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Abstract

We study the class of edge-transitive graphs of square-free order and valency at
most k. It is shown that, except for a few special families of graphs, only finitely
many members in this class are basic (namely, not a normal multicover of another
member). Using this result, we determine the automorphism groups of locally prim-
itive arc-transitive graphs with square-free order.

Keywords: edge-transitive graph; arc-transitive graph; stabilizer; quasiprimitive
permutation group; almost simple group

1 Introduction

For a graph I' = (V| E), the number of vertices |V| is called the order of I". A graph
I' = (V, E) is called edge-transitive if its automorphism group Autl" acts transitively on the
edge set E. For convenience, denote by ETSQF(k) the class of connected edge-transitive
graphs with square-free order and valency at most k.

The study of special subclasses of ETSQF (k) has a long history, see for example [1, 4,
5, 17, 18, 21, 22, 23] for those graphs of order being a prime or a product of two primes.
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Recently, several classification results about the class ETSQF (k) were given. Feng and Li
[9] gave a classification of one-regular graphs of square-free order and prime valency. By
Li et al. [12, 14], one may obtain a classification of vertex-transitive and edge-transitive
tetravalent graphs of square-free order. By Li et al. [13] and Liu and Lu [16], one may
deduce an explicitly classification of ETSQF(3). In this paper, we give a characterization
about the class ETSQF(k).

A typical method for analyzing edge-transitive graphs is to take normal quotient. Let
I' = (V, E) be a connected graph such that a subgroup G < Autl acts transitively on E.
Let N be a normal subgroup of GG, denoted by N <1 G. Then either N is transitive on V,
or each N-orbit is an independent set of I'. Let Viy be the set of all N-orbits on V. The
normal quotient I'y (with respect to G and N) is defined as the graph with vertex set
Vy such that distinct vertices B, B" € Vi are adjacent in I'y if and only if some o € B
and some o/ € B’ are adjacent in I'. We call 'y non-trivial if N # 1 and |Vy| > 3.
It is well-known and easily shown that ['y is an edge-transitive graph. Moreover, if all
N-orbits have the same length (which is obvious if G is transitive on V'), then I'y is a
regular graph of valency a divisor of the valency of I'; in this case, I' is called a normal
multicover of T'y.

A member in ETSQF(k) is called basic if it has no non-trivial normal quotients. Then
every member in ETSQF (k) is a multicover of some basic member, or has a non-regular
normal quotient (which might occur for vertex-intransitive graphs). Thus, to a great
extent, basic members play an important role in characterizing the graphs in ETSQF (k).
The first result of this paper shows that, except for a few special families of graphs, there
are only finitely many basic members in ETSQF (k).

Theorem 1. Let I' = (V, E) be a connected graph of square-free order and valency k > 3.
Assume that G < Autl’ acts transitively on E and that each non-trivial normal subgroup
of G has at most 2 orbits on V. Then one of the following holds:

(1) T is a complete bipartite graph, and G is described in (1) and (5) of Lemma 15;

(2) G is one of the Frobenius groups Z,:Zy and Z,:Zoy, where p is a prime;

(3) soc(G) = My, My2, Mas, Moz, Moy or Jy;

(4) G=A, orS, withn < 3k;

(5) G = PSL(2,p) or PGL(2,p),

(6) soc(G) = PSL(2,p") with f > 2 and p/ > 9, and either k is divisible by p/~! or
f =2 and k is divisible by p+ 1;

(7) soc(G) = Sz(2/) and k is divisible by 2%/ 71;

(8) G is of Lie type defined over GF(p’) with p < k, and either

(i) [4]f <k, and G is a d-dimensional classical group with d > 3; or
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(ii) 2f < k, and soc(G) = Ga(p’), Da(p?), Fa(p’), 2Es(p’), or E+(p/).

Remark 2 (Remarks on Theorem 1). For a finite group G, the socle soc(G) of G is the
subgroup generated by all minimal normal subgroups of G.. A finite group is called almost
simple if soc(G) is a non-abelian simple group.

(a) The groups G in case (1) are known except for G being almost simple.
(b) The vertex-transitive graphs in case (5) are characterized in Theorem 27.

(c) Some properties about the graphs in cases (6)-(7) are given in Lemmas 14 and 15,
respectively.

It would be interest to give further characterization for some special cases.

Problem 3. (i) Characterize edge-transitive graphs of square-free order which admits
a group with socle PSL(2,¢q), Sz(q), A, or a sporadic simple group.

(ii) Classify edge-transitive graphs of square-free order of small valencies.

For a graph I' = (V, E) and G < Autl’, the graph T is called G-locally primitive if,
for each v € V, the stabilizer of o in GG induces a primitive permutation group on the
neighbors of a in I'. The second result of this paper determines, on the basis of Theorem
1, the automorphism groups of locally primitive arc-transitive graphs of square-free order.

Theorem 4. Let T' = (V| E) be a connected G-locally primitive graph of square-free order
and valency k > 3. Assume that G is transitive on V' and that T" is not a complete bipartite
graph. Then one of the following statements is true.

(1) G = Doy Zy, 2nk is square-free, k is the smallest prime divisor of nk, and T is a
bipartite Cayley graph of the dihedral group Da,,;

(2) G = M:X, where M is of square-free order, X is almost simple with socle T descried
as in (8)-(6) and (8) of Theorem 1 such that MT = M x T, T has at most two
orbits on V' and T is T-edge-transitive; in particular, if T = PSL(2,p), then M, T,
and k are listed in Table 3, where o € V.

2 Preliminaries

Let I' = (V, E) be a graph without isolated vertices, and let G < Autl’. The graph I'
is said to be G-vertez-transitive or G-edge-transitive if G acts transitively on V or FE,
respectively. Recall that an arc in I' is an ordered pair of adjacent vertices. The graph I"
is called G-arc-transitive if G acts transitively on the set of arcs of I'. For a vertex ao € V,
we denote by I'(«) the set of neighbors of o in I'; and by G, the stabilizer of « in G.
Then it is easily shown that I' is G-arc-transitive if and only if I' is G-vertex-transitive
and, for o € V| the vertex-stabilizer G, acts transitively on I'(«).
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Let I' = (V, E) be a connected G-edge-transitive graph. Note that each edge of I" gives
two arcs. Then either I' is G-arc-transitive or G has exactly two orbits (of the same size
|E|) on the arc set of I". If T" is not G-vertex-transitive then I is a bipartite graph and, for
a € V| the stabilizer G, acts transitively on I'(«). If I' is G-arc-transitive, then there exists
g € G\ G, such that (a, )9 = (8, @) and, since I' is connected, (g, G,) = G; obviously,
this g can be chosen as a 2-element in Ng(Gag) with ¢g* € Gug, where Go5 = G, N Gp.
Suppose that I' is G-vertex-transitive but not G-arc-transitive. Then the arc set of I is
partitioned into two G-orbits A and A*, where A* = {(«, ) | (#,«) € A}. Thus, for
a € V., the set I'(«v) is partitioned into two G,-orbits A(a) = {8 | (o, 8) € A} and
A*(a) ={p | (B,a) € A}, which have equal size. Then we have the next lemma.

Lemma 5. Let ' = (V, E) be a connected G-edge-transitive graph, and {«, 5} € E. Then
one of the following holds.

(1) The stabilizer G, is transitive on I'(a), |I'(a)| = |G @ Gapl, and either

(i) G is intransitive on V'; or

(i) G = (g,Gq) for a 2-element g € Ng(Gap) \ Go with (a,5)9 = (5,a) and
2
g° € Gaﬁ.

(2) T is G-vertex-transitive, G, has ezactly two orbits on I'(«) of the same size |G, :
Gogsl; in particular, |I'(a)| = 2|Gq @ Gagl.

Let I' = (V, E) be a regular graph and G < Autl. For o € V, the stabilizer G,
induces a permutation group G (on I'(«)). Let GY be the kernel of this action. Then
GL) Go/ Gl Considering the actions of Sylow subgroups of G oon V, it is easily
shown that the next lemma holds, see [7] for example.

