On edge-transitive graphs of square-free order

Cai Heng Li*

School of Mathematics and Statistics The University of Western Australia Crawley, WA 6009, Australia

cai.heng.li@uwa.edu.au

Zai Ping Lu[†]

Center for Combinatorics LPMC-TJKLC, Nankai University Tianjin 300071, P. R. China

lu@nankai.edu.cn

Gai Xia Wang[‡]

Department of Applied Mathematics Anhui University of Technology Maanshan 243002, P. R. China

wgx075@163.com

Submitted: Aug 4, 2014; Accepted: Aug 7, 2015; Published: Aug 14, 2015 Mathematics Subject Classifications: 05C25, 20B25

Abstract

We study the class of edge-transitive graphs of square-free order and valency at most k. It is shown that, except for a few special families of graphs, only finitely many members in this class are basic (namely, not a normal multicover of another member). Using this result, we determine the automorphism groups of locally primitive arc-transitive graphs with square-free order.

Keywords: edge-transitive graph; arc-transitive graph; stabilizer; quasiprimitive permutation group; almost simple group

1 Introduction

For a graph $\Gamma = (V, E)$, the number of vertices |V| is called the *order* of Γ . A graph $\Gamma = (V, E)$ is called *edge-transitive* if its automorphism group $\mathsf{Aut}\Gamma$ acts transitively on the edge set E. For convenience, denote by $\mathsf{ETSQF}(k)$ the class of connected edge-transitive graphs with square-free order and valency at most k.

The study of special subclasses of $\mathsf{ETSQF}(k)$ has a long history, see for example [1, 4, 5, 17, 18, 21, 22, 23] for those graphs of order being a prime or a product of two primes.

^{*}Supported by ARC Grant DP1096525.

[†]Supported by National Natural Science Foundation of China (11271267, 11371204).

[‡]Supported by Anhui Provincial Natural Science Foundation(1408085MA04).

Recently, several classification results about the class $\mathsf{ETSQF}(k)$ were given. Feng and Li [9] gave a classification of one-regular graphs of square-free order and prime valency. By Li et al. [12, 14], one may obtain a classification of vertex-transitive and edge-transitive tetravalent graphs of square-free order. By Li et al. [13] and Liu and Lu [16], one may deduce an explicitly classification of $\mathsf{ETSQF}(3)$. In this paper, we give a characterization about the class $\mathsf{ETSQF}(k)$.

A typical method for analyzing edge-transitive graphs is to take normal quotient. Let $\Gamma = (V, E)$ be a connected graph such that a subgroup $G \leqslant \operatorname{Aut}\Gamma$ acts transitively on E. Let N be a normal subgroup of G, denoted by $N \lhd G$. Then either N is transitive on V, or each N-orbit is an independent set of Γ . Let V_N be the set of all N-orbits on V. The normal quotient Γ_N (with respect to G and N) is defined as the graph with vertex set V_N such that distinct vertices $B, B' \in V_N$ are adjacent in Γ_N if and only if some $\alpha \in B$ and some $\alpha' \in B'$ are adjacent in Γ . We call Γ_N non-trivial if $N \neq 1$ and $|V_N| \geqslant 3$. It is well-known and easily shown that Γ_N is an edge-transitive graph. Moreover, if all N-orbits have the same length (which is obvious if G is transitive on V), then Γ_N is a regular graph of valency a divisor of the valency of Γ ; in this case, Γ is called a normal multicover of Γ_N .

A member in $\mathsf{ETSQF}(k)$ is called basic if it has no non-trivial normal quotients. Then every member in $\mathsf{ETSQF}(k)$ is a multicover of some basic member, or has a non-regular normal quotient (which might occur for vertex-intransitive graphs). Thus, to a great extent, basic members play an important role in characterizing the graphs in $\mathsf{ETSQF}(k)$. The first result of this paper shows that, except for a few special families of graphs, there are only finitely many basic members in $\mathsf{ETSQF}(k)$.

Theorem 1. Let $\Gamma = (V, E)$ be a connected graph of square-free order and valency $k \geq 3$. Assume that $G \leq \operatorname{Aut}\Gamma$ acts transitively on E and that each non-trivial normal subgroup of G has at most 2 orbits on V. Then one of the following holds:

- (1) Γ is a complete bipartite graph, and G is described in (1) and (5) of Lemma 13;
- (2) G is one of the Frobenius groups $\mathbb{Z}_p:\mathbb{Z}_k$ and $\mathbb{Z}_p:\mathbb{Z}_{2k}$, where p is a prime;
- (3) $soc(G) = M_{11}, M_{12}, M_{22}, M_{23}, M_{24} \text{ or } J_1;$
- (4) $G = A_n \text{ or } S_n \text{ with } n < 3k;$
- (5) G = PSL(2, p) or PGL(2, p);
- (6) $\operatorname{soc}(G) = \operatorname{PSL}(2, p^f)$ with $f \ge 2$ and $p^f > 9$, and either k is divisible by p^{f-1} or f = 2 and k is divisible by p + 1;
- (7) $soc(G) = Sz(2^f)$ and k is divisible by 2^{2f-1} ;
- (8) G is of Lie type defined over $GF(p^f)$ with $p \leq k$, and either
 - (i) $\left[\frac{d}{2}\right]f < k$, and G is a d-dimensional classical group with $d \geqslant 3$; or

(ii)
$$2f < k$$
, and $soc(G) = G_2(p^f)$, ${}^3D_4(p^f)$, $F_4(p^f)$, ${}^2E_6(p^f)$, or $E_7(p^f)$.

Remark 2 (Remarks on Theorem 1). For a finite group G, the socle soc(G) of G is the subgroup generated by all minimal normal subgroups of G. A finite group is called almost simple if soc(G) is a non-abelian simple group.

- (a) The groups G in case (1) are known except for G being almost simple.
- (b) The vertex-transitive graphs in case (5) are characterized in Theorem 27.
- (c) Some properties about the graphs in cases (6)-(7) are given in Lemmas 14 and 15, respectively.

It would be interest to give further characterization for some special cases.

- **Problem 3.** (i) Characterize edge-transitive graphs of square-free order which admits a group with socle PSL(2, q), Sz(q), A_n or a sporadic simple group.
 - (ii) Classify edge-transitive graphs of square-free order of small valencies.

For a graph $\Gamma = (V, E)$ and $G \leq \operatorname{Aut}\Gamma$, the graph Γ is called *G-locally primitive* if, for each $\alpha \in V$, the stabilizer of α in G induces a primitive permutation group on the neighbors of α in Γ . The second result of this paper determines, on the basis of Theorem 1, the automorphism groups of locally primitive arc-transitive graphs of square-free order.

Theorem 4. Let $\Gamma = (V, E)$ be a connected G-locally primitive graph of square-free order and valency $k \geq 3$. Assume that G is transitive on V and that Γ is not a complete bipartite graph. Then one of the following statements is true.

- (1) $G = D_{2n}: \mathbb{Z}_k$, 2nk is square-free, k is the smallest prime divisor of nk, and Γ is a bipartite Cayley graph of the dihedral group D_{2n} ;
- (2) G = M:X, where M is of square-free order, X is almost simple with socle T descried as in (3)-(6) and (8) of Theorem 1 such that $MT = M \times T$, T has at most two orbits on V and Γ is T-edge-transitive; in particular, if T = PSL(2, p), then M, T_{α} and K are listed in Table 3, where $\alpha \in V$.

2 Preliminaries

Let $\Gamma = (V, E)$ be a graph without isolated vertices, and let $G \leq \operatorname{Aut}\Gamma$. The graph Γ is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V or E, respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. The graph Γ is called G-arc-transitive if G acts transitively on the set of arcs of Γ . For a vertex $\alpha \in V$, we denote by $\Gamma(\alpha)$ the set of neighbors of α in Γ , and by G_{α} the stabilizer of α in G. Then it is easily shown that Γ is G-arc-transitive if and only if Γ is G-vertex-transitive and, for $\alpha \in V$, the vertex-stabilizer G_{α} acts transitively on $\Gamma(\alpha)$.

Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph. Note that each edge of Γ gives two arcs. Then either Γ is G-arc-transitive or G has exactly two orbits (of the same size |E|) on the arc set of Γ . If Γ is not G-vertex-transitive then Γ is a bipartite graph and, for $\alpha \in V$, the stabilizer G_{α} acts transitively on $\Gamma(\alpha)$. If Γ is G-arc-transitive, then there exists $g \in G \setminus G_{\alpha}$ such that $(\alpha, \beta)^g = (\beta, \alpha)$ and, since Γ is connected, $\langle g, G_{\alpha} \rangle = G$; obviously, this g can be chosen as a 2-element in $\mathbf{N}_G(G_{\alpha\beta})$ with $g^2 \in G_{\alpha\beta}$, where $G_{\alpha\beta} = G_{\alpha} \cap G_{\beta}$. Suppose that Γ is G-vertex-transitive but not G-arc-transitive. Then the arc set of Γ is partitioned into two G-orbits Δ and Δ^* , where $\Delta^* = \{(\alpha, \beta) \mid (\beta, \alpha) \in \Delta\}$. Thus, for $\alpha \in V$, the set $\Gamma(\alpha)$ is partitioned into two G_{α} -orbits $\Delta(\alpha) = \{\beta \mid (\alpha, \beta) \in \Delta\}$ and $\Delta^*(\alpha) = \{\beta \mid (\beta, \alpha) \in \Delta\}$, which have equal size. Then we have the next lemma.

Lemma 5. Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph, and $\{\alpha, \beta\} \in E$. Then one of the following holds.

- (1) The stabilizer G_{α} is transitive on $\Gamma(\alpha)$, $|\Gamma(\alpha)| = |G_{\alpha}:G_{\alpha\beta}|$, and either
 - (i) G is intransitive on V; or
 - (ii) $G = \langle g, G_{\alpha} \rangle$ for a 2-element $g \in \mathbf{N}_G(G_{\alpha\beta}) \setminus G_{\alpha}$ with $(\alpha, \beta)^g = (\beta, \alpha)$ and $g^2 \in G_{\alpha\beta}$.
- (2) Γ is G-vertex-transitive, G_{α} has exactly two orbits on $\Gamma(\alpha)$ of the same size $|G_{\alpha}|$: $|G_{\alpha\beta}|$; in particular, $|\Gamma(\alpha)| = 2|G_{\alpha}|$.

