and the relative angle of

a vertex v in C
(i)
j−1 and u in C

(i)
j is at most 2i−1 2 · 0.96 e−R/2 = 1.92e−R/2+(i−1) log 2 6

1.92e1/2(tu+tv−R), so v and u are adjacent. The same bounds on the maximum relative
angle and minimum type hold for vertices u′ in C

(i)
j and v′ in C

(i+1)
⌈j/2⌉ , so u′ and v′ are

adjacent. By simple change of variables we get all the desired adjacencies.

We define two auxiliary graphs, a blue graph Gb and a red graph Gr. The vertices of
the blue graph will be those cells that contain at least one vertex, whereas the vertices
of the red graph are those that contain no vertex. Two vertices of Gb are connected
if the corresponding cells share an edge. This means that vertices of P(N ;α, ν) in the
cells corresponding to adjacent vertices in Gb are themselves adjacent by Lemma 5.5.
Two vertices of Gr are connected if their corresponding cells share at least a point. This
corresponds to the same adjacency as in Gb but with added “diagonal” edges. These
adjacencies are illustrated in Figure 4. We denote by Gc the union of the two graphs.
For the graph resulting from the example in Figure 3, see Figure 5. Whenever necessary
we will refer to the vertices of the graphs as cells. A blue component is a component of
Gc that consists of blue vertices. A red path is a path in Gc that consists of red vertices.
These are the main structures we use, but we also use the red/blue notation for other
structures. Because of the adjacency rules, a blue component is always surrounded by a
red path or a collection of red paths, the periphery and the inside of the disk. We are
now interested in the probability of a vertex being blue or red. Note that

M = 2T

⌈

2π

2T0.95e−R/2

⌉

6
2π

0.95e−R/2
+ 2T 6

2π + 2T e−R/2

0.95e−R/2
. (5.3)
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Figure 4: Blue(left) and red(right) neighbourhood.

Figure 5: Gc resulting from the Graph in Figure 3.
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Claim 5.6. The probability of a vertex in Gc being red is at most e−
ν
5π , the probability of

being blue is at least 1 − e−
ν
5π .

Proof. Let vi,j be a vertex of Gc that corresponds to C
(j)
i . Let P

(j)
i be the number of

vertices in C
(j)
i . Using Lemma 1.3 and the above upper bound on M (5.3), we have for

large N

E(P
(j)
i ) = N

∫ ti

ti−1

2i−1

M
(1 + o(1))e−tdt

> 0.94νeR/2 2i−1e−R/2

2π + 2T e−R/2

∫ ti

ti−1

e−tdt

> 0.94ν
2i−1

2π + 2
R

4 log 2
+1e−R/2

(e−ti−1 − e−ti)

= 0.94ν
2i−1

2π + 2e−R/4
(e−(i−1) log 2 − e−i log 2)

= 0.94ν
2i−1

2π + 2e−R/4
2−i(2 − 1)

>
ν

5π
,

for N large enough. Since the number of vertices in C
(j)
i follows the Poisson distribution

with parameter E(P
(j)
i ), we have

P(vi,j red) = P(P
(j)
i = 0) = e−E(P

(j)
i ) 6 e−

ν
5π

P(vi,j blue) = P(P
(j)
i > 0) = 1 − e−E(P

(j)
i ) > 1 − e−

ν
5π

Our aim is now to show that there is a blue component of εN cells for some ε > 0.
Note that this implies that a giant component in P(N ;α, ν) exists as each of the εN cells
contain at least one vertex and the adjacency rules of the vertices of Gc imply that these
vertices induce a connected component in P(N ;α, ν). Or main tool for proving this is
the following lemma that bounds the maximum length of a red path, using an argument
similar to Peierls’ argument from percolation theory(see [15] [20]).

Lemma 5.7. Let ν > 20π. A.a.s. all red paths have length at most L := T − 1 =
⌈

R
4 log 2

⌉

− 1.

Proof. Note that any cell in the red graph has at most 8 neighbours. The number of cells

is at most M(1 + 1/2 + 1/4 + · · · ) = 2M
(5.3)
< 4π

0.94
eR/2 < 5πeR/2. As ν > 20π, this implies

that the number of cells is at most N . Let p = P(vi,j blue) > 1− e−
ν
5π > 1− e−

20π
5π > 0.98

by Claim 5.6. Thus 8(1 − p) < 0.2. Let Pc(ℓ) be the number of red paths starting at cell
c and having length ℓ. We have

E(Pc(ℓ)) 6 8ℓ(1 − p)ℓ = (8(1 − p))ℓ < 0.2ℓ.
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Figure 6: Blue lollipop.