Lemma 6. Let I' = (V, E) be a connected reqular graph, G < Autl’ and o € V. Assume
that G, # 1. Let p be a prime divisor of |Ga|. Then p < |I'(«)|. If further ' is G-vertex-
transitive, then p divides ]Gg(a)\ and, for f € I'(a), each prime divisor of |Gaps| is less
than |I'(a)].

A permutation group G on a set 2 is semiregular if G, = 1 for each o € Q. A
transitive permutation group is regular if further it is semiregular.

Lemma 7. Let I" be a connected G-vertex-transitive graph, N <G < Autl’ and v € V.
Assume that N& is semireqular on ['(a). Then NP =1,

Proof. Let p € I'(a). Then g = a® for some z € G, and hence N3y = Nye = N N
Gor = (NN GR)* = (Ny)*. It follows that Ng(ﬁ) and N2 are permutation isomorphic;

®) is semiregular on ['(B). Thus NI acts trivially on I'(B), and so

NY =N 5[1]~ Since I' is connected, N fixes each vertex of I', hence NI = 1. n
Lemma 8. Let I' = (V, E) be a connected graph, N 9 G < Autl’ and o € V. Assume

that either N 1is reqular on V', or I' is a bipartite graph such that N is reqular on both the
bipartition subsets of I'. Then Gl =1,

in particular, N;
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Proof. Set X = NGY. Then X, = Gl and xIM = GB], and hence X1 = 1.

Assume first that N is regular on V. Then G = NG,. It follows that X is normal in
G. Thus our results follows from Lemma 7.

Now assume that I" is a bipartite graph with bipartition subsets U and W, and that
N is regular on both U and W. Without loss of generality, we assume that a € U.
Then I'(a) € W, and X, = X3 for § € I'(a). Let v € I'(8). Then v € U. Set
Ey = {{7,6}" | x € X}. Then ¥ = (V, Ep) is a spanning subgraph of I', and X acts
transitively on FEy. Thus ¥ is a regular graph, and X, is transitive on ¥(«). Noting
Y(a) € I'(«), it follows that |X(a)| = 1, and hence ¥ is a matching. In particular,
Xpg = X,. It follows that GV =Xx,=X 3 = X,. Since all vertices in U are equivalent
under X, we have X, acts trivially on I'(y). Then a similar argument as above leads to
Gh = X, =Xs = Xp for any § € I'(y) and 6§ € I'(0). Then, by the connectedness, we
conclude that G fixes each vertex of I'. Thus G = 1. O

We end this section by quoting a known result.

Lemma 9 ([12]). Let I' = (V, E) be a connected G-edge-transitive graph, N < G < Autl’
and o € V.. Then all Ny-orbits on I'(a) have the same length.

3 Complete bipartite graphs

We first list a well-known result in number theory. For integers a > 0 and n > 0, a prime
divisor of a™ — 1 is called primitive if it does not divide a* — 1 for any 0 < i < n.

Theorem 10 (Zsigmondy). For integers a,n > 2, if a” —1 does not have primitive prime
divisors, then either (a,n) = (2,6), orn =2 and a+ 1 is a power of 2.

Let G be a permutation group on V', and let 2 be a permutation on V' which centralizes
G. If z fixes some point o € V, then x fixes af for each g € G. Thus the next simple
result follows.

Lemma 11. Let G be a permutation group on V. Assume that N is a normal transitive
subgroup of G. Then the centralizer Cg(N) is semiregular on V', and Cg(N) = N if
further N s abelian.

Recall that a transitive permutation group G is quasiprimitive if each non-trivial nor-
mal subgroup of G is transitive. Let G be a quasiprimitive permutation group on V', and
let B be a G-invariant partition on V. Then G induces a permutation group G® on B.
Assume that |B| > 2. Since G is quasiprimitive, G acts faithfully on B. Then G® = G,
and so soc(G®) = soc(@G).

Lemma 12. Let G be a quasiprimitive permutation group of square-free degree. Then
soc(G) is simple, so either G is almost simple or G < AGL(1,p) for a prime p.

Proof. Let GG be a quasiprimitive permutation group on V of square-free degree. Let B
be a G-invariant partition on V such that [B] > 2 and G is primitive. Noting that |B| is
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square-free, by [15], soc(G®) is simple. Thus soc(G) 2 soc(GP) is simple, and the result
follows. N

Let G be a permutation group on V. For a subset U C V, denote by Gy and G
the subgroups of G fixing U set-wise and point-wise, respectively. For X < G and an

X-invariant subset U of V, denote by XV the restriction of X on U. Then XV = X/X .
We now prove a reduction lemma for Theorem 1.

Lemma 13. Let I' = (V| E) be a connected G-edge-transitive graph of square-free order
and valency k > 3, where G < Autl’. Assume that each minimal normal subgroup of G
has at most two orbits on V. Then one of the following holds:

(1) T = Kg, k is an odd prime, G = (Z2:7,).Zs and T is G-vertez-transitive, where [
1s a dwisor of k — 1;

of G, soc(G) = T? for a nonabelian simple group T and, for o € V, either

(i) soc(G)y = H X T for a subgroup H of T with k =|T : H|; or
(ii) £ =105, T = A7 and soc(G), = Ag x PSL(3,2).

Proof. Let N be a minimal normal subgroup of G. Then N is a directed product of
isomorphic simple groups. Since I" has valency k£ > 3, we know that |V| > 3. Since |V is
square-free and N has at most two orbits on V', we conclude that N is not an elementary
abelian 2-group. In particular, N has no a subgroup of index 2.

Case 1. Assume first that G has two distinct minimal normal subgroups N and M.
Then NN M =1, and hence NM = N x M.

Suppose that both N and M are transitive on V. By Lemma 11, N and M are
regular on V; in particular, |N| = |M| = |V|. Thus N and M are soluble, it implies that
N = M = Z, for an odd prime p. Again by Lemma 11, N = M, a contradiction.

Without loss of generality, we assume that /V is intransitive on V. Then I is a bipartite
graph, whose bipartition subsets are N-orbits, say U and V' \ U. A similar argument as
above paragraph yields that M has no subgroups of index 2. It follows that M fixes both
U and V \ U set-wise, and hence U and V' \ U are two M-orbits on V.

Let X = NM and A = U or V \ U. By Lemma 11, both N® and M* are regular
subgroups of X2. Set N = T where T is a simple group. Then N(ay = T7 for some
j < i, and so N® & N/N = T, Tt follows that |A] = [N2| = |T|"J. Since T is
simple and |A| is square-free, i —j = 1 and N® & T = Z,, where p = |A| is an odd prime.
Similarly, M* = Zy, and so M is abelian. In particular, X = N x M is abelian and |X|
is a power of p. It implies that X =2 Z,. Then, by Lemma 11, N& = M2 = X2, Thus
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NxM=X<X?x XV\A Zf). Then X = ZZQ,, and hence N = M = 7Z,. Moreover,
Xa) E Zy,.

Let a € A. Then G, > X(a). By Lemma 6, k = [T'(a)| > p, and so I' = K,,,,. Noting
that N is regular on A and V' \ A, by Lemma 8, G, acts faithfully on I'(«), and so G,
is isomorphic to a subgroup of the symmetric group S,. Noting that G, has a normal
subgroup X(a) = Z,, it follows that G, is isomorphic to a subgroup of the Frobenius group
Loy:lop—r. Write G = Zy:Zy, where [ is a divisor of p — 1. Then Gao = NG, = Zg:Zl.

Clearly, X(a) has at least p+ 1 orbits on V. Then, by the assumptions of this lemma,
X(a) is not normal in G. On the other hand, (X(a))? = (X7)a¢) = X(a) for each g € Ga,
yielding X(a) <t Ga. It follows that G' # Ga, and hence G is transitive on V. Note that
|G : Ga| < 2. Then part (1) of this lemma follows.

Case 2. Assume that N := soc(G) is the unique minimal normal subgroup of G.