Let $\Gamma = (V, E)$ be a regular graph and $G \leq \operatorname{Aut}\Gamma$. For $\alpha \in V$, the stabilizer G_{α} induces a permutation group $G_{\alpha}^{\Gamma(\alpha)}$ (on $\Gamma(\alpha)$). Let $G_{\alpha}^{[1]}$ be the kernel of this action. Then $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha}/G_{\alpha}^{[1]}$. Considering the actions of Sylow subgroups of $G_{\alpha}^{[1]}$ on V, it is easily shown that the next lemma holds, see [7] for example.

Lemma 6. Let $\Gamma = (V, E)$ be a connected regular graph, $G \leq \operatorname{Aut}\Gamma$ and $\alpha \in V$. Assume that $G_{\alpha} \neq 1$. Let p be a prime divisor of $|G_{\alpha}|$. Then $p \leq |\Gamma(\alpha)|$. If further Γ is G-vertextransitive, then p divides $|G_{\alpha}^{\Gamma(\alpha)}|$ and, for $\beta \in \Gamma(\alpha)$, each prime divisor of $|G_{\alpha\beta}|$ is less than $|\Gamma(\alpha)|$.

A permutation group G on a set Ω is semiregular if $G_{\alpha} = 1$ for each $\alpha \in \Omega$. A transitive permutation group is regular if further it is semiregular.

Lemma 7. Let Γ be a connected G-vertex-transitive graph, $N \triangleleft G \leqslant \operatorname{Aut}\Gamma$ and $\alpha \in V$. Assume that $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$. Then $N_{\alpha}^{[1]} = 1$.

Proof. Let $\beta \in \Gamma(\alpha)$. Then $\beta = \alpha^x$ for some $x \in G$, and hence $N_{\beta} = N_{\alpha^x} = N \cap G_{\alpha^x} = (N \cap G_{\alpha})^x = (N_{\alpha})^x$. It follows that $N_{\beta}^{\Gamma(\beta)}$ and $N_{\alpha}^{\Gamma(\alpha)}$ are permutation isomorphic; in particular, $N_{\beta}^{\Gamma(\beta)}$ is semiregular on $\Gamma(\beta)$. Thus $N_{\alpha}^{[1]}$ acts trivially on $\Gamma(\beta)$, and so $N_{\alpha}^{[1]} = N_{\beta}^{[1]}$. Since Γ is connected, $N_{\alpha}^{[1]}$ fixes each vertex of Γ , hence $N_{\alpha}^{[1]} = 1$.

Lemma 8. Let $\Gamma = (V, E)$ be a connected graph, $N \triangleleft G \leqslant \operatorname{Aut}\Gamma$ and $\alpha \in V$. Assume that either N is regular on V, or Γ is a bipartite graph such that N is regular on both the bipartition subsets of Γ . Then $G_{\alpha}^{[1]} = 1$.

Proof. Set $X = NG_{\alpha}^{[1]}$. Then $X_{\alpha} = G_{\alpha}^{[1]}$ and $X_{\alpha}^{[1]} = G_{\alpha}^{[1]}$, and hence $X_{\alpha}^{\Gamma(\alpha)} = 1$.

Assume first that N is regular on V. Then $G = NG_{\alpha}$. It follows that X is normal in G. Thus our results follows from Lemma 7.

Now assume that Γ is a bipartite graph with bipartition subsets U and W, and that N is regular on both U and W. Without loss of generality, we assume that $\alpha \in U$. Then $\Gamma(\alpha) \subseteq W$, and $X_{\alpha} = X_{\beta}$ for $\beta \in \Gamma(\alpha)$. Let $\gamma \in \Gamma(\beta)$. Then $\gamma \in U$. Set $E_0 = \{\{\gamma, \beta\}^x \mid x \in X\}$. Then $\Sigma = (V, E_0)$ is a spanning subgraph of Γ , and X acts transitively on E_0 . Thus Σ is a regular graph, and X_{α} is transitive on $\Sigma(\alpha)$. Noting $\Sigma(\alpha) \subseteq \Gamma(\alpha)$, it follows that $|\Sigma(\alpha)| = 1$, and hence Σ is a matching. In particular, $X_{\beta} = X_{\gamma}$. It follows that $G_{\alpha}^{[1]} = X_{\alpha} = X_{\beta} = X_{\gamma}$. Since all vertices in U are equivalent under X, we have X_{γ} acts trivially on $\Gamma(\gamma)$. Then a similar argument as above leads to $G_{\alpha}^{[1]} = X_{\gamma} = X_{\delta} = X_{\theta}$ for any $\delta \in \Gamma(\gamma)$ and $\theta \in \Gamma(\delta)$. Then, by the connectedness, we conclude that $G_{\alpha}^{[1]}$ fixes each vertex of Γ . Thus $G_{\alpha}^{[1]} = 1$.

We end this section by quoting a known result.

Lemma 9 ([12]). Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph, $N \triangleleft G \leqslant \operatorname{\mathsf{Aut}}\Gamma$ and $\alpha \in V$. Then all N_{α} -orbits on $\Gamma(\alpha)$ have the same length.

3 Complete bipartite graphs

We first list a well-known result in number theory. For integers a > 0 and n > 0, a prime divisor of $a^n - 1$ is called *primitive* if it does not divide $a^i - 1$ for any 0 < i < n.

Theorem 10 (Zsigmondy). For integers $a, n \ge 2$, if $a^n - 1$ does not have primitive prime divisors, then either (a, n) = (2, 6), or n = 2 and a + 1 is a power of 2.

Let G be a permutation group on V, and let x be a permutation on V which centralizes G. If x fixes some point $\alpha \in V$, then x fixes α^g for each $g \in G$. Thus the next simple result follows.

Lemma 11. Let G be a permutation group on V. Assume that N is a normal transitive subgroup of G. Then the centralizer $\mathbf{C}_G(N)$ is semiregular on V, and $\mathbf{C}_G(N) = N$ if further N is abelian.

Recall that a transitive permutation group G is quasiprimitive if each non-trivial normal subgroup of G is transitive. Let G be a quasiprimitive permutation group on V, and let \mathcal{B} be a G-invariant partition on V. Then G induces a permutation group $G^{\mathcal{B}}$ on \mathcal{B} . Assume that $|\mathcal{B}| \geq 2$. Since G is quasiprimitive, G acts faithfully on \mathcal{B} . Then $G^{\mathcal{B}} \cong G$, and so $soc(G^{\mathcal{B}}) \cong soc(G)$.

Lemma 12. Let G be a quasiprimitive permutation group of square-free degree. Then soc(G) is simple, so either G is almost simple or $G \leq AGL(1, p)$ for a prime p.

Proof. Let G be a quasiprimitive permutation group on V of square-free degree. Let \mathcal{B} be a G-invariant partition on V such that $|\mathcal{B}| \ge 2$ and $G^{\mathcal{B}}$ is primitive. Noting that $|\mathcal{B}|$ is

square-free, by [15], $soc(G^{\mathcal{B}})$ is simple. Thus $soc(G) \cong soc(G^{\mathcal{B}})$ is simple, and the result follows.

Let G be a permutation group on V. For a subset $U \subseteq V$, denote by G_U and $G_{(U)}$ the subgroups of G fixing U set-wise and point-wise, respectively. For $X \leqslant G$ and an X-invariant subset U of V, denote by X^U the restriction of X on U. Then $X^U \cong X/X_{(U)}$. We now prove a reduction lemma for Theorem 1.

Lemma 13. Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geqslant 3$, where $G \leqslant \operatorname{Aut}\Gamma$. Assume that each minimal normal subgroup of G has at most two orbits on V. Then one of the following holds:

- (1) $\Gamma \cong \mathsf{K}_{k,k}$, k is an odd prime, $G \cong (\mathbb{Z}_k^2 : \mathbb{Z}_l) . \mathbb{Z}_2$ and Γ is G-vertex-transitive, where l is a divisor of k-1:
- (2) |V| = p with $p \ge 3$ prime, k is even, $G \cong \mathbb{Z}_p: \mathbb{Z}_k$ and Γ is G-vertex-transitive;
- (3) |V| = 2p with $p \ge 3$ prime, and G is isomorphic to one of $\mathbb{Z}_p: \mathbb{Z}_k$ and $\mathbb{Z}_p: \mathbb{Z}_{2k}$;
- (4) G is almost simple;
- (5) $\Gamma \cong \mathsf{K}_{k,k}$, Γ is G-vertex-transitive, $\mathsf{soc}(G)$ is the unique minimal normal subgroup of G, $\mathsf{soc}(G) \cong T^2$ for a nonabelian simple group T and, for $\alpha \in V$, either
 - (i) $soc(G)_{\alpha} \cong H \times T$ for a subgroup H of T with k = |T:H|; or
 - (ii) k = 105, $T \cong A_7$ and $soc(G)_{\alpha} \cong A_6 \times PSL(3, 2)$.

Proof. Let N be a minimal normal subgroup of G. Then N is a directed product of isomorphic simple groups. Since Γ has valency $k \geq 3$, we know that |V| > 3. Since |V| is square-free and N has at most two orbits on V, we conclude that N is not an elementary abelian 2-group. In particular, N has no a subgroup of index 2.

Case 1. Assume first that G has two distinct minimal normal subgroups N and M. Then $N \cap M = 1$, and hence $NM = N \times M$.

Suppose that both N and M are transitive on V. By Lemma 11, N and M are regular on V; in particular, |N| = |M| = |V|. Thus N and M are soluble, it implies that $N \cong M \cong \mathbb{Z}_p$ for an odd prime p. Again by Lemma 11, N = M, a contradiction.

Without loss of generality, we assume that N is intransitive on V. Then Γ is a bipartite graph, whose bipartition subsets are N-orbits, say U and $V \setminus U$. A similar argument as above paragraph yields that M has no subgroups of index 2. It follows that M fixes both U and $V \setminus U$ set-wise, and hence U and $V \setminus U$ are two M-orbits on V.