Since the number of cells is at most N we thus can bound the expected number of red
paths of length ℓ by 0.2ℓN . Let c be such that 1+c = log 5

2 log 2
≃ 1.16. The expected number

of paths of length at least L is

N
∑

ℓ>L

0.2ℓ = O
(

N 0.2L
)

= O
(

eR/20.2
R

4 log 2

)

= O
(

eR/2e− log 5( R
4 log 2)

)

= O
(

eR/2e−(1+c)R
2

)

= O
(

νe−cR
2

)

= o(1).

This means the probability of having a red path of length at least L is o(1).

With this we are able to make statements on the structure of Gc. We prove that a.a.s.
there is a blue lollipop Lb: a blue cycle surrounding the origin of DR that contains a cell
in B1 or is connected to such a cell by a blue path (see Figure 6). We call the relevant
cell of B1 the base of the lollipop.

Claim 5.8. Let ν > 20π. A.a.s. Gc contains a blue lollipop.

Proof. By Lemma 5.7, a.a.s. there is no red path of length L. The number of bands is
T > L, so a.a.s. there is no red path connecting B1 and BT . This implies that there must
be a blue cycle C surrounding the origin of DR. Now, the number of cells in any band is
at least

M/2T >
2π

2T e−R/2
>

2π

2
R

4 log 2
+1e−R/2

= πeR/4 > L

for N sufficiently large, as L = O(R). Thus any red cycle surrounding C would have
length at least L. But by Lemma 5.7 a.a.s. there is no such cycle. This implies that C
must either contain a cell of B1 or there must be a blue path P connecting C and some
cell in B1. In either case we have a blue lollipop.
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Starting at the base c1 of the lollipop we will consider the following process traversing
the band B1 in clockwise direction:

• Starting with i = 1, do the following steps until c1 is reached again.

• Let c′i be the first red cell in B1 in clockwise direction from ci. Let Si be the number
of blue cells from ci to c′i, including ci.

• Let ri be the red cell on B1 that is farthest away from c′i in clockwise direction and
that is connected to c′i via a red path - if such a cell does not exist, then ri = c′i.
Denote by Ri the number of cells of B1 between c′i and ri in clockwise direction,
including these two. Let ci+1 be the cell succeeding ri.

The process will end at some index i = K. Assume that SK is the number of blue cells
between cK and c1 in clockwise direction, including cK if cK 6= c1 but excluding c1. Note
that the number of cells in B1 is M = 2T

⌈

2π
2T 0.95e−R/2

⌉

> 2π
ν
N . This means we have

SK +
∑K−1

i=1 (Si + Ri) = M > 2π
ν
N . We will prove that a.a.s. K is linear in N . We begin

with the following properties:

Claim 5.9.

1. Any two cells ci and cj are connected by a blue path for 1 6 i, j 6 K.

2. If the red path connecting c′i and ri has length ℓ, then Ri < 2ℓ/2+2.

Proof.

1. Let ĉ be the blue cell preceding c′1. If there was no blue path connecting ĉ to c2 then
there would be a red path originating at a red cell between c′1 and c2 and ending
in a red cell r̂1 that is farther in the anticlockwise direction from c′1 than c2, thus
also farther than r1. But this means this red path must meet the path from c′1 to
r1, creating a path from c′1 to r̂1 — a contradiction. This means that ĉ is connected
to c2 via a blue path. But all the cells between c1 and ĉ are blue, so there is a blue
path from c1 to c2. Similarly, we can show that ci is connected to ci+1.

2. We fix ℓ and want to find the path of length ℓ between c′i and ri that “encloses” most
cells in B1. Note that the cells in a band become half as many when we increase the
index of the band by one. We claim that the optimal path for this choice increases
the band by one with each of its first ⌊ℓ/2⌋ edges, stays in the same band for one
edge if ℓ is odd, and then decreases the band by one for the remaining ⌊ℓ/2⌋ edges,
such as the one in Figure 7. Assume this is not the case, then at least one of the
following must be true:

• There is an edge between two cells at the same band that is not of the highest
index among all cells in the path. Then, taking away this edge and instead
inserting one at the highest index, thus shifting the remaining path, means that
at least one more cell is covered with a path of the same length, a contradiction.
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Figure 7: Red path of length 9 covering the maximum number of cells.

• There is an index i such that there are two cells c1 and c2, both in the band Bi,
that are connected on the path via a subpath of length at least 2 using only
cells in the bands B1 − Bi. In this case we can create a new subpath of the
same length that just uses cells in the band Bi+1 as inner vertices and leading
to a new cell c′2. Because the number of cells doubles in each band this new
subpath must cover more cells than the old one and thus we can create a path
of length ℓ that covers more cells, a contradiction.