Assume that N is simple. If N is nonabelian then (4) occurs. Assume that N = Z,
for some odd prime p. Then N is regular on each N-orbit on V. Thus G, is faithful on
['(a) by Lemma 8, where ao € V. Noting that Cs(N) is normal in G, we conclude that
Ce(N) = N. Thus G/N = Ng(N)/Cg(N) < Aut(N) =2 Z,—1, and so G S AGL(1, p).
Set G = Zy:Zy,, where m is a divisor of p — 1. Let a € U. Then G, = NG,/N <
G/N = Z,,; in particular, G, is cyclic. Recalling that G, is faithful on I'(«), it implies
that G, = Zj. Thus one of (2) and (3) occurs by noting that |G : (NG, )| < 2.

In the following we assume that N = T for an integer [ > 2 and a simple group 7.
If N is transitive on V' then G is quasiprimitive on V', and hence soc(G) = N is simple
by Lemma 12, a contradiction. If G is intransitive on V', then G is faithful on each of its
orbits, and then N is simple by Lemma 12, again a contradiction. Thus, in the following,
we assume further that I' is G-vertex-transitive and N has two orbits U and W on V.
Note that |U| = |W| = |21| is odd and square-free.

Since I' is G-vertex-transitive, |G : Gy| = 2. Let © € G\ Gy. Then G = Gy(x),
22 € Gy, U* = W and W* = U. Let B be a Gy-invariant partition of U such that
(Gy)P is primitive. Set C = {B* | B € B}. Then (Gp)° is also primitive. By [15], both
soc((Gy)P) and soc((Gy)¢) are simple. Then soc((Gy)?) = soc((Gy)¢) = T. Let K be
the kernel of Gy acting on B. Then K7 is the kernel of Gy acting on C, and K** = K.
Since K, K* < Gy, we have K N K* < Gy. Noting that (K N K*)* = K N K7, it follows
that K N K* < G. Since K N K7 has at least 2|B| > 2 orbits on V, we have K N K* = 1.
Then Gy < Gy /K x Gy /K® = (Gy)? x (Gy)°, yielding N = T2,

We claim that 7" is a nonabelian simple group. Suppose that 7" = Z, for some
(odd) prime p. Then (Gy)P = (Gy)¢ < Zy:Zy1, and so G = Gu.Zy < ((Zy:Zp-1) X
(Zy:Zy—1)).Zy. Let H be a p/-Hall subgroup of G with x € H. Then G = N:H,
H < (Zy-1 X Zy—1).Zy. Moreover, Hy is p/-Hall subgroup of Gy, H = Hy(z) and
Hy S Zy—y X Zy—q. Note that N is the unique minimal normal subgroup of G. Then H
is maximal in GG, and thus G can be viewed as a primitive subgroup of the affine group
AGL(2,p). Since Hy is an abelian normal subgroup of H, by [19, 2.5.10], Hy is cyclic. It
follows that Hy < Z,—1. Since Hy has index 2 in H, by [19, 2.5.7], Hy is an irreducible
subgroup of GL(2, p). Then, by [19, 2.3.2], |Hy| is not a divisor of p — 1, a contradiction.
Therefore, T is a nonabelian simple group.
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Set N =T xT,, where T} = Ty, =2 T. Since T} and T5 are isomorphic nonabelian simple
groups, T} and T are the only non-trivial normal subgroups of N. Thus Ny € {1,T,75}.
For g € Gy, we have (N))? = (N?)ws) = Nwy. Thus Ny <Gy. Let x € G\ Gy. Then
U* =W and W* = U, yielding (N(U))m = N(W) and (N(W))x = N(U). It follows that
either {Nwy), Nw)} = {T1,T>} or N is faithful on both U and W. The former case yields
that Ny acts transitively on W, and so (i) of part (5) follows.

Assume that NV is faithful on both U and W. Then neither T} nor T5 is transitive on
U. Let O be the set of Ti-orbits on U, and let O € O. Then T5 is transitive on @. Thus T’
has two transitive permutation representations of degrees |O| and |O|, respectively. Then
T has two primitive permutation representations of degrees n; and ny, where n; > 1 is a
divisor of |O] and ny > 1 is a divisor of |O|. Since |V| = 2|U| = 2|0||O)] is square-free, n,
and ny are odd, square-free and coprime. Inspecting [15, Tables 1-4], we conclude that T’
is either an alternating group or a classical group of Lie type.

Suppose that 7" = PSL(d,q) with d > 3. By the Atlas [8], neither PSL(3,2) nor
PSL(4,2) has maximal subgroups of coprime indices. Thus we assume that (d, q) # (3, 2)
or (4,2). Then, by [15, Table 3],

P {Hﬁ-io(qmlj—l) | 1<i<d}u{nj:° (@ ) l<i< g}'
[Tioi(¢7 — 1) (IT5=i (@7 — 1))? Z

If ¢ — 1 has a primitive prime divisor 7, then both n; and n, are divisible by r, which
is not possible. Thus ¢ — 1 has no primitive prime divisor, and so (¢,d) = (2,6) by
Theorem 10. Computation of n; and n, shows that this is not the case.

Similarly, we exclude other classes of classical groups of Lie type except for PSL(2,p/),
where p is a prime. By the Atlas [8], we exclude PSL(2, p/) while p/ < 31. Suppose that
T = PSL(2,p’) with p/ > 32. By [15, Table 3], one of n; and n, is p/ + 1 and the other
one is divisible by p. This is not possible since one of p/ + 1 and p is even.

Now let T' = A, for some ¢ > 5. By the above argument, we may assume that A, is
not isomorphic to a classical simple group of Lie type. Then ¢ # 5, 6 or 8. Note that
for ¢ > 5 and a < b < £, the binomial coefficient () = (5)(;2%)/(}_,). It is casily shown
that (¢) > (2_,) = (%); in particular, (¢) is not a divisor of (}_,). Thus (¢) and (§) are not
comprime, and so at most one of n; and n, equals to a binomial coefficient. Checking the
actions listed in [15, Table 1] implies that either ¢ = 7, or ¢ = 2a for a € {6,9,10,12,36}.
Suppose the later case occurs. Then one of n; and ny is %(Z“) and the other one is a
binomial coefficient, say (3*). But computation shows that such two integers are not
coprime, a contradiction. Therefore, T' = A-.

Checking the subgroups of A7, we conclude that {n;,n.} = {|O|, |0|} = {7, 15}. Take
a € O. Recall that I' is G-vertex-transitive. Then there is an element x € G'\ G such
that {o,a”} € E, U* = W and W* = U. Since N = T x Ty is the unique minimal normal
subgroup of G, we know that 77 = T and T = Tj. It follows O” is a Ty-orbit on W, and
so O := {O0"* | h € Gy} is the set of Ty-orbits on W. Moreover, T} acts transitively on
O”. Note that |O] = |O*| and |O| = |O*|. Thus, without loss of generality, we may assume

that |O] = 7 and |O] = 15. Then (T3)o = PSL(3,2) and (71), = Ag, where o € O. Recall
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that 75 is intransitive on V. Since T5 << N and N is transitive on U, we conclude that
each Ty-orbit on U has size 15. It follows that (T5)o = (12)a. Then N, = (T1)a X (12)a,
and so N, = (T1)a X (T2)a = Ag x PSL(3,2) as [N : N,| = |U| = |0]|O] = 105. Note
that Noe = (No)® = (T1)a X (T2)a)” = (T2)as X (T1)a=. Then it is easily shown that
NoNNpe = (T1)a N (T1)az) X (T2)a N (T2)a=) = Sy X Sy. By the choice of z, we conclude
that |I'(a)] = [Ny @ (Na N Nae)| = 105, Thus I' = Kygs.105, and hence (ii) of part (5)
occurs. [

4 Graphs associated with PSL(2, p/) and Sz(2)

Let I' = (V, E) be a connected graph of square-free order and valency k. Assume that
G < Autl is almost simple with socle T'. Assume further that G is transitive on FE and
that T has at most two orbits on V. Let {«a, 8} € E. Then |T,| = |Ts| as I is a regular
graph. Then |Tj : T,p| = |74 : Tup| and, by Lemma 9, |T,, : T, is a divisor of k = |I'(«)].
Moreover, since |V| is square-free, it is easily shown that T;, # Tj.