Let X = NM and $\Delta = U$ or $V \setminus U$. By Lemma 11, both N^{Δ} and M^{Δ} are regular subgroups of X^{Δ} . Set $N \cong T^i$, where T is a simple group. Then $N_{(\Delta)} \cong T^j$ for some j < i, and so $N^{\Delta} \cong N/N_{(\Delta)} \cong T^{i-j}$. It follows that $|\Delta| = |N^{\Delta}| = |T|^{i-j}$. Since T is simple and $|\Delta|$ is square-free, i-j=1 and $N^{\Delta} \cong T \cong \mathbb{Z}_p$, where $p=|\Delta|$ is an odd prime. Similarly, $M^{\Delta} \cong \mathbb{Z}_p$, and so M is abelian. In particular, $X = N \times M$ is abelian and |X| is a power of p. It implies that $X^{\Delta} \cong \mathbb{Z}_p$. Then, by Lemma 11, $N^{\Delta} = M^{\Delta} = X^{\Delta}$. Thus

 $N \times M = X \leqslant X^{\Delta} \times X^{V \setminus \Delta} \cong \mathbb{Z}_p^2$. Then $X \cong \mathbb{Z}_p^2$, and hence $N \cong M \cong \mathbb{Z}_p$. Moreover, $X_{(\Delta)} \cong \mathbb{Z}_p$.

Let $\alpha \in \Delta$. Then $G_{\alpha} \geqslant X_{(\Delta)}$. By Lemma 6, $k = |\Gamma(\alpha)| \geqslant p$, and so $\Gamma \cong \mathsf{K}_{p,p}$. Noting that N is regular on Δ and $V \setminus \Delta$, by Lemma 8, G_{α} acts faithfully on $\Gamma(\alpha)$, and so G_{α} is isomorphic to a subgroup of the symmetric group S_p . Noting that G_{α} has a normal subgroup $X_{(\Delta)} \cong \mathbb{Z}_p$, it follows that G_{α} is isomorphic to a subgroup of the Frobenius group $\mathbb{Z}_p:\mathbb{Z}_{p-1}$. Write $G_{\alpha} \cong \mathbb{Z}_p:\mathbb{Z}_l$, where l is a divisor of p-1. Then $G_{\Delta} = NG_{\alpha} \cong \mathbb{Z}_p^2:\mathbb{Z}_l$.

Clearly, $X_{(\Delta)}$ has at least p+1 orbits on V. Then, by the assumptions of this lemma, $X_{(\Delta)}$ is not normal in G. On the other hand, $(X_{(\Delta)})^g = (X^g)_{(\Delta^g)} = X_{(\Delta)}$ for each $g \in G_{\Delta}$, yielding $X_{(\Delta)} \triangleleft G_{\Delta}$. It follows that $G \neq G_{\Delta}$, and hence G is transitive on V. Note that $|G:G_{\Delta}| \leq 2$. Then part (1) of this lemma follows.

Case 2. Assume that N := soc(G) is the unique minimal normal subgroup of G.

Assume that N is simple. If N is nonabelian then (4) occurs. Assume that $N \cong \mathbb{Z}_p$ for some odd prime p. Then N is regular on each N-orbit on V. Thus G_{α} is faithful on $\Gamma(\alpha)$ by Lemma 8, where $\alpha \in V$. Noting that $\mathbf{C}_G(N)$ is normal in G, we conclude that $\mathbf{C}_G(N) = N$. Thus $G/N = \mathbf{N}_G(N)/\mathbf{C}_G(N) \lesssim \mathrm{Aut}(N) \cong \mathbb{Z}_{p-1}$, and so $G \lesssim \mathrm{AGL}(1,p)$. Set $G \cong \mathbb{Z}_p:\mathbb{Z}_m$, where m is a divisor of p-1. Let $\alpha \in U$. Then $G_{\alpha} \cong NG_{\alpha}/N \leqslant G/N \cong \mathbb{Z}_m$; in particular, G_{α} is cyclic. Recalling that G_{α} is faithful on $\Gamma(\alpha)$, it implies that $G_{\alpha} \cong \mathbb{Z}_k$. Thus one of (2) and (3) occurs by noting that $|G:(NG_{\alpha})| \leqslant 2$.

In the following we assume that $N \cong T^l$ for an integer $l \geqslant 2$ and a simple group T. If N is transitive on V then G is quasiprimitive on V, and hence soc(G) = N is simple by Lemma 12, a contradiction. If G is intransitive on V, then G is faithful on each of its orbits, and then N is simple by Lemma 12, again a contradiction. Thus, in the following, we assume further that Γ is G-vertex-transitive and N has two orbits U and U on U. Note that $|U| = |W| = \frac{|V|}{2}$ is odd and square-free.

Since Γ is G-vertex-transitive, $|G:G_U|=2$. Let $x\in G\setminus G_U$. Then $G=G_U\langle x\rangle$, $x^2\in G_U$, $U^x=W$ and $W^x=U$. Let \mathcal{B} be a G_U -invariant partition of U such that $(G_U)^{\mathcal{B}}$ is primitive. Set $\mathcal{C}=\{B^x\mid B\in \mathcal{B}\}$. Then $(G_U)^{\mathcal{C}}$ is also primitive. By [15], both $\operatorname{soc}((G_U)^{\mathcal{B}})$ and $\operatorname{soc}((G_U)^{\mathcal{C}})$ are simple. Then $\operatorname{soc}((G_U)^{\mathcal{B}})\cong\operatorname{soc}((G_U)^{\mathcal{C}})\cong T$. Let K be the kernel of G_U acting on \mathcal{B} . Then K^x is the kernel of G_U acting on \mathcal{C} , and $K^{x^2}=K$. Since $K, K^x \triangleleft G_U$, we have $K \cap K^x \triangleleft G_U$. Noting that $(K \cap K^x)^x = K \cap K^x$, it follows that $K \cap K^x \triangleleft G$. Since $K \cap K^x$ has at least $2|\mathcal{B}| > 2$ orbits on V, we have $K \cap K^x = 1$. Then $G_U \lesssim G_U/K \times G_U/K^x \cong (G_U)^{\mathcal{B}} \times (G_U)^{\mathcal{C}}$, yielding $N \cong T^2$.

We claim that T is a nonabelian simple group. Suppose that $T \cong \mathbb{Z}_p$ for some (odd) prime p. Then $(G_U)^{\mathcal{B}} \cong (G_U)^{\mathcal{C}} \lesssim \mathbb{Z}_p : \mathbb{Z}_{p-1}$, and so $G = G_U . \mathbb{Z}_2 \lesssim ((\mathbb{Z}_p : \mathbb{Z}_{p-1}) \times (\mathbb{Z}_p : \mathbb{Z}_{p-1})) . \mathbb{Z}_2$. Let H be a p'-Hall subgroup of G with $x \in H$. Then G = N : H, $H \lesssim (\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}) . \mathbb{Z}_2$. Moreover, H_U is p'-Hall subgroup of G_U , $H = H_U \langle x \rangle$ and $H_U \lesssim \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$. Note that N is the unique minimal normal subgroup of G. Then G is maximal in G, and thus G can be viewed as a primitive subgroup of the affine group G and G is an abelian normal subgroup of G is an irreducible subgroup of G is an irreducible subgroup of G is a nonabelian simple group.

Set $N = T_1 \times T_2$, where $T_1 \cong T_2 \cong T$. Since T_1 and T_2 are isomorphic nonabelian simple groups, T_1 and T_2 are the only non-trivial normal subgroups of N. Thus $N_{(U)} \in \{1, T_1, T_2\}$. For $g \in G_U$, we have $(N_{(U)})^g = (N^g)_{(U^g)} = N_{(U)}$. Thus $N_{(U)} \triangleleft G_U$. Let $x \in G \setminus G_U$. Then $U^x = W$ and $W^x = U$, yielding $(N_{(U)})^x = N_{(W)}$ and $(N_{(W)})^x = N_{(U)}$. It follows that either $\{N_{(U)}, N_{(W)}\} = \{T_1, T_2\}$ or N is faithful on both U and W. The former case yields that $N_{(U)}$ acts transitively on W, and so (i) of part (5) follows.

Assume that N is faithful on both U and W. Then neither T_1 nor T_2 is transitive on U. Let \mathcal{O} be the set of T_1 -orbits on U, and let $O \in \mathcal{O}$. Then T_2 is transitive on \mathcal{O} . Thus T has two transitive permutation representations of degrees |O| and $|\mathcal{O}|$, respectively. Then T has two primitive permutation representations of degrees n_1 and n_2 , where $n_1 > 1$ is a divisor of |O| and $n_2 > 1$ is a divisor of $|\mathcal{O}|$. Since $|V| = 2|U| = 2|O||\mathcal{O}|$ is square-free, n_1 and n_2 are odd, square-free and coprime. Inspecting [15, Tables 1-4], we conclude that T is either an alternating group or a classical group of Lie type.

Suppose that $T = \mathrm{PSL}(d,q)$ with $d \ge 3$. By the Atlas [8], neither $\mathrm{PSL}(3,2)$ nor $\mathrm{PSL}(4,2)$ has maximal subgroups of coprime indices. Thus we assume that $(d,q) \ne (3,2)$ or (4,2). Then, by [15, Table 3],

$$\{n_1, n_2\} \subseteq \left\{ \frac{\prod_{j=0}^{i-1} (q^{m-j} - 1)}{\prod_{j=1}^{i} (q^j - 1)} \mid 1 \leqslant i < d \right\} \cup \left\{ \frac{\prod_{j=0}^{2i-1} (q^{m-j} - 1)}{(\prod_{j=1}^{i} (q^j - 1))^2} \mid 1 \leqslant i < \frac{d}{2} \right\}.$$

If $q^d - 1$ has a primitive prime divisor r, then both n_1 and n_2 are divisible by r, which is not possible. Thus $q^d - 1$ has no primitive prime divisor, and so (q, d) = (2, 6) by Theorem 10. Computation of n_1 and n_2 shows that this is not the case.