So the optimal path has the desired form, as shown in Figure 7. Note that each cell
in band i covers 2i−1 cells in band B1. If ℓ is odd, this yields ℓ−1

2
upward/downward

edges each and one edge (2 cells) staying at the same level, yielding
∑(ℓ−1)/2

i=1 2i−1 +
2 · 2(ℓ−1)/2 = 3 · 2(ℓ−1)/2 − 1 < 2ℓ/2+2 covered cells. If ℓ is even, the path uses ℓ

2

upward/downward edges each and no edge (one cells) staying at the same level,

yielding
∑ℓ/2

i=1 2i−1 + 2ℓ/2 = 2ℓ/2+1 − 1 < 2ℓ/2+2 covered cells.

Let ℓi be the length of the red path connecting c′i and ri. We define independent
random variables Ki distributed as Geom(1 − 8e−ν/5π). Note that this independence can
only make the bound larger as no two of the corresponding paths can meet, so a path
cannot use anything that has been exposed already by a different path. Also, the number
of available next cells in any step can only go down if we consider the dependent case.
Because every red cell has at most 8 neighbours and every cell is red with probability at
most e−ν/5π, we have

P(ℓi > ki) <
(

8e−ν/5π
)ki

.

In other words, ℓi is stochastically bounded from above by Ki. Also, by Claim 5.9(ii) Ri

is stochastically bounded by 2ℓi/2+2, which in turn is stochastically bounded from above
by 2Ki/2+2. We denote the latter by Yi.
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We define independent random variables Xi and Yi, where Xi = Geom(e−ν/5π) and
Yi = 2Ki/2+2. With this Si is stochastically bounded by Xi and Ri is stochastically
bounded by Yi. Define

Lt =
t

∑

i=1

(Xi + Yi)

and let T := max{t : Lt < 2π
ν
N}. As the number of cells in B1 is at least 2π

ν
N and

with Claim 5.9, T is a stochastic lower bound on the number of steps we need to take to
cover B1 with Si and Ri, which we denoted by. K. But the latter is also a bound on the
vertices of P(N ;α, ν) which belong to the component that contains the vertices induced
by the lollipop. With µ1 = E(X1) = eν/5π and µ2 = E(Y1) we have E(Lt) = t(µ1 + µ2).
Let t̂ = 1.9π

ν(µ1+µ2)
N . Note that µ1 + µ2 > 1 as µ2 > 0 and µ1 = eν/5π > 1. Hence,

E(Lt̂) 6 1.9π
ν
N . If P(Lt̂ > 2π

ν
N) = o(1), it follows that a.a.s. T > t̂. Hence, by the

stochastic domination we deduce that a.a.s. K > t̂.

Claim 5.10. Let ν > 20π. We have

P

(

Lt̂ >
2π

ν
N

)

= o(1).

Proof. We have

Var(Lt) = t(Var(X1) + Var(Y1)),

Var(X1) = Var(Geom(e−ν/5π)) =
1 − e−ν/5π

e−2ν/5π
< e

ν
2π and

Var(Y1) = E(Y 2
1 ) − E

2(Y1).

But

E(Y 2
1 ) =

∞
∑

k=1

2k+4(8e−ν/5π)k 6 16
∞
∑

k=1

(16e−ν/5π)k
ν>20π
< 16

∞
∑

k=1

(2/e)k <
32

e− 2
= 64.

Thus Var(Y1) < 64 and Var(Lt̂) < (64 + e
ν
2π )t̂ = O (N). By Chebyshev’s inequality,

P

(

Lt̂ >
2π

ν
N

)

= O(1/N).

Note that E(X1) = e
ν
5π and

E(Y1) 6 1 +
∞
∑

k=1

(

8e−ν/5π
)k

2k/2+2 ν>20π
< 1 + 4

∞
∑

k=1

(

8e−4
)k

2k/2 < 1 + 4
∞
∑

k=1

(

1

4

)k

< 3.

So t̂ > 1.9π
ν(eν/5π+3)

N . We can now prove the second part of the main theorem.
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Proof of the second part of Theorem 1.5. Let ν > 20π and let Gc be defined as above. By
Claim 5.8 there is a blue lollipop a.a.s. By Claims 5.9.1 and 5.10 a.a.s. the blue lollipop
extends into a blue component of order at least t̂ > 1.9π

ν(eν/5π+3)
N . Setting ν = 20π, this

quantity is at least 1.9π
20π(e4+3)

N > N/610. Note that increasing ν can only stochastically
increase the order of the largest connected component. Thus, for any such ν > 20π, the
order of the largest component is a.a.s. at least N/610.

6 Conclusion

In this paper we have studied the component structure of the KPKVB-model, a geometric
model of random graphs on the hyperbolic plane. This can be viewed as a dependent
version of the well-known Chung-Lu model of inhomogeneous random graphs. The model
was recently introduced by Krioukov et al. [19], whose aim is to develop a geometric
framework for the study of complex networks. We determine the critical parameters
which control the typical component structure of such a random graph. Namely, we
determine the critical parameter which controls the emergence of a giant component. We
show that in the regime where the random graph exhibits power law degree distribution
with exponent greater than 3, all components are sub-linear. On the other hand, when
the exponent of the power law is less than 3, then a component that contains a positive
fraction of the vertices exists with high probability.