Lemma 14. Let I' = (V| E) be a connected G-edge-transitive graph of square-free order
and valency k. Assume that soc(G) = PSL(2,p’) with f > 2 and p/ > 9, and that soc(Q)
has at most two orbits on V. Then one of the following statements holds:

(i) f=2,T,=PGL(2,p) or PSL(2,p), and k is divisible by p or p+ 1;

(i) To = ZL":Zy for a divisor | of p — 1, and k is divisible by p'='; further, if T is
G-locally primitive then k = p/~!;

(iii) T, = Zg:Zl for a divisor 1 of p’ —1, and k is divisible by p’ ; further, if T is G-locally
primitive then k = p/.

Proof. Let T = soc(G). Take a € V and a maximal subgroup M of T" with T,, < M.
Then both [T : M| and |M : T,| are square-free as [T : T,| is square-free. By [15], either

2
M = ZZ{:Z(SE) and |T: M| =p/ + 1, 0or f =2, M = PGL(2,p) and |T : M| = 2.

Assume that T, is insoluble. Then f = 2 and T, = PGL(2,p) or PSL(2,p). Let
p € I'(a). Recall that T, # Ts and |1 : Tap| = |[Ta : Tap| is a divisor of k. If
T, = PSL(2,p) then, by [11, I1.8.27], |1, : T,p| is divisible by p or p + 1. Suppose that
T, = PGL(2,p). Then T, is maximal in 7', and so T' = (T,,,T). Thus |Ts : Tos| > 2 as
T is simple; in particular, PSL(2, p) # T,3. Checking the subgroups of T, which do not
contain PSL(2, p) (refer to [3]), we conclude that |T,, : T,p| is divisible by p or p+ 1. Thus
part (i) occurs.

In the following, we assume that T, is soluble. Since p? is not a divisor of |T : T,|,
each Sylow p-subgroup of T,, has p/ or p/~!. Then, inspecting the subgroups of T', we
conclude that T, = T for § € I'(a), and that T, has a unique Sylow p-subgroup.

Let @ be a Sylow p-subgroup of T,3. Then @ is normal in T,3. Suppose that @) # 1.
Let P, and P, be the Sylow p-subgroups of T;, and T, respectively. Then PLNP, = @ # 1.
By [11, I1.8.5], any two distinct Sylow p-subgroups of 7" intersect trivially. It follows Py
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and P, are contained the same Sylow p-subgroup, say P of T'. In particular, P, = P, and
P, = Pg. For v € I'(B), since I' is G-edge-transitive, we have |T,3| = |T3,|. A similar
argument implies that P, is the Sylow p-subgroup of 7),. It follows from the connectedness
of T that Py is the Sylow p-subgroup of Ty for any 0 € V. Thus P contains a normal
subgroup (Ps | 6 € V) # 1 of G, a contradiction. Thus, 7,4 is of order coprime to p, and
so |T,, : Tnpl is divisible by |Pi| = p/~! or p/. Thus, by Lemma 9, k is divisible by p/~!
or p/, respectively.

If M = PGL(2, p) then, inspecting the subgroups of M, we conclude that T,, = Z,:Z,,
where [ is a divisor of p — 1 and divisible by 4. Assume that M = Z/:Z ,;_, . Then

(2,p—-1)
To = 747 or ngl:Zl with [ dividing (57;—:11). Suppose that T, = ZJ~1:Z;. Noting that
M is a Frobenius group, T, is also a Frobenius group. It follows that [ is a divisor of
p/~1 — 1, and so [ divides p — 1.
Assume further that I' is G-locally primitive. Then T, (@ is a normal transitive soluble
subgroup of the primitive permutation group GL of degree k. Since k is divisible by

|P1|, we have soc(Ga™) = 73, for some integer ¢ > 1 such that k = p* > |Py|. Tt follows

Tr) Z;:Zl/, where [’ is a divisor of [. Since P is the Sylow p-subgroup of T,, we have
p' < |Py|. Then k = |Py| = p/~! or p/. Thus one of (ii) and (iii) follows. O

The following lemma gives a characterization of graphs admitting Suzuki groups.

Lemma 15. Let I' = (V| E) be a connected G-edge-transitive graph of square-free order
and valency k. Assume that soc(G) = Sz(2f) with odd f > 3, and that soc(G) has at most
two orbits on V. Then k is divisible by 2271 and T is not G-locally primitive.

Proof. Let a« € V and § € I'(«). Since |T : T,| is square-free, 4 does not divide |T" : T,],
and hence 22/~1 divides |T,|. Then, inspecting the subgroups of T  (see [20]), we get
T, = [2"]:Z;, where n = 2f or 2f — 1, and [ is a divisor of 2/ — 1. So T, has a unique
Sylow 2-subgroup. By [20], for a Sylow 2-subgroup @ of T, all involutions of @) are
contained in the center of (). Noting that any two distinct conjugations of () generate T,
it follows any two distinct Sylow 2-subgroups of 7" intersect trivially. Thus, by a similar
argument as in the above lemma, we know that 7,5 has odd order. Thus k& = |I'(a)]| is
divisible by n = 22/ or 22/~

Finally, suppose that GL@ s a primitive group. Let )1 be the Sylow 2-subgroup
of T,, and @Q be a Sylow 2-subgroup of T' = Sz(2/) with Q > Q;. Then Q = Q; or
(Q1.Z5. By a similar argument as in the above lemma, we conclude that (), is isomorphic

to soc(Gg(a)). It follows that @1 is an elementary abelian 2-group. By [20], Q1 lies in the
center of (), and so () is abelian, which is impossible. Then this lemma follows. O

5 Proof of Theorem 1

Let I' = (V, E) be a connected graph of square-free order and valency k. Assume that a
subgroup G' < Autl’ acts transitively on E and that each non-trivial normal subgroup of
G has at most 2 orbits on V. By Lemma 13, to complete the proof of the theorem, we
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may assume that G is almost simple. Let 7' = soc(G) and o € V. Then T is transitive
or has exactly two orbits on V', and every prime divisor of |T,| is at most k.

Let U be a T-orbit, and let B be a T-invariant partition on U such that |B| > 2 and
T8 is primitive. Noting that |B| is square-free, T is listed in [15, Tables 1-4]. In particular,
if T is one of sporadic simple groups then part (3) of Theorem 1 follows.

Assume that T = A,,, where n > 5. Suppose that n > 3k. By [15], there exists a
prime p such that k& < p < 3k/2, and thus p? divides |T|, and p divides |T,|. So p < k,
which is a contradiction. Therefore, n < 3k, as in part (4) of Theorem 1.

We next deal with the classical groups and the exceptional groups of Lie type. If
T = PSL(2,p’) or Sz(27) then, by Lemmas 14 and 15, one of parts (5), (6) and (7) of
Theorem 1 follows. Thus the following two lemmas will fulfill the proof of Theorem 1.

Lemma 16. Let T be a d-dimensional classical simple group of Lie type over GF(p/),
where p is a prime. Then either T'= PSL(2,p), or p < k and one of the following holds:

(i) T = PSL(2,p’) with f > 2;
(i) [4]f < k; if further T = PSU(d,p’) then 2[2]f < k and [2] is odd.

Proof. Let a € V. Then |T : T,| is square-free and, by Lemma 6, each prime divisor of
|T.| is at most k. Assume that T # PSL(2,p). Let P be a Sylow p-subgroup of T'. Then
p? divides | P|. Since |T : T,| is square-free, p divides |T,|, and so p < k.

Assume that d > 3. Let dy = [2], the largest integer no more than 4. Check the orders
of classical simple groups of Lie type, see [2, Section 47] for example. We conclude that
either

(1) (p*®f —1)(pPS — 1) divides (d,p’ — 1)|T|; or
(2) T = PSU(d,p’) with dy odd, and (p*®f — 1)(p®/ + 1) divides (d, p/ + 1)|T).