Similarly, we exclude other classes of classical groups of Lie type except for $PSL(2, p^f)$, where p is a prime. By the Atlas [8], we exclude $PSL(2, p^f)$ while $p^f \leq 31$. Suppose that $T = PSL(2, p^f)$ with $p^f \geq 32$. By [15, Table 3], one of n_1 and n_2 is $p^f + 1$ and the other one is divisible by p. This is not possible since one of $p^f + 1$ and p is even.

Now let $T = A_c$ for some $c \ge 5$. By the above argument, we may assume that A_c is not isomorphic to a classical simple group of Lie type. Then $c \ne 5$, 6 or 8. Note that for $c \ge 5$ and $a < b < \frac{c}{2}$, the binomial coefficient $\binom{c}{b} = \binom{c}{a}\binom{c-a}{b-a}/\binom{b}{b-a}$. It is easily shown that $\binom{c}{a} > \binom{b}{b-a} = \binom{b}{a}$; in particular, $\binom{c}{a}$ is not a divisor of $\binom{b}{b-a}$. Thus $\binom{c}{a}$ and $\binom{c}{b}$ are not comprime, and so at most one of n_1 and n_2 equals to a binomial coefficient. Checking the actions listed in [15, Table 1] implies that either c = 7, or c = 2a for $a \in \{6, 9, 10, 12, 36\}$. Suppose the later case occurs. Then one of n_1 and n_2 is $\frac{1}{2}\binom{2a}{a}$ and the other one is a binomial coefficient, say $\binom{2a}{b}$. But computation shows that such two integers are not coprime, a contradiction. Therefore, $T = A_7$.

Checking the subgroups of A_7 , we conclude that $\{n_1, n_2\} = \{|O|, |\mathcal{O}|\} = \{7, 15\}$. Take $\alpha \in O$. Recall that Γ is G-vertex-transitive. Then there is an element $x \in G \setminus G_U$ such that $\{\alpha, \alpha^x\} \in E$, $U^x = W$ and $W^x = U$. Since $N = T_1 \times T_2$ is the unique minimal normal subgroup of G, we know that $T_1^x = T_2$ and $T_2^x = T_1$. It follows O^x is a T_2 -orbit on W, and so $\mathcal{O}^x := \{O^{hx} \mid h \in G_U\}$ is the set of T_2 -orbits on W. Moreover, T_1 acts transitively on \mathcal{O}^x . Note that $|O| = |O^x|$ and $|\mathcal{O}| = |\mathcal{O}^x|$. Thus, without loss of generality, we may assume that |O| = 7 and $|\mathcal{O}| = 15$. Then $(T_2)_O \cong \mathrm{PSL}(3,2)$ and $(T_1)_\alpha \cong A_6$, where $\alpha \in O$. Recall

that T_2 is intransitive on V. Since $T_2 \triangleleft N$ and N is transitive on U, we conclude that each T_2 -orbit on U has size 15. It follows that $(T_2)_O = (T_2)_\alpha$. Then $N_\alpha \geqslant (T_1)_\alpha \times (T_2)_\alpha$, and so $N_\alpha = (T_1)_\alpha \times (T_2)_\alpha \cong A_6 \times \mathrm{PSL}(3,2)$ as $|N:N_\alpha| = |U| = |O||O| = 105$. Note that $N_{\alpha^x} = (N_\alpha)^x = ((T_1)_\alpha \times (T_2)_\alpha)^x = (T_2)_{\alpha^x} \times (T_1)_{\alpha^x}$. Then it is easily shown that $N_\alpha \cap N_{\alpha^x} = ((T_1)_\alpha \cap (T_1)_{\alpha^x}) \times ((T_2)_\alpha \cap (T_2)_{\alpha^x}) \cong S_4 \times S_4$. By the choice of x, we conclude that $|\Gamma(\alpha)| \geqslant |N_\alpha : (N_\alpha \cap N_{\alpha^x})| \geqslant 105$. Thus $\Gamma = \mathsf{K}_{105,105}$, and hence (ii) of part (5) occurs.

4 Graphs associated with $PSL(2, p^f)$ and $Sz(2^f)$

Let $\Gamma = (V, E)$ be a connected graph of square-free order and valency k. Assume that $G \leq \operatorname{Aut}\Gamma$ is almost simple with socle T. Assume further that G is transitive on E and that T has at most two orbits on V. Let $\{\alpha, \beta\} \in E$. Then $|T_{\alpha}| = |T_{\beta}|$ as Γ is a regular graph. Then $|T_{\beta}: T_{\alpha\beta}| = |T_{\alpha}: T_{\alpha\beta}|$ and, by Lemma 9, $|T_{\alpha}: T_{\alpha\beta}|$ is a divisor of $k = |\Gamma(\alpha)|$. Moreover, since |V| is square-free, it is easily shown that $T_{\alpha} \neq T_{\beta}$.

Lemma 14. Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph of square-free order and valency k. Assume that $soc(G) = PSL(2, p^f)$ with $f \ge 2$ and $p^f > 9$, and that soc(G) has at most two orbits on V. Then one of the following statements holds:

- (i) f = 2, $T_{\alpha} = PGL(2, p)$ or PSL(2, p), and k is divisible by p or p + 1;
- (ii) $T_{\alpha} = \mathbb{Z}_p^{f-1}:\mathbb{Z}_l$ for a divisor l of p-1, and k is divisible by p^{f-1} ; further, if Γ is G-locally primitive then $k = p^{f-1}$;
- (iii) $T_{\alpha} = \mathbb{Z}_p^f : \mathbb{Z}_l$ for a divisor l of $p^f 1$, and k is divisible by p^f ; further, if Γ is G-locally primitive then $k = p^f$.

Proof. Let $T = \mathsf{soc}(G)$. Take $\alpha \in V$ and a maximal subgroup M of T with $T_{\alpha} \leq M$. Then both |T:M| and $|M:T_{\alpha}|$ are square-free as $|T:T_{\alpha}|$ is square-free. By [15], either $M = \mathbb{Z}_p^f : \mathbb{Z}_{\frac{p^f-1}{(2,p-1)}}$ and $|T:M| = p^f + 1$, or f = 2, $M = \mathrm{PGL}(2,p)$ and $|T:M| = \frac{p(p^2+1)}{2}$.

Assume that T_{α} is insoluble. Then f=2 and $T_{\alpha}=\operatorname{PGL}(2,p)$ or $\operatorname{PSL}(2,p)$. Let $\beta\in\Gamma(\alpha)$. Recall that $T_{\alpha}\neq T_{\beta}$ and $|T_{\beta}:T_{\alpha\beta}|=|T_{\alpha}:T_{\alpha\beta}|$ is a divisor of k. If $T_{\alpha}=\operatorname{PSL}(2,p)$ then, by [11, II.8.27], $|T_{\alpha}:T_{\alpha\beta}|$ is divisible by p or p+1. Suppose that $T_{\alpha}=\operatorname{PGL}(2,p)$. Then T_{α} is maximal in T, and so $T=\langle T_{\alpha},T_{\beta}\rangle$. Thus $|T_{\beta}:T_{\alpha\beta}|>2$ as T is simple; in particular, $\operatorname{PSL}(2,p)\neq T_{\alpha\beta}$. Checking the subgroups of T_{α} which do not contain $\operatorname{PSL}(2,p)$ (refer to [3]), we conclude that $|T_{\alpha}:T_{\alpha\beta}|$ is divisible by p or p+1. Thus part (i) occurs.

In the following, we assume that T_{α} is soluble. Since p^2 is not a divisor of $|T:T_{\alpha}|$, each Sylow p-subgroup of T_{α} has p^f or p^{f-1} . Then, inspecting the subgroups of T, we conclude that $T_{\alpha} \cong T_{\beta}$ for $\beta \in \Gamma(\alpha)$, and that T_{α} has a unique Sylow p-subgroup.

Let Q be a Sylow p-subgroup of $T_{\alpha\beta}$. Then Q is normal in $T_{\alpha\beta}$. Suppose that $Q \neq 1$. Let P_1 and P_2 be the Sylow p-subgroups of T_{α} and T_{β} , respectively. Then $P_1 \cap P_2 = Q \neq 1$. By [11, II.8.5], any two distinct Sylow p-subgroups of T intersect trivially. It follows P_1 and P_2 are contained the same Sylow p-subgroup, say P of T. In particular, $P_1 = P_{\alpha}$ and $P_2 = P_{\beta}$. For $\gamma \in \Gamma(\beta)$, since Γ is G-edge-transitive, we have $|T_{\alpha\beta}| = |T_{\beta\gamma}|$. A similar argument implies that P_{γ} is the Sylow p-subgroup of T_{γ} . It follows from the connectedness of Γ that P_{δ} is the Sylow p-subgroup of T_{δ} for any $\delta \in V$. Thus P contains a normal subgroup $\langle P_{\delta} \mid \delta \in V \rangle \neq 1$ of G, a contradiction. Thus, $T_{\alpha\beta}$ is of order coprime to p, and so $|T_{\alpha}:T_{\alpha\beta}|$ is divisible by $|P_1|=p^{f-1}$ or p^f . Thus, by Lemma 9, k is divisible by p^{f-1} or p^f , respectively.

If $M = \operatorname{PGL}(2, p)$ then, inspecting the subgroups of M, we conclude that $T_{\alpha} = \mathbb{Z}_p : \mathbb{Z}_l$, where l is a divisor of p-1 and divisible by 4. Assume that $M = \mathbb{Z}_p^f : \mathbb{Z}_{\frac{p^f-1}{(2,p-1)}}$. Then

 $T_{\alpha} = \mathbb{Z}_p^f : \mathbb{Z}_l$ or $\mathbb{Z}_p^{f-1} : \mathbb{Z}_l$ with l dividing $\frac{p^f - 1}{(2, p - 1)}$. Suppose that $T_{\alpha} = \mathbb{Z}_p^{f-1} : \mathbb{Z}_l$. Noting that M is a Frobenius group, T_{α} is also a Frobenius group. It follows that l is a divisor of $p^{f-1} - 1$, and so l divides p - 1.