However, our results are not precise as far as the size of the giant component is
concerned. Showing, for example, a law of large numbers seems to be a challenging
problem, mainly due to the dependencies that are present in this model. Also, for the
case α = 1, we conjecture that there is a critical value for ν above which the giant
component emerges.
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[13] P. Erdős and A. Rényi, On the evolution of random graphs, Pub. Math. Inst. Hungar.
Acad. Sci. 5 (1960), 17–61.

[14] R. van der Hofstad, Random Graphs and Complex Networks, preprint available
at http://www.win.tue.nl/~rhofstad/.

[15] G. Grimmett, Percolation, Grundlehren der mathematischen Wissenschaften, vol 321,
Springer, 1999.

[16] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, Wiley, New York, 2000.

[17] J. F. C. Kingman, Poisson processes, Oxford University Press, New York, 1993.

[18] M. Kiwi and D. Mitsche, A bound on the diameter of random hyperbolic graphs,
preprint available at arXiv:1408.2947, 19 pages.

[19] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat and M. Boguñá, Hyperbolic
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A Proof of Lemma 1.1

Proof of Lemma 1.1. Note that R = (2/ζ) log(N/ν) and R′ := (2/ζ ′) log(N/ν) are chosen
such that N = νeζR/2 = νeζ

′R′/2.
The desired coupling is constructed as follows. We pick θ1, . . . , θN i.i.d. uniform on

[0, 2π) and we pick U1, . . . , UN i.i.d. uniform on [0, 1].
We now let ρ1, . . . , ρN and ρ′1, . . . , ρ

′
N be defined by the equations:

Fα,R(ρi) = Fα′,R′(ρ′i) = Ui (for i = 1, . . . , N ,) (A.1)

where Fα;R is the cdf that goes with the pdf (1.1). That is:
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Fα;R(r) =







0 if r < 0,
cosh(αr)−1
cosh(αR)−1

if 0 6 r 6 R;

1 otherwise.

(A.2)

(Note that in this way the ρis have exactly the distribution with pdf (1.1) and the ρ′is
have the same pdf but with α′, R′ in place of α,R.) The points used in the construction
of G(N ; ζ, α, ν) will be (θ1, ρ1), . . . , (θN , ρN) while the points used in the construction of
G(N ; ζ ′, α′, ν) will be (θ1, ρ

′
1), . . . , (θN , ρ

′
N).

It remains to be seen that this way we get two isomorphic graphs.

Claim A.1. We have ρ′i = (α/α′)ρi for all i.

Proof. Observe that

α′R′ = α′ · (ζ/ζ ′)R = α′ · (α/α′)R = αR.

Thus, the equation (A.1) defining ρi and ρ′i yields:

cosh(αρi) = cosh(α′ρ′i).

Since cosh(x) is strictly increasing for x > 0, it follows that we must have αρi = α′ρ′i.

Let us write dij for the distance between (θi, ρi) and (θj, ρj) in the curvature-ζ-surface,
and let d′ij be defined analogously.

Claim A.2. For all i, j we have d′ij = (α/α′)dij.

Proof. By the hyperbolic cosine rule we have that

cosh(ζdij) = cosh(ζρi) cosh(ζρj) − sinh(ζρi) sinh(ζρj) cos(|θi − θj|),
and

cosh(ζ ′d′ij) = cosh(ζ ′ρ′i) cosh(ζ ′ρ′j) − sinh(ζ ′ρ′i) sinh(ζ ′ρ′j) cos(|θi − θj|).
Now observe that

ζρi = α · (ζ/α) · ρi = α · (ζ ′/α′)ρi = ζ ′ρ′i,

using Claim A.1, and similarly ζρj = ζ ′ρ′j. It follows that

cosh(ζ ′d′ij) = cosh(ζdij).

Again using that cosh(x) is strictly increasing for x > 0 (and the distances dij, d
′
ij are

nonnegative), we see that d′ij = (ζ/ζ ′)dij = (α/α′)dij.

Since R′ = (ζ/ζ ′)R = (α/α′)R, we see that

dij 6 R if and only if d′ij 6 R′,

which proves the lemma.
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B The proof of Lemma 1.2

Very similarly to the proof of Lemma 1.1, the coupling is constructed as follows. We pick
θ1, . . . , θN i.i.d. uniform on [0, 2π) and we pick U1, . . . , UN i.i.d. uniform on [0, 1]. We now
let ρ1, . . . , ρN and ρ′1, . . . , ρ

′
N be defined by the equations:

Fα,R(ρi) = Fα′,R′(ρ′i) = Ui (for i = 1, . . . , N .) (B.1)

(Fα,R is as defined in the proof of Lemma 1.1, and R := 2 log(N/ν), R′ := 2 log(N/ν ′).)
Again, we note that in this way the ρis have exactly the distribution with cdf Fα,R

and the ρ′is have cdf Fα′,R′ . The points used in the construction of G(N ;α, ν) will be
(ρ1, θ1), . . . , (ρN , θN) while the points used in the construction of G(N ;α′, ν ′) will be
(ρ′1, θ1), . . . , (ρ

′
N , θN).