Consider part (1) first. Suppose that p®/ — 1 has a primitive prime divisor r. Then
r > dof, and hence either r = d = 3 and f = 1, or r? divides |T|. For the former,
T = PSL(3,p), and so [£]f = 1 < k. For the latter, r divides |T,,|, and so dof < r < k.
Suppose that p%/ — 1 has no primitive prime divisor. By Theorem 10, either dyf = 2
and p + 1 is a power of 2, or (p,dof) = (2,6). For the former, [4]f = dof = 2 < k.
Assume that (p,dof) = (2,6). Then (do, f) = (1,6), (2,3), (3,2), or (6,1). It follows that
(d, f) = (3,6), (4,3), (5.3), (6,2), (7,2), (12, 1) or (13,1). Thus |T| is divisible by 72, and
so |T,| is divisible by 7. Then [¢]f = dof = 6 < 7 < k by Lemma 6.

Now assume that 7' = PSU(d, p/) with dy = [¢] odd. Then (p*®/ — 1)(p™/ + 1)
divides (d,p’ + 1)|T|. A similar argument shows that either p?¥®/ — 1 has no primitive
prime divisor, or 2dyf < k. Assume that p?¥/ — 1 has no primitive prime divisor. Then
either 2dof = 2, or (p,2dyf) = (2,6). For the former, 2dyf = 2 < k. Suppose that
(p,2dof) = (2,6). Then dof = 3, and so (d,p’) = (3,23), (6,2) or (7,2). Thus |T] is
divisible by 72, and so 2dyf =6 < 7 < k. O

Finally we consider the exceptional simple groups of Lie type.
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Lemma 17. Let T be an exceptional simple group of Lie type defined over GF(p!) with
p prime. Then p < k, and one of the following holds:

(i) T = Sz(2/);
(i) T = Go(p’) or 3Dy(p?), p’ # 2% and 2f < k;
(iii) T = Fa(p’), 2Ee(p’) or Ez(p?), pf #2 and 6f < k.

Proof. Note that T has order divisible by p%. Then p divides |T,|, and so p < k. By [15,
Table 4], T is one of Sz(27), Ga(p/), 3Du(p’), Fa(p’), 2Ee(p/) and E;(p’).

For T = Gy(p/) or ®Dy(p’), the order |T| is divisible by (p/ + 1)? and |T : T,| is
divisible by p/ + 1. If p*/ — 1 has a primitive prime divisor r, then |T| is divisible by 72,
and |T,| is divisible by r, hence 2f < r < m. Assume that p?/ — 1 has no primitive prime
divisor. Then either f =1 and 2f =2 < k, or (p,2f) = (2,6). For the latter, T' = Gy(8)
or 3D4(8), and so 9 is a divisor of |T" : T,|, which contradicts that |T" : T,| is square-free.
Thus T is described as in part (ii) of this lemma.

Assume that T is one of F4(p/), ?E¢(p’) and E;(p/). Then |T| is divisible by (p® —1)?

and |T : T,| is divisible by £+
p

—. If p — 1 has a primitive divisor r say, then r divides
IT,|, and hence 6f < r < k. If p% — 1 has no primitive prime divisor, then p = 2 and
f =1, and so |T : T,| is not square-free as it is divisible by 9, and hence T is described
as in part(iii) of this lemma. O

6 Graphs associated with PSL(2, p)

In this section, we investigate vertex- and edge-transitive graphs associated with PSL(2, p),
and then give a characterization for such graphs.

6.1 Examples

It is well-known that vertex- and edge-transitive graphs can be described as coset graphs.
Let G be a finite group and H be a core-free subgroup of GG, where core-free means that
NgecHY = 1. Let [G : H| = {Hxz | x € G}, the set of right cosets of H in G. For an
element g € G \ H, define the coset graph T := Cos(G, H, H{g,g '} H) on |G : H| such
that (Hxz, Hy) is an arc of T if and only if yz=' € H{g,g '} H. Then T is a well-defined
regular graph, and G induces a subgroup of Autl" acting on [G : H] by right multiplication.
The next lemma collects several basic facts on coset graphs.

Lemma 18. Let G be a finite group and H a core-free subgroup of G. Take g € G\ H
and set T = Cos(G, H, H{g,g '} H). Then T is G-vertez-transitive and G-edge-transitive.
Moreover,

(1) T is G-arc-transitive if and only if H{g,g"'}H = HxH for some 2-element x €
Ng(HNHY)\ H with x> € HN HY;

(2) T is connected if and only if (H,g) = G.
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Now we construct several examples.

Example 19. Let T'= PSL(2,p), Z,:Z; = H < T and Z; = K < H, where [ is an even
divisor of 251 with 132;; odd. Then Np(K) = D,_4. Set Np(K) = (a):(b). It is easily
shown that (b, H) = T. Then Cos(T, H, HbH) is a connected T-arc-transitive graph of
valency p.

Example 20. Let T'= PSL(2,p) and H a dihedral subgroup of T

(1) Let Zy = K < H = Dg, for an odd prime r such that |7 : H| is square-free. Let
¢ = %1 such that 4 divides p + €. Then Np(K) = Kx(a):(b) = ZyxDypre = Dpye,
where b is an involution and, if r divides p+¢, we may choose b such that b centralizes
H. Then, for 1 <1 < 1%, the coset graph Cos(T, H, Ha'bH) is a connected T-arc-
transitive graph of valency r.

(2) Let G =T or PGL(2,p) and Z2 = K < H = Dy, for an odd prime r with |G : H|
square-free. Suppose that G contains a subgroup isomorphic to Sy. Then Ng(K) =
K:({y,z) =S4, where z is an involution with y* = y~!. Then Cos(G, T,, ToyzT,) is
a G-arc-transitive graph of valency r.

Example 21. Let Ay = H < T = PSL(2,p) < G = PGL(2,p) with |T" : H| square-
free and Zs = K < H. Let € = £1 with 3 dividing p + €. Then Ny (K) = D, and
N¢(K) = Dypte). Moreover,

(1) Cos
Nz

T,H,HzxH) is a connected (T,2)-arc-transitive graph of valency 4, where = €
K)\ Nz(H) is an involution;

(2) Cos
Ne

G,H,HzH) is a connected (G, 2)-arc-transitive graph of valency 4, where z €
K)\ (T UNg(H)) is an involution.

—~~ o~

Example 22. Let Sy = H < T = PSL(2,p) with |7 : H| square-free.

(1) Let Dy = K < H, and X = T or PGL(2, p) such that |X : H| is square-free and
X has a Sylow 2-subgroup isomorphic to Dig. Then Dyg = Nx(K) = K:(z) for
an involution z € X \ H, and Cos(X, H, HzH) is a connected (X, 2)-arc-transitive
graph of valency 3.

(2) Let S3 =2 K < H and G = PGL(2,p), and ¢ = +1 with 3 dividing p + €. Then
Ng(K) = (0)x K for an involution o. Set X = (o, H). Then X = T or PGL(2, p)
depending on whether or not 12 divides p+e¢. Thus Cos(X, H, HoH) is a connected
(X, 2)-arc-transitive graph of valency 4.

Example 23. Let A; = H < T =PSL(2,p) < G =PGL(2,p) and K < H with K = Ay,
Dyg or S3. Then Ng(K) = K:(z) = Sy, Doy or Dy, respectively, where z € G\ H is an
involution. Set X = (2, H). Then X =T or PGL(2,p), and Cos(X, H, HzH) is either a
connected (X, 2)-arc-transitive graph of valency 5 or 6, or a connected X-locally primitive
graph of valency 10.
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6.2 A characterization

Let I' = (V, E) be a connected G-edge-transitive graph of square-free order and valency
k > 3, where G < Autl. Assume that T := soc(G) = PSL(2, p) for a prime p > 5, and
that G acts transitively on V.

Let @ € V. Then |T : T,| is square-free; in particular, T, has even order. Since
|G : T| < 2, either T is transitive on V', or T" has two orbits on V' of the same length %
Thus |V| = |T : T,,| or 2|T : T,.