Assume further that Γ is G-locally primitive. Then $T_{\alpha}^{\Gamma(\alpha)}$ is a normal transitive soluble subgroup of the primitive permutation group $G_{\alpha}^{\Gamma(\alpha)}$ of degree k. Since k is divisible by $|P_1|$, we have $\operatorname{soc}(G_{\alpha}^{\Gamma(\alpha)}) \cong \mathbb{Z}_p^t$ for some integer $t \geqslant 1$ such that $k = p^t \geqslant |P_1|$. It follows $T_{\alpha}^{\Gamma(\alpha)} \cong \mathbb{Z}_p^t : \mathbb{Z}_{l'}$, where l' is a divisor of l. Since P_1 is the Sylow p-subgroup of T_{α} , we have $p^t \leqslant |P_1|$. Then $k = |P_1| = p^{f-1}$ or p^f . Thus one of (ii) and (iii) follows. \square

The following lemma gives a characterization of graphs admitting Suzuki groups.

Lemma 15. Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph of square-free order and valency k. Assume that $soc(G) = Sz(2^f)$ with odd $f \ge 3$, and that soc(G) has at most two orbits on V. Then k is divisible by 2^{2f-1} and Γ is not G-locally primitive.

Proof. Let $\alpha \in V$ and $\beta \in \Gamma(\alpha)$. Since $|T:T_{\alpha}|$ is square-free, 4 does not divide $|T:T_{\alpha}|$, and hence 2^{2f-1} divides $|T_{\alpha}|$. Then, inspecting the subgroups of T (see [20]), we get $T_{\alpha} = [2^n]:\mathbb{Z}_l$, where n = 2f or 2f - 1, and l is a divisor of $2^f - 1$. So T_{α} has a unique Sylow 2-subgroup. By [20], for a Sylow 2-subgroup Q of T, all involutions of Q are contained in the center of Q. Noting that any two distinct conjugations of Q generate T, it follows any two distinct Sylow 2-subgroups of T intersect trivially. Thus, by a similar argument as in the above lemma, we know that $T_{\alpha\beta}$ has odd order. Thus $k = |\Gamma(\alpha)|$ is divisible by $n = 2^{2f}$ or 2^{2f-1} .

Finally, suppose that $G_{\alpha}^{\Gamma(\alpha)}$ is a primitive group. Let Q_1 be the Sylow 2-subgroup of T_{α} , and Q be a Sylow 2-subgroup of $T = \operatorname{Sz}(2^f)$ with $Q \geqslant Q_1$. Then $Q = Q_1$ or $Q_1.\mathbb{Z}_2$. By a similar argument as in the above lemma, we conclude that Q_1 is isomorphic to $\operatorname{soc}(G_{\alpha}^{\Gamma(\alpha)})$. It follows that Q_1 is an elementary abelian 2-group. By [20], Q_1 lies in the center of Q, and so Q is abelian, which is impossible. Then this lemma follows.

5 Proof of Theorem 1

Let $\Gamma = (V, E)$ be a connected graph of square-free order and valency k. Assume that a subgroup $G \leq \operatorname{Aut}\Gamma$ acts transitively on E and that each non-trivial normal subgroup of G has at most 2 orbits on V. By Lemma 13, to complete the proof of the theorem, we

may assume that G is almost simple. Let T = soc(G) and $\alpha \in V$. Then T is transitive or has exactly two orbits on V, and every prime divisor of $|T_{\alpha}|$ is at most k.

Let U be a T-orbit, and let \mathcal{B} be a T-invariant partition on U such that $|\mathcal{B}| \ge 2$ and $T^{\mathcal{B}}$ is primitive. Noting that $|\mathcal{B}|$ is square-free, T is listed in [15, Tables 1-4]. In particular, if T is one of sporadic simple groups then part (3) of Theorem 1 follows.

Assume that $T = A_n$, where $n \ge 5$. Suppose that $n \ge 3k$. By [15], there exists a prime p such that $k , and thus <math>p^2$ divides |T|, and p divides $|T_{\alpha}|$. So $p \le k$, which is a contradiction. Therefore, n < 3k, as in part (4) of Theorem 1.

We next deal with the classical groups and the exceptional groups of Lie type. If $T = \mathrm{PSL}(2, p^f)$ or $\mathrm{Sz}(2^f)$ then, by Lemmas 14 and 15, one of parts (5), (6) and (7) of Theorem 1 follows. Thus the following two lemmas will fulfill the proof of Theorem 1.

Lemma 16. Let T be a d-dimensional classical simple group of Lie type over $GF(p^f)$, where p is a prime. Then either T = PSL(2, p), or $p \le k$ and one of the following holds:

- (i) $T = PSL(2, p^f)$ with $f \ge 2$;
- (ii) $\left[\frac{d}{2}\right]f < k$; if further $T = \text{PSU}(d, p^f)$ then $2\left[\frac{d}{2}\right]f < k$ and $\left[\frac{d}{2}\right]$ is odd.

Proof. Let $\alpha \in V$. Then $|T:T_{\alpha}|$ is square-free and, by Lemma 6, each prime divisor of $|T_{\alpha}|$ is at most k. Assume that $T \neq \mathrm{PSL}(2,p)$. Let P be a Sylow p-subgroup of T. Then p^2 divides |P|. Since $|T:T_{\alpha}|$ is square-free, p divides $|T_{\alpha}|$, and so $p \leqslant k$.

Assume that $d \ge 3$. Let $d_0 = \left[\frac{d}{2}\right]$, the largest integer no more than $\frac{d}{2}$. Check the orders of classical simple groups of Lie type, see [2, Section 47] for example. We conclude that either

- (1) $(p^{2d_0f}-1)(p^{d_0f}-1)$ divides $(d, p^f-1)|T|$; or
- (2) $T = PSU(d, p^f)$ with d_0 odd, and $(p^{2d_0f} 1)(p^{d_0f} + 1)$ divides $(d, p^f + 1)|T|$.

Consider part (1) first. Suppose that $p^{d_0f}-1$ has a primitive prime divisor r. Then $r>d_0f$, and hence either r=d=3 and f=1, or r^2 divides |T|. For the former, $T=\mathrm{PSL}(3,p)$, and so $\left[\frac{d}{2}\right]f=1< k$. For the latter, r divides $|T_{\alpha}|$, and so $d_0f< r\leqslant k$. Suppose that $p^{d_0f}-1$ has no primitive prime divisor. By Theorem 10, either $d_0f=2$ and p+1 is a power of 2, or $(p,d_0f)=(2,6)$. For the former, $\left[\frac{d}{2}\right]f=d_0f=2< k$. Assume that $(p,d_0f)=(2,6)$. Then $(d_0,f)=(1,6)$, (2,3), (3,2), or (6,1). It follows that (d,f)=(3,6), (4,3), (5,3), (6,2), (7,2), (12,1) or (13,1). Thus |T| is divisible by 7^2 , and so $|T_{\alpha}|$ is divisible by 7. Then $\left[\frac{d}{2}\right]f=d_0f=6<7\leqslant k$ by Lemma 6.

Now assume that $T = PSU(d, p^f)$ with $d_0 = \left[\frac{d}{2}\right]$ odd. Then $(p^{2d_0f} - 1)(p^{d_0f} + 1)$ divides $(d, p^f + 1)|T|$. A similar argument shows that either $p^{2d_0f} - 1$ has no primitive prime divisor, or $2d_0f < k$. Assume that $p^{2d_0f} - 1$ has no primitive prime divisor. Then either $2d_0f = 2$, or $(p, 2d_0f) = (2, 6)$. For the former, $2d_0f = 2 < k$. Suppose that $(p, 2d_0f) = (2, 6)$. Then $d_0f = 3$, and so $(d, p^f) = (3, 2^3)$, (6, 2) or (7, 2). Thus |T| is divisible by 7^2 , and so $2d_0f = 6 < 7 \le k$.

Finally we consider the exceptional simple groups of Lie type.

Lemma 17. Let T be an exceptional simple group of Lie type defined over $GF(p^f)$ with p prime. Then $p \leq k$, and one of the following holds:

- (i) $T = Sz(2^f)$;
- (ii) $T = G_2(p^f)$ or ${}^3D_4(p^f)$, $p^f \neq 2^3$ and 2f < k;
- (iii) $T = F_4(p^f)$, ${}^2E_6(p^f)$ or $E_7(p^f)$, $p^f \neq 2$ and 6f < k.

Proof. Note that T has order divisible by p^2 . Then p divides $|T_{\alpha}|$, and so $p \leq k$. By [15, Table 4], T is one of $\operatorname{Sz}(2^f)$, $\operatorname{G}_2(p^f)$, $\operatorname{^3D}_4(p^f)$, $\operatorname{F}_4(p^f)$, $\operatorname{^2E}_6(p^f)$ and $\operatorname{E}_7(p^f)$.

For $T = G_2(p^f)$ or ${}^3\mathrm{D}_4(p^f)$, the order |T| is divisible by $(p^f + 1)^2$ and $|T| : T_\alpha|$ is divisible by $p^f + 1$. If $p^{2f} - 1$ has a primitive prime divisor r, then |T| is divisible by r^2 , and $|T_\alpha|$ is divisible by r, hence $2f < r \le m$. Assume that $p^{2f} - 1$ has no primitive prime divisor. Then either f = 1 and 2f = 2 < k, or (p, 2f) = (2, 6). For the latter, $T = G_2(8)$ or ${}^3\mathrm{D}_4(8)$, and so 9 is a divisor of $|T| : T_\alpha|$, which contradicts that $|T| : T_\alpha|$ is square-free. Thus T is described as in part (ii) of this lemma.

Assume that T is one of $F_4(p^f)$, ${}^2E_6(p^f)$ and $E_7(p^f)$. Then |T| is divisible by $(p^{6f}-1)^2$ and $|T:T_{\alpha}|$ is divisible by $\frac{p^{6f}-1}{p^f-1}$. If $p^{6f}-1$ has a primitive divisor r say, then r divides $|T_{\alpha}|$, and hence $6f < r \le k$. If $p^{6f}-1$ has no primitive prime divisor, then p=2 and f=1, and so $|T:T_{\alpha}|$ is not square-free as it is divisible by 9, and hence T is described as in part(iii) of this lemma.