We need the following geometric fact.

Lemma B.1. Suppose that p = (r, θ), q = (s, ϑ) are two points in the hyperbolic plane
satisfying distH(p,O), distH(q, O), distH(p, q) 6 R and let p′ = (r′, θ), q′ = (s′, ϑ) with
r′ 6 r, s′ 6 s. Then distH(p′, q′) 6 R.

Before giving the proof of this lemma, let us remind the reader that disks are convex,
also in the hyperbolic plane. This means that if D is a disk in the hyperbolic plane and
x, y ∈ D then the geodesic between x, y is contained in D. One way to see this is by
noting that every disk can be isometrically mapped to a disk with origin O, and that
in the projective disk model of the hyperbolic plane (a.k.a. the Beltrami-Klein model) a
hyperbolic disk with origin O looks like a Euclidean disk, while geodesics are just line
segments in the projective disk model. (See for instance Section 4.8 of [22] for a description
of the projective disk model.)

Proof of Lemma B.1: It is enough to consider the case when r′ < r and s′ = s.
(Another application of this case will then give the full result.) Observe that the geodesic
between O and p is just the line segment between them. So in particular, p′ lies on the
geodesic between O and p. Since O, p ∈ B(q;R) it follows that also p′ ∈ B(q;R), as
required. �

We also need the following observation, which can be rephrased as stating that the
radius under the (α,R)-quasi uniform distribution stochastically dominates the radius
under the (α′, R)-quasi uniform distribution if α > α′.

Lemma B.2. If α > α′ and ν = ν ′ then Fα,R(r) 6 Fα′,R′(r) for every r ∈ R.

Proof. Note that ν = ν ′ implies that also R = R′. Let us thus fix R > 0 and 0 < r < R,
and define ϕ(α) := Fα,R(r) for every α > 0. Our aim will be to show that dϕ

dα
is non-

positive for every α > 0, which will clearly yield the result.
We obtain:

dϕ

dα
=

r sinh(αr)(cosh(αR) − 1) −R sinh(αR)(cosh(αr) − 1)

(cosh(αR) − 1)2
.
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Observe that this is non-positive if and only if

αR sinh(αR)

cosh(αR) − 1
>

αr sinh(αr)

cosh(αr) − 1
.

We claim this is the case for all 0 6 r 6 R. To see this, it suffices to show that
(x sinh x)/(cosh x− 1) is nondecreasing for x > 0. Let us thus compute

[

x sinh x

cosh x− 1

]′

=
(sinh x + x cosh x)(cosh x− 1) − x sinh2 x

(cosh x− 1)2

=
sinh x cosh x + x cosh2 x− sinh x− x cosh x− x sinh2 x

(cosh x− 1)2

=
sinh x cosh x + x(cosh2 x− sinh2 x) − sinh x− x cosh x

(cosh x− 1)2

=
sinh x cosh x + x− sinh x− x cosh x

(cosh x− 1)2

=
(sinh x− x)(cosh x− 1)

(cosh x− 1)2

> 0.

So our claim holds, and we see that indeed dϕ
dα

6 0 for all α > 0. This proves the
lemma.

Lemma B.3. If α = α′ and ν 6 ν ′, then Fα,R(r) 6 Fα′,R′(r) for every r ∈ R.

Proof. Observe that ν 6 ν ′ implies that R > R′. This also gives cosh(αR) − 1 >

cosh(αR′) − 1, and hence the lemma.

Combining the last two lemmas gives:

Corollary B.4. If α > α′ and ν 6 ν ′, then Fα,R(r) 6 Fα′,R′(r) for every r ∈ R.

Together with the definition of ρi, ρ
′
i this immediately gives:

Corollary B.5. If α > α′ and ν 6 ν ′, then, in the coupling described above, we have that
ρi > ρ′i for all 1 6 i 6 N .

Corollary B.5 together with Lemma B.1 yield Lemma 1.2.
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C Corrigendum added 29 Dec 2018

The proof of Lemma 1.2 in the earlier version of the paper contained a slight oversight.
Here we provide an corrected statement with a full proof.

Lemma C.1. Let α, α′, ν, ν ′ > 0 be such that α > α′ and ν 6 ν ′. Then there exists a

coupling such that, with probability tending to one as N → ∞, the graph G(N ;α, ν) is a

subgraph of G(N ;α′, ν ′).