Note that the subgroups of T" are known, refer to [11, I1.8.27]. We next analyze one
by one the possible candidates for T,.

Lemma 24. Assume that T, is cyclic. Then T, = Z,, for an even divisor m of ’%, T
1s transitive on V', T' is not G-locally-primitive, and one of the following holds:

(i) T is T-edge-transitive, and k = m or 2m;
(ii) G = PGL(2,p), Go = Zay, or Doy, and k = 2m or 4m.

Proof. Note T, is a cyclic group of even order. By Lemma 7, T, is faithful and semiregular
on I'(«). It is easy to check that no primitive group contains a normal semiregular cyclic
subgroup of even order. Thus I' is not G-locally-primitive. By [11, I1.8.5], T}, is contained
in a subgroup conjugate to Zp:l:l in T. Thus T, = 7Z,, for an even divisor m of =~ il . Then

p(pF 1) is a divisor of |T": T, \ and so |T": T,| is even. It follows that T is transmve on
V. Note that |G,| = m or 2m. It follows that I has valency m, 2m or 4m. Then (i) or
(ii) is associated with the case that T is transitive or intransitive on E, respectively. [

Lemma 25. Assume that |T,| is divisible by p. Then T, = Zp:Zl, T 1s transz'tz've on'V
and I has valency divisible by p, where | is an even divisor of p; with =2 odd. If T is
G-locally primitive, then I' is isomorphic to the graph in Example 19.

Proof. By [11, 11.8.27], recalling that T, has even order, T, = Z,:Z; for an even divisor

[ of 5=, Since |T': T,| = 5~ _1 = (p+1)&* is even and square-free, 21 is odd and T is

transmve on V. By Lemma 7 noting that 7}, is a Frobenius group, 7, X acts faithfully on
I'(e). In particular, each T,-orbit on I'(«) has size divisible by p.

Assume that T' is G-locally primitive. Then T, is transitive on I'(a) as T, < G,.
It implies that T' has valency p and T' is T-arc-transitive. Then I' = Cos(T, T, ToxT,)
for some x € Nr(T,5) with 2? € T,5 and (z,T,) = T, where 8 € T'(a). Note that
N7 (Top) = D,q1. We write Np(Th,5) = (a):(b). Let M be a maximal subgroup of T" with
Ty < M 2 Z,Zs. Then Zoos = Nyy(Tos) < Np(Top). Thus a € M. Write 25 = ij,

where i is odd and j is a power of 2. Then (a) = (a’)x(a’). Since T, = Z; and 21
is odd, we have o' € T,3 < T,. Since [ is even, j # 1. Tt follows from <x To) =T
that r = a*a¥b for some s and t. Then T,2T, = T,a"bT, = (T,0T,)* . Noting that

a~% normalizes T, we have I & Cos(T, Ty, TaxTy) = Cos(T, Ty, TobT,) as Constructed in
Example 19. [

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.25 14



Lemma 26. Assume that T, = Do, with m > 1 coprime to p. Then m is a divisor of
pTil, and I" has valency divisible by 5 or m. If ' is G-locally-primitive, then I' has odd
prime valency v, T, = Daq, or Dy,, and I' is isomorphic to one of the graphs given in
Ezample 20.

Proof. The first part follows from that |T,| is a divisor of |T'| = @.

Let {a, S} be an edge of I'. Suppose that T, contains a cyclic subgroup C' of order
no less than 3. Then C is the unique subgroup of order |C| in both T, and 7. For
an arbitrary edge {v,d}, since I' is G-edge-transitive, {v,0} = {a, 8} for x € G, so
Tys = Thepe = TN Gozpe = TN (Gup)® = (Top)®. Then C® is the unique subgroup of
order |C| in both T, and T5. So C < T, for v € I'(a) UT'(B). Since I' is connected, C
fixes each vertex of I', and so C' =1 as C' < Autl', a contradiction. Thus |T,4| is a divisor

of 4, and hence I' has valency divisible by % or m.

Assume that I' is G-locally primitive. Then T (@) contains a transitive normal cyclic
subgroup. Thus |I'(a))| = r is an odd prime, and Ta@) o Ta/Tg] = (TQGE])/GE] = Do,
Note that TV is a normal cyclic subgroup of T,. By the argument in above paragraph,
|T(L1]| < 2. It follows that T, = Ds, or Dy,.

Let T, = Dy,. Then |T : T,| is even, so T is transitive on V, and hence I" is T-
arc-transitive. Then I' & Cos(T, T,, ToaT,) for some z € Ny(T,5) with 2? € T,5 and
(x,T,) = T. Let e = £1 such that 4 divides p +e. Then Ny (T,5) = Tupx(a):(b) =
ngDpTﬁ = Dpye. It implies that x is an involution. If r does not divides p + €, then
x = a'b for some 1 < i < I%. Assume that r is a divisor of p + €. Then T, is contained
in a maximal subgroup M = D, of T, and Ny, (7T,5) = Z3 contains the center of M.
Without loss of generality, we choose b in the center of M, and so z = a’b for 1 <i < I’%.
Thus I is isomorphic to a graph given in Example 20 (1).

Now let T, = Dy,. Then T,3 = Z2. If T is not transitive on VT, then G = PGL(2, p),
[ is a bipartite graph, and T, = G,. Thus we set X = PSL(2,p) or PGL(2, p) depending
respectively on whether or not T is is transitive on VI'. Then I' & Cos(X,T,, T,xT,)
for some x € Nx(T,5) \ Tug with 22 € T,p; in particular, Nx(T,5)/Tws is of even order
It implies that N7 (Tn5) = S4. Let M be the maximal subgroup of X with 7, < M.
Then 8 divides |M|, and Ny (Tn5) = Dg. Take Ds, = M; > T,,. Then Ny (T,5) =
N (Top). We write Nx(Tos) = Tup:((y):(2)), where z € Ny (T,p) and (y):(z) = Ss.
Noting that z & Ny (T,s5) and x is of even order, we have = = 119’z for some x; € T3
and 7 = 1 or 2. Noting that 2 normalizes T, and y* = y~!, we have Cos(X, T, To2T,) =
Cos(X, Ty, Toy'2T,) = Cos(X,T,, T,yzT,). Thus I' is isomorphic to the graph given in
Example 20 (2). O

Theorem 27. Let I' = (V| E) be a connected G-edge-transitive graph of square-free order
and valency k > 3, where G < Autl'. Assume that soc(G) = PSL(2,p) for a prime p > 5,
and that G is transitive on V. Then, for a € V, the pair (soc(G)a, k) lies in Table 1.
Further, if T' is G-locally primitive, then (soc(G)a, k) lies in Table 2.
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s0c(G)q k remark
Loy, m,2m, 4m m is an even divisor of ’%
Lp:Zy | pm,2pm, 4pm % is odd, m ‘ l
Ds,, 5,m, 2m, 4m m divides ’%
Ay 1,21 I €{4,6,12},32 /| p* — 1,T" is transitive
21,41 p = +3(mod 8),G = PGL(2, p)

Sy 1,21 [>3,1|24,p=+1(mod 8),G, =T,
As 1,21 1 >5,1]60,p = +1(mod 10),G, =T,
Table 1:

s0c(G)a k r remark

Ly 7 P Example 19 (p—1)/2l is odd

Dy, r Example 20 (1) | prime r # p, 32 /| (p* — 1)
Do, r Example 20 (2) | prime r # p, 16 ﬁ (p*—1)
Ay 4 Example 21 32 /(- 1)
Sy 3, 4 Example 22 p = +1(mod 8)

As 5, 6, 10| Example 23 p = £1(mod 10)

Table 2:

Proof. Let I' = (V, E) be a connected G-edge-transitive graph of square-free order and
valency k > 3, where G < Autl'. Assume that 7' := soc(G) = PSL(2, p) for a prime p > 5,
and that G acts transitively on V. Let {a, f} € FE.