6 Graphs associated with PSL(2, p)

In this section, we investigate vertex- and edge-transitive graphs associated with PSL(2, p), and then give a characterization for such graphs.

6.1 Examples

It is well-known that vertex- and edge-transitive graphs can be described as coset graphs. Let G be a finite group and H be a core-free subgroup of G, where core-free means that $\cap_{g \in G} H^g = 1$. Let $[G:H] = \{Hx \mid x \in G\}$, the set of right cosets of H in G. For an element $g \in G \setminus H$, define the coset graph $\Gamma := \mathsf{Cos}(G, H, H\{g, g^{-1}\}H)$ on [G:H] such that (Hx, Hy) is an arc of Γ if and only if $yx^{-1} \in H\{g, g^{-1}\}H$. Then Γ is a well-defined regular graph, and G induces a subgroup of $\mathsf{Aut}\Gamma$ acting on [G:H] by right multiplication. The next lemma collects several basic facts on coset graphs.

Lemma 18. Let G be a finite group and H a core-free subgroup of G. Take $g \in G \setminus H$ and set $\Gamma = \mathsf{Cos}(G, H, H\{g, g^{-1}\}H)$. Then Γ is G-vertex-transitive and G-edge-transitive. Moreover,

- (1) Γ is G-arc-transitive if and only if $H\{g,g^{-1}\}H = HxH$ for some 2-element $x \in \mathbf{N}_G(H \cap H^g) \setminus H$ with $x^2 \in H \cap H^g$;
- (2) Γ is connected if and only if $\langle H, g \rangle = G$.

Now we construct several examples.

Example 19. Let $T = \operatorname{PSL}(2, p)$, $\mathbb{Z}_p : \mathbb{Z}_l \cong H < T$ and $\mathbb{Z}_l \cong K < H$, where l is an even divisor of $\frac{p-1}{2}$ with $\frac{p-1}{2l}$ odd. Then $\mathbf{N}_T(K) \cong \mathbf{D}_{p-1}$. Set $\mathbf{N}_T(K) = \langle a \rangle : \langle b \rangle$. It is easily shown that $\langle b, H \rangle = T$. Then $\operatorname{Cos}(T, H, HbH)$ is a connected T-arc-transitive graph of valency p.

Example 20. Let T = PSL(2, p) and H a dihedral subgroup of T.

- (1) Let $\mathbb{Z}_2 \cong K < H \cong D_{2r}$ for an odd prime r such that |T:H| is square-free. Let $\epsilon = \pm 1$ such that 4 divides $p + \epsilon$. Then $\mathbf{N}_T(K) = K \times \langle a \rangle : \langle b \rangle \cong \mathbb{Z}_2 \times D_{\frac{p+\epsilon}{2}} \cong D_{p+\epsilon}$, where b is an involution and, if r divides $p+\epsilon$, we may choose b such that b centralizes H. Then, for $1 \leq i < \frac{p+\epsilon}{2}$, the coset graph $\mathsf{Cos}(T, H, Ha^ibH)$ is a connected T-arctransitive graph of valency r.
- (2) Let G = T or $\operatorname{PGL}(2, p)$ and $\mathbb{Z}_2^2 \cong K < H \cong \operatorname{D}_{4r}$ for an odd prime r with |G : H| square-free. Suppose that G contains a subgroup isomorphic to S_4 . Then $\operatorname{N}_G(K) = K: \langle y, z \rangle \cong \operatorname{S}_4$, where z is an involution with $y^z = y^{-1}$. Then $\operatorname{Cos}(G, T_\alpha, T_\alpha y z T_\alpha)$ is a G-arc-transitive graph of valency r.

Example 21. Let $A_4 \cong H < T = PSL(2,p) < G = PGL(2,p)$ with |T:H| square-free and $\mathbb{Z}_3 \cong K < H$. Let $\epsilon = \pm 1$ with 3 dividing $p + \epsilon$. Then $\mathbf{N}_T(K) \cong D_{p+\epsilon}$ and $\mathbf{N}_G(K) \cong D_{2(p+\epsilon)}$. Moreover,

- (1) Cos(T, H, HxH) is a connected (T, 2)-arc-transitive graph of valency 4, where $x \in \mathbf{N}_T(K) \setminus \mathbf{N}_T(H)$ is an involution;
- (2) Cos(G, H, HxH) is a connected (G, 2)-arc-transitive graph of valency 4, where $x \in \mathbf{N}_G(K) \setminus (T \cup \mathbf{N}_G(H))$ is an involution.

Example 22. Let $S_4 \cong H < T = PSL(2, p)$ with |T:H| square-free.

- (1) Let $D_8 \cong K < H$, and X = T or PGL(2,p) such that |X : H| is square-free and X has a Sylow 2-subgroup isomorphic to D_{16} . Then $D_{16} \cong \mathbf{N}_X(K) = K:\langle z \rangle$ for an involution $z \in X \setminus H$, and Cos(X, H, HzH) is a connected (X, 2)-arc-transitive graph of valency 3.
- (2) Let $S_3 \cong K < H$ and $G = \operatorname{PGL}(2, p)$, and $\epsilon = \pm 1$ with 3 dividing $p + \epsilon$. Then $\mathbf{N}_G(K) = \langle o \rangle \times K$ for an involution o. Set $X = \langle o, H \rangle$. Then X = T or $\operatorname{PGL}(2, p)$ depending on whether or not 12 divides $p + \epsilon$. Thus $\operatorname{Cos}(X, H, HoH)$ is a connected (X, 2)-arc-transitive graph of valency 4.

Example 23. Let $A_5 \cong H < T = PSL(2, p) < G = PGL(2, p)$ and K < H with $K \cong A_4$, D_{10} or S_3 . Then $N_G(K) = K:\langle z \rangle \cong S_4$, D_{20} or D_{12} , respectively, where $z \in G \setminus H$ is an involution. Set $X = \langle z, H \rangle$. Then X = T or PGL(2, p), and Cos(X, H, HzH) is either a connected (X, 2)-arc-transitive graph of valency 5 or 6, or a connected X-locally primitive graph of valency 10.

6.2 A characterization

Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geq 3$, where $G \leq \operatorname{Aut}\Gamma$. Assume that $T := \operatorname{soc}(G) = \operatorname{PSL}(2, p)$ for a prime $p \geq 5$, and that G acts transitively on V.

Let $\alpha \in V$. Then $|T:T_{\alpha}|$ is square-free; in particular, T_{α} has even order. Since $|G:T| \leq 2$, either T is transitive on V, or T has two orbits on V of the same length $\frac{|V|}{2}$. Thus $|V| = |T:T_{\alpha}|$ or $2|T:T_{\alpha}|$.

Note that the subgroups of T are known, refer to [11, II.8.27]. We next analyze one by one the possible candidates for T_{α} .

Lemma 24. Assume that T_{α} is cyclic. Then $T_{\alpha} \cong \mathbb{Z}_m$ for an even divisor m of $\frac{p\pm 1}{2}$, T is transitive on V, Γ is not G-locally-primitive, and one of the following holds:

- (i) Γ is T-edge-transitive, and k = m or 2m;
- (ii) $G = \operatorname{PGL}(2, p), G_{\alpha} \cong \mathbb{Z}_{2m} \text{ or } D_{2m}, \text{ and } k = 2m \text{ or } 4m.$

Proof. Note T_{α} is a cyclic group of even order. By Lemma 7, T_{α} is faithful and semiregular on $\Gamma(\alpha)$. It is easy to check that no primitive group contains a normal semiregular cyclic subgroup of even order. Thus Γ is not G-locally-primitive. By [11, II.8.5], T_{α} is contained in a subgroup conjugate to $\mathbb{Z}_{\frac{p\pm1}{2}}$ in T. Thus $T_{\alpha}\cong\mathbb{Z}_m$ for an even divisor m of $\frac{p\pm1}{2}$. Then $p(p\mp1)$ is a divisor of $|T:T_{\alpha}|$, and so $|T:T_{\alpha}|$ is even. It follows that T is transitive on V. Note that $|G_{\alpha}|=m$ or 2m. It follows that Γ has valency m, 2m or 4m. Then (i) or (ii) is associated with the case that T is transitive or intransitive on E, respectively. \square

Lemma 25. Assume that $|T_{\alpha}|$ is divisible by p. Then $T_{\alpha} \cong \mathbb{Z}_p:\mathbb{Z}_l$, T is transitive on V and Γ has valency divisible by p, where l is an even divisor of $\frac{p-1}{2}$ with $\frac{p-1}{2l}$ odd. If Γ is G-locally primitive, then Γ is isomorphic to the graph in Example 19.

Proof. By [11, II.8.27], recalling that T_{α} has even order, $T_{\alpha} \cong \mathbb{Z}_p:\mathbb{Z}_l$ for an even divisor l of $\frac{p-1}{2}$. Since $|T:T_{\alpha}|=\frac{p^2-1}{2l}=(p+1)\frac{p-1}{2l}$ is even and square-free, $\frac{p-1}{2l}$ is odd and T is transitive on V. By Lemma 7, noting that T_{α} is a Frobenius group, T_{α} acts faithfully on $\Gamma(\alpha)$. In particular, each T_{α} -orbit on $\Gamma(\alpha)$ has size divisible by p.