The only change of the statement compared to that of Lemma 1.2 is the addition of
the phrase “with probability tending to one as N → ∞”. This means that for practically
all applications of the old lemma, certainly the ones we have in mind, the new lemma
serves just as well.

We use the same coupling as in the original paper, but for completeness we specify it
again. We pick ϑ1, . . . , ϑN i.i.d. uniform on [0, 2π) and we pick U1, . . . , UN i.i.d. uniform
on [0, 1]. We now let ρ1, . . . , ρN be defined by the equations:

Fα,R(ρi) = Ui (for i = 1, . . . , N .) (C.1)

where Fα,R(.) denotes the cdf of the radius coordinate under the α-quasi uniform distri-
bution. That is,

Fα;R(r) =







0 if r < 0,
cosh(αr)−1
cosh(αR)−1

if 0 6 r 6 R;

1 otherwise.

(C.2)

Note that the ρis have exactly the distribution with cdf Fα,R. The points used in the
construction of G(N ;α, ν) will be (ρ1, ϑ1), . . . , (ρN , ϑN) where we take R = 2 log(N/ν).

(This coupling defines G(N ;α, ν) simultaneously for all α, ν > 0.)
Let us also recall that, by the hyperbolic cosine rule, provided ρi + ρj > R, there is an
edge between vertex i and vertex j if and only if

cos(ϑij) >
cosh ρi cosh ρj − coshR

sinh ρi sinh ρj
, (C.3)

where ϑij = min(|ϑi−ϑj|, 2π−|ϑi−ϑj|) is the angle between the i-th and the j-th point.
If ρi + ρj 6 R then by the triangle inequality there is always an edge between vertex i
and vertex j.

We will split the proof of Lemma C.1 into two parts, as follows.

Lemma C.2. If α > α′ and ν = ν ′ then, under the coupling described above, we have

that G(N ;α, ν) is a subgraph of G(N ;α′, ν ′).

Lemma C.3. If α = α′ and ν 6 ν ′ then under the coupling described above, with proba-

bility tending to one as N → ∞, we have that G(N ;α, ν) is a subgraph of G(N ;α′, ν ′).

Together these lemmas clearly prove Lemma C.1. Lemma C.2 relies on Lemma B.2
above, but we include a proof here as well for completeness. The proof of Lemma C.3
needs an additional argument that unfortunately was omitted in the original version of
our paper.

the electronic journal of combinatorics 22(3) (2015), #P3.24 47



The proof of Lemma C.2

We will imagine the situation where ϑ1, . . . , ϑN and U1, . . . , UN and R = 2 log(N/ν)
remain fixed as we increase α, and ρ1, . . . , ρN are defined via (C.1). It is enough to show
that, as we increase α, no new edges will be introduced.

We need the following observation, which can be rephrased as stating that the radius
under the (α,R)-quasi uniform distribution stochastically dominates the radius under the
(α′, R)-quasi uniform distribution if α > α′.

Lemma C.4. If α > α′ and ν = ν ′ then Fα,R(r) 6 Fα′,R′(r) for every r ∈ R.

Proof. Note that ν = ν ′ implies that also R = R′. Let us thus fix R > 0 and 0 < r < R,
and define ϕ(α) := Fα,R(r) for every α > 0. Our aim will be to show that dϕ

dα
is non-

positive for every α > 0, which will clearly yield the result.
We obtain:

dϕ

dα
=

r sinh(αr)(cosh(αR)− 1)−R sinh(αR)(cosh(αr)− 1)

(cosh(αR)− 1)2
.

Observe that this is non-positive if and only if

αR sinh(αR)

cosh(αR)− 1
>

αr sinh(αr)

cosh(αr)− 1
.

We claim this is the case for all 0 6 r 6 R. To see this, it suffices to show that
(x sinh x)/(cosh x− 1) is nondecreasing for x > 0. Let us thus compute

[

x sinh x

cosh x− 1

]

′

=
(sinh x+ x cosh x)(cosh x− 1)− x sinh2 x

(cosh x− 1)2

=
sinh x cosh x+ x cosh2 x− sinh x− x cosh x− x sinh2 x

(cosh x− 1)2

=
sinh x cosh x+ x(cosh2 x− sinh2 x)− sinh x− x cosh x

(cosh x− 1)2

=
sinh x cosh x+ x− sinh x− x cosh x

(cosh x− 1)2

=
(sinh x− x)(cosh x− 1)

(cosh x− 1)2

> 0.

So our claim holds, and we see that indeed dϕ
dα

6 0 for all α > 0. This proves the
lemma.