Noting that |G : G| = |T : T,,| or 2|T : T,|, we have |G, : T,,| = 1 or 2. Then T, has
at most two orbits on each G,-orbits on I'(cr). By Lemma 9, we have k = [['(a)| = [, 2 or
4l, where | = |T,, : T,,5|. By Lemmas 24, 25 and 26, we need only consider the remaining
case: T, = Ay, S, or As.

Let T,, =S4 or Aj. Checking the maximal subgroups of PGL(2, p) (see [3], for exam-
ple), we know that PGL(2,p) has no subgroups of order 2|T,|. It follows that G, = T,,.
Then k = [ or 2] depending whether or not T is transitive. If T, =Sy, then TE® S3
or Sy, which implies that [ > 3 and [ divides 24. If T,, = A5, Then [ > 5 is a divisor of 60.

Let T, = A4. Assume that T is transitive on E. Then k = [ or 2[, where [ = |T, : T,
for « € I'(a). By Lemma 7, [ # 3. Thus | € {4,6,12}. Assume that 7" is intransitive
on E. Then G = PGL(2,p) and G, = S4, and hence p = +3(mod 8) by checking the
maximal subgroups of G. By Lemma 7, we conclude that 7o = A, and GR® =~ S,. It
follows that k = 2 or 4l for [ € {4,6,12}.

Further, if I' is G-locally primitive, then &k = 4 for T, = Ay, k = 3 or 4 for T,, = Sy,
and k = 5,6 or 10 for T, = A5. Next we determine the G-locally primitive graphs.

Let T, = A4. Then T,,5 = Z3, and T' is (G, 2)-arc-transitive and of valency 4. Let X =
T or PGL(2,p) depending T is transitive or intransitive on V. Then Nx(T,5) = Dygpie),
where t = | X : T'| and € = 1 such that 3 divides p + €. Let € Nx(T,5) with 22 € T
and (x,T,) = X. Then x is either an involution or of order 6, and zy is an involution
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M T, k T-orbits remark

Ly, | LpZy P 1 m and (p — 1)/2ml are odd
1 Dy, r 1,2 prime r # p, 32 /| (p* — 1)
1 Do, r 1,2 prime r # p, 16 /| (p* — 1)
1 | A, 1 1,2 32 (" — 1)

Z, | 72 4 1,2 32/ (p* — 1)

ZG, Sg Z% 4 2 16 (p2 - 1)

1 Sy 3, 4 1,2 p = £1(mod 8)

Zo | A, 4 1 32 | (»?—1)

Sy | 22 4 1 32/ (p? — 1)

ZQ S4 4 2 32 (p2 - 1)

1 As |5, 6, 10 1 p = +1(mod 10)

Zy | As | 6,10 2 p = +1(mod 10),16 A (p* — 1)

Table 3:

for some y € T,g. Note that T,aT, = T,xyT,. Thus, writing I" as a coset graph, I is
isomorphic to one of the graphs in Example 21.

Let T, = S;. Then G, = T,. If I has valency 3, then I' is isomorphic the graph given
in Example 22 (1). If I' has valency 4, then G,3 = S3 and Ng(Gop) = Z2 xS, it follows
that I" is isomorphic the graph given in Example 22 (2).

Finally, if T,, = A5 then G, = T, and G,5 = A4, Dyp or S3, and thus I' is isomorphic
one of the graphs given in Example 23. ]

7 Locally primitive arc-transitive graphs

In this section we give a proof of Theorem 4. We first prove a technical lemma.

Lemma 28. Let G be a transitive permutation group on V' of square-free degree and let M
be a normal subgroup of G. Assume that M is semireqular on V' and G /M acts faithfully
on the M-orbits. Then there is X < G such that G = M:X.

Proof. The result is trivial if M = 1. Thus we assume that M # 1. Note that M has
square-free order. Let p be the largest prime divisor of [M| and P be the Sylow p-subgroup
of M. Then P is cyclic and is normal in G. Let o« € V and B be the P-orbit with a € B.
Let Vp be the set of P-orbits. Then |B| = p is coprime to |Vp|. Then G = P:G,, contains
a Sylow p-subgroup P x @) of GG, where () is a Sylow p-subgroup of G. It follows from
2, 10.4] that the extension G = P.(G/P) splits over P. Thus G = P:H for some H < G
with H NP =1. If M = P, then the result follows. We assume M # P in the following.

Let K be the kernel of G acting on Vp. Noting that each M-orbit on V' consists
of several P-orbits, we know that K fixes each M-orbits set-wise. It follows from the
assumptions that K < M. Then, considering the action of M on its an orbit, we conclude
that K = P. Thus H is faithful and transitive on Vp. Further, M = MNPH = P(MNH)
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implies that M N H is semiregular on Vp. It is easily shown that H/(M NH) acts faithfully
on the (M N H)-orbits on Vp. Noting that |Vp| < |V|, we may assume by induction that
H=(MnH)X with XN(MnNnH) =1 Then G = P(MNH)X) = MX, and
MNX <MnNH yielding M N X < MNHNX =1, hence our result follows. O

Let I' = (V, E) be a connected G-locally primitive graph. Suppose that G has a normal
subgroup N which has at least three orbits on V. Then either the quotient graph I'y is
a star, or I' is a normal cover of I'y, refer to [10, Theorem 1.1]. Then following lemma is
easily shown.

Lemma 29. Let I' = (V, E) be a connected G-locally primitive and G-symmetric graph.
Let N be a normal subgroup of G. If N is not semireqular on V', then N 1s transitive on
E and has at most two orbits on V.

Theorem 30. Let I' = (V, E) be a connected G-locally primitive graph of square-free
order and valency k > 2. Let M <1 G be maximal subject to that M has at least three
orbits on V. Assume further that 'y is not a star. Then one of the following holds.

(1) M =1,T and G are described as in (1) or (5) of Lemma 13;

(2) T is a bipartite graph, G = Do, Zy, Ly:Zy, or Z%:Zi, and k is the smallest prime
divisor of nk;

(3) G = M:X, Msoc(X) = M x soc(X) and soc(X) is a simple group descried in
(3)-(6) and (8) of Theorem 1.

Proof. Since I'j; is not a star, I' is a normal cover of I'y;, hence M is semiregular on
V5 in particular, |M| is coprime to |Vjs|. By the choice of M, we know that G/M is
faithful on either Vj; or one of two G/M-orbits on Vj;. Then, by Lemma 28, we have
G = M:X. Note that I'y; is G/M-locally primitive, and the pair G/M and I'j; satisfies
the assumptions in Theorem 1. Let Y = soc(X). Then, by Lemma 13, I'y; = K5 and
Y = T2 for a simple group 7, or Y is a minimal normal subgroup of X.

Since |M]| is square-free, M has soluble automorphism group Aut(M). Noting that
G/Cg(M) = Ng(M)/Cq(M) < Aut(M), it follows that G/Cqx(M) is soluble. If YV is a
nonabelian simple group then Y < Cg(M), and hence MY = M x Y, and so part (3) of
this theorem occurs. We next complete the proof in two cases.

Case 1. T'y; @ K, and Y = T2 for a simple group 7. In this case, by Lemma 13, X
is transitive on Vj;, and so I'y; is X-arc-transitive. Then I' is G-arc-transitive. Moreover,
Y has exactly two orbits on V), of size k. Thus MY has exactly two orbits U and W on
V' of length k|M]|. Let Uy and Wy, be the sets of M-orbits on U and W, respectively.
Then Uj,; and Wj; are Y-orbits on Vi,.

Assume first that 7" is a nonabelian simple group. Then part (5) of Lemma 13 holds
for the pair (X,I'y/). In particular, Y is the unique minimal normal subgroup of X. Let
A be an M-orbit on V. Suppose that "= A;. Then k = 105 and Ta = Ag x PSL(3,2).
It is easily shown that I'j; is not X-locally primitive, which is not the case. Thus Y is
unfaithful on both Uy, and Wj,. Let K be the kernel of Y acting on Uy;. Then K =T

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.25 18



and, Y = K x K* for x € X \ Y. It is easily shown that K = T is transitive on W)y,.
Recalling that G/Cg (M) is soluble, it follows that K < Cpx (M) and so MK = M x K.
Considering the action of MK on A, we conclude that K acts trivially on A. Then K
acts trivially on U. Since K is transitive on Wy, we conclude that I" = Ky ;. It follows
that M = 1, and so (1) of this theorem occurs.