Assume that Γ is G-locally primitive. Then T_{α} is transitive on $\Gamma(\alpha)$ as $T_{\alpha} \triangleleft G_{\alpha}$. It implies that Γ has valency p and Γ is T-arc-transitive. Then $\Gamma \cong \mathsf{Cos}(T, T_{\alpha}, T_{\alpha}xT_{\alpha})$ for some $x \in \mathbf{N}_T(T_{\alpha\beta})$ with $x^2 \in T_{\alpha\beta}$ and $\langle x, T_{\alpha} \rangle = T$, where $\beta \in \Gamma(\alpha)$. Note that $\mathbf{N}_T(T_{\alpha\beta}) \cong \mathsf{D}_{p-1}$. We write $\mathbf{N}_T(T_{\alpha\beta}) = \langle a \rangle : \langle b \rangle$. Let M be a maximal subgroup of T with $T_{\alpha} \leqslant M \cong \mathbb{Z}_p : \mathbb{Z}_{\frac{p-1}{2}}$. Then $\mathbb{Z}_{\frac{p-1}{2}} \cong \mathbf{N}_M(T_{\alpha\beta}) \leqslant \mathbf{N}_T(T_{\alpha\beta})$. Thus $a \in M$. Write $\frac{p-1}{2} = ij$, where i is odd and j is a power of 2. Then $\langle a \rangle = \langle a^i \rangle \times \langle a^j \rangle$. Since $T_{\alpha\beta} \cong \mathbb{Z}_l$ and $\frac{p-1}{2l}$ is odd, we have $a^i \in T_{\alpha\beta} \leqslant T_{\alpha}$. Since l is even, $j \neq 1$. It follows from $\langle x, T_{\alpha} \rangle = T$ that $x = a^{si}a^{tj}b$ for some s and t. Then $T_{\alpha}xT_{\alpha} = T_{\alpha}a^{tj}bT_{\alpha} = (T_{\alpha}bT_{\alpha})^{a^{-\frac{tj}{2}}}$. Noting that $a^{-\frac{tj}{2}}$ normalizes T_{α} , we have $\Gamma \cong \mathsf{Cos}(T, T_{\alpha}, T_{\alpha}xT_{\alpha}) \cong \mathsf{Cos}(T, T_{\alpha}, T_{\alpha}bT_{\alpha})$ as constructed in Example 19.

Lemma 26. Assume that $T_{\alpha} \cong D_{2m}$ with m > 1 coprime to p. Then m is a divisor of $\frac{p\pm 1}{2}$, and Γ has valency divisible by $\frac{m}{2}$ or m. If Γ is G-locally-primitive, then Γ has odd prime valency r, $T_{\alpha} \cong D_{2r}$ or D_{4r} , and Γ is isomorphic to one of the graphs given in Example 20.

Proof. The first part follows from that $|T_{\alpha}|$ is a divisor of $|T| = \frac{p(p^2-1)}{2}$.

Let $\{\alpha, \beta\}$ be an edge of Γ . Suppose that $T_{\alpha\beta}$ contains a cyclic subgroup C of order no less than 3. Then C is the unique subgroup of order |C| in both T_{α} and T_{β} . For an arbitrary edge $\{\gamma, \delta\}$, since Γ is G-edge-transitive, $\{\gamma, \delta\} = \{\alpha, \beta\}^x$ for $x \in G$, so $T_{\gamma\delta} = T_{\alpha^x\beta^x} = T \cap G_{\alpha^x\beta^x} = T \cap (G_{\alpha\beta})^x = (T_{\alpha\beta})^x$. Then C^x is the unique subgroup of order |C| in both T_{γ} and T_{δ} . So $C \leqslant T_{\gamma}$ for $\gamma \in \Gamma(\alpha) \cup \Gamma(\beta)$. Since Γ is connected, C fixes each vertex of Γ , and so C = 1 as $C \leqslant \operatorname{Aut}\Gamma$, a contradiction. Thus $|T_{\alpha\beta}|$ is a divisor of 4, and hence Γ has valency divisible by $\frac{m}{2}$ or m.

Assume that Γ is G-locally primitive. Then $T_{\alpha}^{\Gamma(\alpha)}$ contains a transitive normal cyclic subgroup. Thus $|\Gamma(\alpha)| = r$ is an odd prime, and $T_{\alpha}^{\Gamma(\alpha)} \cong T_{\alpha}/T_{\alpha}^{[1]} \cong (T_{\alpha}G_{\alpha}^{[1]})/G_{\alpha}^{[1]} \cong D_{2r}$. Note that $T_{\alpha}^{[1]}$ is a normal cyclic subgroup of T_{α} . By the argument in above paragraph, $|T_{\alpha}^{[1]}| \leq 2$. It follows that $T_{\alpha} \cong D_{2r}$ or D_{4r} .

Let $T_{\alpha} \cong D_{2r}$. Then $|T:T_{\alpha}|$ is even, so T is transitive on V, and hence Γ is T-arc-transitive. Then $\Gamma \cong \mathsf{Cos}(T,T_{\alpha},T_{\alpha}xT_{\alpha})$ for some $x \in \mathbf{N}_{T}(T_{\alpha\beta})$ with $x^{2} \in T_{\alpha\beta}$ and $\langle x,T_{\alpha}\rangle = T$. Let $\epsilon = \pm 1$ such that 4 divides $p + \epsilon$. Then $\mathbf{N}_{T}(T_{\alpha\beta}) = T_{\alpha\beta} \times \langle a \rangle : \langle b \rangle \cong \mathbb{Z}_{2} \times D_{\frac{p+\epsilon}{2}} \cong D_{p+\epsilon}$. It implies that x is an involution. If r does not divides $p + \epsilon$, then $x = a^{i}b$ for some $1 \leqslant i \leqslant \frac{p+\epsilon}{2}$. Assume that r is a divisor of $p + \epsilon$. Then T_{α} is contained in a maximal subgroup $M \cong D_{p+\epsilon}$ of T, and $\mathbf{N}_{M}(T_{\alpha\beta}) \cong \mathbb{Z}_{2}^{2}$ contains the center of M. Without loss of generality, we choose b in the center of M, and so $x = a^{i}b$ for $1 \leqslant i < \frac{p+\epsilon}{2}$. Thus Γ is isomorphic to a graph given in Example 20 (1).

Now let $T_{\alpha} \cong D_{4r}$. Then $T_{\alpha\beta} \cong \mathbb{Z}_2^2$. If T is not transitive on $V\Gamma$, then $G = \operatorname{PGL}(2, p)$, Γ is a bipartite graph, and $T_{\alpha} = G_{\alpha}$. Thus we set $X = \operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$ depending respectively on whether or not T is is transitive on $V\Gamma$. Then $\Gamma \cong \operatorname{Cos}(X, T_{\alpha}, T_{\alpha}xT_{\alpha})$ for some $x \in \mathbf{N}_X(T_{\alpha\beta}) \setminus T_{\alpha\beta}$ with $x^2 \in T_{\alpha\beta}$; in particular, $\mathbf{N}_X(T_{\alpha\beta})/T_{\alpha\beta}$ is of even order It implies that $\mathbf{N}_T(T_{\alpha\beta}) \cong S_4$. Let M be the maximal subgroup of X with $T_{\alpha} \leq M$. Then 8 divides |M|, and $\mathbf{N}_M(T_{\alpha\beta}) \cong D_8$. Take $D_{8r} \cong M_1 \geqslant T_{\alpha}$. Then $\mathbf{N}_M(T_{\alpha\beta}) = \mathbf{N}_{M_1}(T_{\alpha\beta})$. We write $\mathbf{N}_X(T_{\alpha\beta}) = T_{\alpha\beta}:(\langle y \rangle:\langle z \rangle)$, where $z \in \mathbf{N}_M(T_{\alpha\beta})$ and $\langle y \rangle:\langle z \rangle \cong S_3$. Noting that $x \notin \mathbf{N}_M(T_{\alpha\beta})$ and x is of even order, we have $x = x_1 y^i z$ for some $x_1 \in T_{\alpha\beta}$ and i = 1 or 2. Noting that z normalizes T_{α} and $y^z = y^{-1}$, we have $\operatorname{Cos}(X, T_{\alpha}, T_{\alpha}xT_{\alpha}) = \operatorname{Cos}(X, T_{\alpha}, T_{\alpha}y^i zT_{\alpha}) \cong \operatorname{Cos}(X, T_{\alpha}, T_{\alpha}yzT_{\alpha})$. Thus Γ is isomorphic to the graph given in Example 20 (2).

Theorem 27. Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geq 3$, where $G \leq \operatorname{Aut}\Gamma$. Assume that $\operatorname{soc}(G) = \operatorname{PSL}(2, p)$ for a prime $p \geq 5$, and that G is transitive on V. Then, for $\alpha \in V$, the pair $(\operatorname{soc}(G)_{\alpha}, k)$ lies in Table 1. Further, if Γ is G-locally primitive, then $(\operatorname{soc}(G)_{\alpha}, k)$ lies in Table 2.

$\operatorname{soc}(G)_{\alpha}$	k	remark
\mathbb{Z}_m	m, 2m, 4m	m is an even divisor of $\frac{p\pm 1}{2}$
$\mathbb{Z}_p{:}\mathbb{Z}_l$	pm, 2pm, 4pm	$\frac{(p-1)}{2l}$ is odd, $m \mid l$
D_{2m}	$\frac{m}{2}, m, 2m, 4m$	$m ext{ divides } \frac{p\pm 1}{2}$
A_4	l, 2l	$l \in \{4, 6, 12\}, 32 / p^2 - 1, T^E$ is transitive
	2l, 4l	$p \equiv \pm 3 (\bmod 8), G = \operatorname{PGL}(2, p)$
S_4	l, 2l	$l \geqslant 3, l \mid 24, p \equiv \pm 1 \pmod{8}, G_{\alpha} = T_{\alpha}$
A_5	l, 2l	$l \geqslant 5, l \mid 60, p \equiv \pm 1 \pmod{10}, G_{\alpha} = T_{\alpha}$

Table 1:

$soc(G)_{\alpha}$	k	Γ	remark
$\mathbb{Z}_p{:}\mathbb{Z}_l$	p	Example 19	(p-1)/2l is odd
D_{4r}	r	Example 20 (1)	prime $r \neq p, 32 / (p^2 - 1)$
D_{2r}	r	Example 20 (2)	prime $r \neq p, 16 / (p^2 - 1)$
A_4	4	Example 21	$32 / (p^2 - 1)$
S_4	3, 4	Example 22	$p \equiv \pm 1 \pmod{8}$
A_5	5, 6, 10	Example 23	$p\equiv \pm 1 (mod\ 10)$

Table 2:

Proof. Let $\Gamma = (V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geq 3$, where $G \leq \operatorname{Aut}\Gamma$. Assume that $T := \operatorname{soc}(G) = \operatorname{PSL}(2, p)$ for a prime $p \geq 5$, and that G acts transitively on V. Let $\{\alpha, \beta\} \in E$.