Note that Lemma C.4 implies that ρi is non-decreasing in α for i = 1, . . . , N . To
complete the proof of Lemma C.2, it therefore suffices to show the right-hand side of (C.3)
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is non-decreasing in ρi, ρj. To see this we differentiate:

∂

∂ρi

[

cosh ρi cosh ρj − coshR

sinh ρi sinh ρj

]

=
sinh ρi cosh ρj
sinh ρi sinh ρj

−
cosh ρi(cosh ρi cosh ρj − coshR)

sinh2 ρi sinh ρj

=
cosh ρi coshR + (sinh2 ρi − cosh2 ρi) cosh ρj

sinh2 ρi sinh ρj

=
cosh ρi coshR− cosh ρj

sinh2 ρi sinh ρj

> 0,

using that cosh2 x− sinh2 x = 1 for the penultimate line and that ρj 6 R for the last line.
By symmetry, the same of course holds for the derivative with respect to ρj.

The proof of Lemma C.3

We begin by noting that R := 2 log(N/ν) is monotone decreasing in ν.
Similarly to the proof of Lemma C.2, we will imagine the situation where ϑ1, . . . , ϑN

and U1, . . . , UN remain fixed and we vary R, and ρ1 = ρ1(R), . . . , ρN = ρN(R) are defined
via (C.1) above.

We first consider the derivatives of ρi(R) and ρj(R). Since we keep Ui constant,
differentiation of (C.1) with respect to R gives that

α sinh(αρi) ·
d ρi
dR

=
d

dR

[

cosh(αρi)− 1
]

= Ui ·
d

dR

[

cosh(αR)− 1
]

= Ui · α sinh(αR)

(C.1)
=

cosh(αρi)− 1

cosh(αR)− 1
· α sinh(αR).

In other words,
dρi
dR

=
ϕ(αρi)

ϕ(αR)
, (C.4)

where

ϕ(x) :=
cosh x− 1

sinh x
.

Of course the corresponding statement holds for
dρj
dR

.

The following observations about ϕ will turn out to be useful:

Lemma C.5. The function ϕ is positive and strictly increasing on (0,∞), and

ϕ(x) = Θ(x), (C.5)
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as x ց 0; and, as x → ∞, for every fixed k ∈ N we have

ϕ(x) = 1 + 2
k
∑

i=1

(−1)ie−ix +O(e−(k+1)x). (C.6)

Proof of Lemma C.5: That ϕ is positive follows immediately from the definition. The
derivative of ϕ is:

ϕ′(x) = 1−
(cosh x− 1) cosh x

sinh2 x
=

sinh2 x− cosh2 x+ cosh x

sinh2 x
=

cosh x− 1

sinh2 x
> 0.

(Using that cosh2 x− sinh2 x = 1.)
To see (C.5) we note that

ϕ(x) =
1
2
(ex + e−x)− 1
1
2
(ex − e−x)

=
ex + e−x − 2

ex − e−x
=

2 + 2x2/2 + 2x4/4! + · · · − 2

2x+ 2x3/3! + 2x5/5! + · · ·

=
x2/2 + x4/4! + · · ·

x+ x3/3! + · · ·
=

x

2
·
1 + 2x2/4! + 2x4/6! + · · ·

1 + x2/3! + x4/5! + · · ·

= Θ(x).

To see (C.6) we note that

ϕ(x) =
ex + e−x − 2

ex − e−x
= 1 +

2e−x − 2

ex − e−x
= 1− 2e−x 1− e−x

1− e−2x
.

Now we note that, for |z| < 1:

z(1− z)

1− z2
= z(1− z)(1 + z2 + z4 + · · · ) = z − z2 + z3 − z4 + · · · .

Hence, taking z = e−x, we see

ϕ(x) = 1 + 2
∞
∑

i=1

(−1)ie−ix = 1 + 2
k
∑

i=1

(−1)ie−ix +O
(

e−(k+1)x
)

.

�

We need the following straightforward observations

Lemma C.6. Let α, ν > 0 be fixed.

1. A.a.s., G(N ;α, ν) does not contain any point of radius ρi 6 e−R/4;

2. If α > 1
2
then, a.a.s., G(N ;α, ν) does not contain any point with radius ρi 6 1;
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Proof of Lemma C.6: This is straightforward application of the first moment method.
The expected number of points with radius at most 1 is

N ·
cosh(α)− 1

cosh(αR)− 1
= O(1) · eR/2−αR = O(1) · eR( 1

2
−α),

which is o(1), if α > 1
2
. Note that cosh(x) − 1 = O(x2), when x → 0. So, a similar

calculation now yields the expected number of points of radius ar most e−R/4:

N ·
cosh(αe−R/4)− 1

cosh(αR)− 1
= O(1) · eR/2−R/2−αR = O (1) · e−αR = o(1).

�

Let us remark that, under our coupling, the conclusions of Lemma C.6 in fact hold
simultaneously for all G(N ;α, ν ′) with ν ′ 6 ν. (This is because the radii ρ1, . . . , ρN and
R are both non-decreasing in ν. I.e., if we decrease ν then the radii can only get larger
while e−R/4 will decrease.)