Now let T' = Z,, for an odd prime p. Then k = p is coprime to |M|, and so |V | = 2k|M].
Noting that I'y; has odd valency k, it implies that I'y; has even order, and so |M]| is odd.
Moreover, by Lemma 13, X = G/M = (Z2:7;).Z> is nonabelian, where [ is a divisor of
k — 1. Since |M] is square-free, M is soluble, and so G is soluble. Let F' be the Fitting
subgroup of G. Then Cg(F) < F # 1. Suppose that F' has at least three orbits on
V. Since I' is G-locally primitive and G-vertex-transitive, I' is a normal cover of I'g; in
particular, F' has square-free order. Then G/F is isomorphic to a subgroup of Autl'p
acting transitively on the arcs of I'p, and so G/F is not abelian. On other hand, since
|F'| is square-free, F' is cyclic, and hence Cg(F) = F and Aut(F) is abelian. Since
G/F = Ng(F)/Cqa(F) < Aut(F), we know that G/F is abelian, a contradiction. Thus
F has one or two orbits on V. Suppose that |F| is even. Let @) be the Sylow 2-subgroup
of F. Then @) < G. Consider the quotient I'g. Since |V| is square-free and I' is G-vertex-
transitive, we get a graph of odd order k|M| and odd valency k, which is impossible.
Then F' has odd order, and hence F' has exactly two orbits on V.

Assume |F| is divisible by k%. Let P be the Sylow k-subgroup of F. Then Z2 XY =
soc(X) = P < G. By Lemma 29, we conclude that I' = K ;. This implies that M = 1,
and I" and G are described as in (1) of Lemma 13. Then (1) of this theorem occurs.

Assume that |F| is not divisible by k. Then M # 1; otherwise Z 2 Y < F, a
contradiction. Since F' has exactly two orbits on V', we know that |F| is divisible by
k|M]|. Let P be the Sylow k-subgroup of F. Then Z; = P < G. Let ¢ be the smallest
prime divisor of |M]|, and the let N be the ¢’-Hall subgroup of M. Then NP is a normal
subgroup of GG. It is easy to see that NP is intransitive on both U and W. Then the
quotient graph I'yp is bipartite and of order 2¢ and valency k, and so ¢ > k. Thus, since
[ is a divisor of k — 1, each possible prime divisor of [ is less than g. Note that FM is
a subgroup of G. Then |G| = 2[k?|M| is divisible by |FM| = % Recalling that |F|
is divisible by k|M]|, it follows that M < F. Let r be an arbitrary prime divisor of |F,
and let R be the Sylow r-subgroup of F. Then R <1 G and r is odd. Since G is transitive
on V, all R-orbits on V' have the same length. It implies that r is a divisor of |V|, and
so r is a divisor of k|M|. The above argument yields that |F| = k|M|, and so |F]| is
square-free. Then F is cyclic and semiregular on V', Cq(F) = F and Aut(F) is abelian.
Since Go = G, F/F < G/F = Ng(F)/Cq(F) S Aut(F), we know that both G, and G/F
are abelian. By Lemma 8, G, = Z. Since |G : (FG,)| = 2, we have G = F.Zy;,. Thus G
has a normal regular subgroup F:Z,. Then I' is isomorphic a Cayley graph Cay(F:Z,, S),
where S = {s™ | 0 <4 < k — 1} for an involution s € F:Zy and 7 € Aut(F:Zs) of order k
such that (S) = F:Z,. Noting that |F:Z| is square-free, it follows that F:Z, is a dihedral
group, say Ds,. Then part (2) of this theorem occurs.

Case 2. soc(G/M) = soc(X) =Y = Z,. Since I'y; is X-locally primitive, by
Lemma 13, either X = Z,:Zy, or X = Z,:Zs, and X is transitive on Vj;. Moreover,
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V| = 2p, (p,|M|) = 1, p > k and k is an odd prime. Let L = MY. Then L is a
semiregular normal subgroup of GG, and L has exactly two orbits U and W on V.

Let X = Z,:Zy. Then |G| = kp|M| = k|L|. Assume that |L| has a prime divisor ¢
such that either a Sylow g-subgroup of L is not normal in L or ¢ is the smallest prime
divisor of |L|. Tt is easily shown that L has a unique ¢’-Hall subgroup N; in particular, N
is normal in L. Then N is normal in G, and N has g-orbits on each of U and W. Thus the
quotient graph 'y is bipartite and of order 2q and valency k. In particular, k£ < q. Further,
G/N = Z,:Zj is not abelain unless ¢ = k. Since |N| is square-free, the outer automorphism
group Out(N) of N is abelian, refer to [12]. Note that G/(NCg(N)) is isomorphic a
quotient of a subgroup of Out(N). Then G/(NCg(N)) is abelian. Thus either ¢ = k,
or NCg(N) has order divisible by ¢q. Suppose that ¢ > k. Then ¢ is not a divisor of
IN| as N < L and |L| is square-free. Note that NCg(N)/N = Cg(N)/(N N Cg(N)).
It follows that |Cg (V)] is divisible by ¢. Let @ be a Sylow g-subgroup of Cs(N). Then
@ is also a Sylow g-subgroup of G, and hence Q < L. Moreover, NQ/N <1 G/N, and so
NQ@ < G. Since NQ = N x Q, we know that ) < G, which contradicts the choice of q.
Therefore, ¢ = k. This says that k is the smallest prime divisor of |G|, and either L = 7Z,
or L = Z%:Zk, where n = |L|. Thus G = Z,:Zy, or Z%:Zi, and k is the smallest prime
divisor of nk.

Now let X = Z,:Zy,. Then G has a normal regular subgroup R = L:Zy, and I is
isomorphic a Cayley graph Cay(R, S), where S = {s™ | 0 <i < k — 1} for an involution
s € R and an automorphism 7 € Aut(R) of order k such that (S) = R. Noting that |R]
is square-free, it follows that R is a dihedral group, say Ds,. Then G = Dy,,:Z;. Let ¢ be
the smallest prime divisor of n. Then G has a normal subgroup N with |G : N| = 2¢k.
It is easily shown that the quotient graph I'y is bipartite and of valency k and order 2q.
Then k < ¢, and so k is the smallest prime divisor of nk. Thus part (2) follows. ]

Now we are ready to give a proof of Theorem 4.

Proof of Theorem /. Let I' = (V, E) be a G-locally primitive arc-transitive graph, and let
M <1G be maximal subject to that M has at least three orbits on V. Then I is a normal
cover of ¥ := I'y;. Note that I' and X has even valency if |M]| is even.

If G is soluble then, by Theorem 30, one of part (1) of Theorem 4 occurs. Thus
we assume that G is insoluble. Then G = M:X, where T := soc(X) is a simple group
descried in (3)-(6) and (8) of Theorem 1. By Lemma 29, we conclude that either I" is
T-arc-transitive, or I' is T-edge-transitive and 7' has exactly two orbits on V. We next
consider the case where T'= PSL(2, p) for a prime p > 5.

Let A be an M-orbit on V. Then either T is transitive on A; or T has exactly two
orbits on A and, in this case, T' is intransitive on V and M x T is transitive on V. We
take a normal subgroup N of G such that N = M if the first case occurs, or N is the
2/-Hall subgroup of M if the second case occurs. Let A; be an N-orbit contained in A.
Then Th = Tp, is transitive on A; and N is regular on A;. Considering the action of
N X Ta, we conclude that N = Tx /K, where K is the kernel of Ta on A;. Note that Ta
is known by Theorem 27, and that |V| = |T" : T,| or 2|T" : T,| is square-free. Then we get
Table 3 by checking possible normal subgroups of Ta with square-free index. m
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