The derivative of the right-hand side of (C.3) with respect to R is

(

− cosh ρj + coshR cosh ρi

sinh2 ρi sinh ρj

)

dρi
dR

+

(

− cosh ρi + coshR cosh ρj

sinh ρi sinh
2 ρj

)

dρj
dR

−
sinhR

sinh ρi sinh ρj

=
1

sinh ρi sinh ρj

(

coshR cosh ρi − cosh ρj
sinh ρi

dρi
dR

+
coshR cosh ρj − cosh ρi

sinh ρj

dρi
dR

− sinhR

)

.

(C.7)

We fix a small ε > 0, to be made precise later, and we first assume that ρi, ρj are both
at least ε. Since ρi+ ρj > R, we can assume without loss of generality that ρj > R/2 and
ρi > ε. We remark that

(C.7) >
1

sinh ρi sinh ρj

((

cosh ρi − 1

sinh ρi
·
dρi
dR

+
cosh ρj − 1

sinh ρj
·
dρj
dR

)

coshR− sinhR

)

=
1

sinh ρi sinh ρj

(

ϕ(ρi)ϕ(αρi) + ϕ(ρj)ϕ(αρj)

ϕ(αR)
coshR− sinhR

)

.

Hence, under the assumption that ρi > ε, ρj > R/2, the factor in front of coshR in (C.7)
can be lower bounded as follows.

ϕ(ρi)ϕ(αρi) + ϕ(ρj)ϕ(αρj)

ϕ(αR)
>

ϕ(ε)ϕ(αε) + 1− oR(1)

1− oR(1)
= 1 + ϕ(ε)ϕ(αε) + oR(1).

For sufficiently large R, this expression is larger than 1, which implies the derivative of
the right-hand side of (C.3) is positive. (Using that ϕ(ε), ϕ(αε) > 0.) It thus remains to
consider only the case when one of the two radii is less than ε. Let us also note that, by
part 2 of Lemma C.6, a.a.s., there are no points with radius less than ε if α > 1/2. Hence
we can further assume in the sequel that α 6 1/2.
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Let us thus consider a pair i, j with ρi 6 ε and ρi + ρj > R (or in other words
ρj > R − ρi). By part 1 of Lemma C.6 we can and do further assume that ρi > e−R/4.
We now use the more detailed lower bound

(C.7) >
1

sinh ρi sinh ρj





(cosh ρi −
cosh(ρj)
cosh(R)

sinh ρi

dρi
dR

+
cosh ρj − 1

sinh ρj

dρj
dR

)

coshR− sinhR





=
1

sinh ρi sinh ρj





(cosh ρi −
cosh(ρj)
cosh(R)

sinh ρi

ϕ(αρi)

ϕ(αR)
+

ϕ(ρj)ϕ(αρj)

ϕ(αR)

)

coshR− sinhR





>
1

sinh ρi sinh ρj





(cosh ρi −
cosh(R−ρi)
cosh(R)

sinh ρi

ϕ(αρi)

ϕ(αR)
+

ϕ(R− ρi)ϕ(α(R− ρi))

ϕ(αR)

)

coshR− sinhR





=:
1

sinh ρi sinh ρj

(

(A+B) coshR− sinhR
)

.

For convenience, we write r := ρi from now on. We let k ∈ N be such that kα > 1, and
note that

B =
(1−O(e−R))(1− 2

∑k
i=1 e

iα(r−R) +O(e−R))

1− 2
∑k

i=1 e
−iαR +O(e−R)

= (1−O(e−R))

(

1 + 2

∑k
i=1 e

−iαR −
∑k

i=1 e
iα(r−R) +O(e−R)

1− 2
∑k

i=1 e
−iαR +O(e−R)

)

= (1−O(e−R))

(

1− 2

∑k
i=1(e

iαr − 1)e−iαR

1−O(e−αR)

)

= (1−O(e−R))

(

1−
O(re−αR)

1−O(e−αR)

)

= 1−O(re−αR)

= 1− o(r). (C.8)

(using α < 1/2 and r > e−R/4 for the penultimate line.) Next we consider

A =
1
2
(er + e−r)− eR−r+er−R

eR+e−R

sinh r
·

Ω(r)

1−O(e−αR)
=

1
2
(er + e−r)− e−r −O(e−2R)

sinh r
·

Ω(r)

1−O(e−αR)

=
sinh r −O(e−2R)

sinh r
·

Ω(r)

1−O(e−αR)
=
(

1−O(e−2R/r)
)

·
Ω(r)

1−O(e−αR)

>
(

1−O(e−7R/4)
)

· Ω(r)

= Ω(r). (C.9)

Combining (C.8) and (C.9), we see that A+B > 1 (provided we have chosen the constant
ε appropriately small, and R is sufficiently large), which in turn implies the derivative of
the right hand side of (C.3) with respect to R is nonnegative as was to be shown.
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