Noting that $|G:G_{\alpha}|=|T:T_{\alpha}|$ or $2|T:T_{\alpha}|$, we have $|G_{\alpha}:T_{\alpha}|=1$ or 2. Then T_{α} has at most two orbits on each G_{α} -orbits on $\Gamma(\alpha)$. By Lemma 9, we have $k=|\Gamma(\alpha)|=l$, 2l or 4l, where $l=|T_{\alpha}:T_{\alpha\beta}|$. By Lemmas 24, 25 and 26, we need only consider the remaining case: $T_{\alpha}\cong A_4$, S_4 or A_5 .

Let $T_{\alpha} \cong S_4$ or A_5 . Checking the maximal subgroups of $\operatorname{PGL}(2,p)$ (see [3], for example), we know that $\operatorname{PGL}(2,p)$ has no subgroups of order $2|T_{\alpha}|$. It follows that $G_{\alpha} = T_{\alpha}$. Then k = l or 2l depending whether or not $T_{\alpha}^{\Gamma(\alpha)}$ is transitive. If $T_{\alpha} \cong S_4$, then $T_{\alpha}^{\Gamma(\alpha)} \cong S_3$ or S_4 , which implies that $l \geqslant 3$ and l divides 24. If $T_{\alpha} \cong A_5$, Then $l \geqslant 5$ is a divisor of 60.

Let $T_{\alpha} \cong A_4$. Assume that T is transitive on E. Then k = l or 2l, where $l = |T_{\alpha}: T_{\alpha\beta}|$ for $\alpha \in \Gamma(\alpha)$. By Lemma 7, $l \neq 3$. Thus $l \in \{4,6,12\}$. Assume that T is intransitive on E. Then $G = \operatorname{PGL}(2,p)$ and $G_{\alpha} \cong S_4$, and hence $p \equiv \pm 3 \pmod{8}$ by checking the maximal subgroups of G. By Lemma 7, we conclude that $T_{\alpha}^{\Gamma(\alpha)} \cong A_4$ and $G_{\alpha}^{\Gamma(\alpha)} \cong S_4$. It follows that k = 2l or 4l for $l \in \{4,6,12\}$.

Further, if Γ is G-locally primitive, then k=4 for $T_{\alpha} \cong A_4$, k=3 or 4 for $T_{\alpha} \cong S_4$, and k=5,6 or 10 for $T_{\alpha} \cong A_5$. Next we determine the G-locally primitive graphs.

Let $T_{\alpha} \cong A_4$. Then $T_{\alpha\beta} \cong \mathbb{Z}_3$, and Γ is (G,2)-arc-transitive and of valency 4. Let X = T or $\operatorname{PGL}(2,p)$ depending T is transitive or intransitive on V. Then $\mathbf{N}_X(T_{\alpha\beta}) \cong \operatorname{D}_{t(p+\epsilon)}$, where t = |X:T| and $\epsilon = \pm 1$ such that 3 divides $p + \epsilon$. Let $x \in \mathbf{N}_X(T_{\alpha\beta})$ with $x^2 \in T_{\alpha\beta}$ and $\langle x, T_{\alpha} \rangle = X$. Then x is either an involution or of order 6, and xy is an involution

M	T_{α}	k	T-orbits	remark
\mathbb{Z}_m	\mathbb{Z}_p : \mathbb{Z}_l	p	1	m and $(p-1)/2ml$ are odd
1	D_{4r}	r	1,2	prime $r \neq p, \ 32 / (p^2 - 1)$
1	D_{2r}	r	1,2	prime $r \neq p, \ 16 / (p^2 - 1)$
1	A_4	4	1,2	$32 / (p^2 - 1)$
\mathbb{Z}_3	\mathbb{Z}_2^2	4	1,2	$32 / (p^2 - 1)$
\mathbb{Z}_6, S_3	\mathbb{Z}_2^2	4	2	$16 / (p^2 - 1)$
1	S_4	3, 4	1, 2	$p\equiv \pm 1 (mod\ 8)$
\mathbb{Z}_2	A_4	4	1	$32 / (p^2 - 1)$
S_3	\mathbb{Z}_2^2	4	1	$32 / (p^2 - 1)$
\mathbb{Z}_2	S_4	4	2	$32 / (p^2 - 1)$
1	A_5	5, 6, 10	1	$p \equiv \pm 1 (mod\ 10)$
\mathbb{Z}_2	A_5	6, 10	2	$p \equiv \pm 1 \pmod{10}, 16 / (p^2 - 1)$

Table 3:

for some $y \in T_{\alpha\beta}$. Note that $T_{\alpha}xT_{\alpha} = T_{\alpha}xyT_{\alpha}$. Thus, writing Γ as a coset graph, Γ is isomorphic to one of the graphs in Example 21.

Let $T_{\alpha} \cong S_4$. Then $G_{\alpha} = T_{\alpha}$. If Γ has valency 3, then Γ is isomorphic the graph given in Example 22 (1). If Γ has valency 4, then $G_{\alpha\beta} \cong S_3$ and $\mathbf{N}_G(G_{\alpha\beta}) = \mathbb{Z}_2 \times S_3$, it follows that Γ is isomorphic the graph given in Example 22 (2).

Finally, if $T_{\alpha} = A_5$ then $G_{\alpha} = T_{\alpha}$ and $G_{\alpha\beta} \cong A_4$, D_{10} or S_3 , and thus Γ is isomorphic one of the graphs given in Example 23.

7 Locally primitive arc-transitive graphs

In this section we give a proof of Theorem 4. We first prove a technical lemma.

Lemma 28. Let G be a transitive permutation group on V of square-free degree and let M be a normal subgroup of G. Assume that M is semiregular on V and G/M acts faithfully on the M-orbits. Then there is $X \leq G$ such that G = M:X.

Proof. The result is trivial if M=1. Thus we assume that $M\neq 1$. Note that M has square-free order. Let p be the largest prime divisor of |M| and P be the Sylow p-subgroup of M. Then P is cyclic and is normal in G. Let $\alpha \in V$ and B be the P-orbit with $\alpha \in B$. Let V_P be the set of P-orbits. Then |B|=p is coprime to $|V_P|$. Then $G_B=P:G_\alpha$ contains a Sylow p-subgroup $P\times Q$ of G, where Q is a Sylow p-subgroup of G_α . It follows from [2, 10.4] that the extension G=P.(G/P) splits over P. Thus G=P:H for some H< G with $H\cap P=1$. If M=P, then the result follows. We assume $M\neq P$ in the following.

Let K be the kernel of G acting on V_P . Noting that each M-orbit on V consists of several P-orbits, we know that K fixes each M-orbits set-wise. It follows from the assumptions that $K \leq M$. Then, considering the action of M on its an orbit, we conclude that K = P. Thus H is faithful and transitive on V_P . Further, $M = M \cap PH = P(M \cap H)$

implies that $M \cap H$ is semiregular on V_P . It is easily shown that $H/(M \cap H)$ acts faithfully on the $(M \cap H)$ -orbits on V_P . Noting that $|V_P| < |V|$, we may assume by induction that $H = (M \cap H)X$ with $X \cap (M \cap H) = 1$. Then $G = P((M \cap H)X) = MX$, and $M \cap X \leq M \cap H$ yielding $M \cap X \leq M \cap H \cap X = 1$, hence our result follows. \square

Let $\Gamma = (V, E)$ be a connected G-locally primitive graph. Suppose that G has a normal subgroup N which has at least three orbits on V. Then either the quotient graph Γ_N is a star, or Γ is a normal cover of Γ_N , refer to [10, Theorem 1.1]. Then following lemma is easily shown.

Lemma 29. Let $\Gamma = (V, E)$ be a connected G-locally primitive and G-symmetric graph. Let N be a normal subgroup of G. If N is not semiregular on V, then N is transitive on E and has at most two orbits on V.

Theorem 30. Let $\Gamma = (V, E)$ be a connected G-locally primitive graph of square-free order and valency k > 2. Let $M \triangleleft G$ be maximal subject to that M has at least three orbits on V. Assume further that Γ_M is not a star. Then one of the following holds.

- (1) M = 1, Γ and G are described as in (1) or (5) of Lemma 13;
- (2) Γ is a bipartite graph, $G \cong D_{2n}: \mathbb{Z}_k$, $\mathbb{Z}_n: \mathbb{Z}_k$ or $\mathbb{Z}_{\frac{n}{k}}: \mathbb{Z}_k^2$, and k is the smallest prime divisor of nk;
- (3) G = M:X, $Msoc(X) = M \times soc(X)$ and soc(X) is a simple group descried in (3)-(6) and (8) of Theorem 1.

Proof. Since Γ_M is not a star, Γ is a normal cover of Γ_M , hence M is semiregular on V; in particular, |M| is coprime to $|V_M|$. By the choice of M, we know that G/M is faithful on either V_M or one of two G/M-orbits on V_M . Then, by Lemma 28, we have G = M:X. Note that Γ_M is G/M-locally primitive, and the pair G/M and Γ_M satisfies the assumptions in Theorem 1. Let $Y = \operatorname{soc}(X)$. Then, by Lemma 13, $\Gamma_M \cong \mathsf{K}_{k,k}$ and $Y \cong T^2$ for a simple group T, or Y is a minimal normal subgroup of X.

Since |M| is square-free, M has soluble automorphism group $\operatorname{Aut}(M)$. Noting that $G/\mathbf{C}_G(M) = \mathbf{N}_G(M)/\mathbf{C}_G(M) \lesssim \operatorname{Aut}(M)$, it follows that $G/\mathbf{C}_G(M)$ is soluble. If Y is a nonabelian simple group then $Y \leqslant \mathbf{C}_G(M)$, and hence $MY = M \times Y$, and so part (3) of this theorem occurs. We next complete the proof in two cases.

Case 1. $\Gamma_M \cong \mathsf{K}_{k,k}$ and $Y \cong T^2$ for a simple group T. In this case, by Lemma 13, X is transitive on V_M , and so Γ_M is X-arc-transitive. Then Γ is G-arc-transitive. Moreover, Y has exactly two orbits on V_M of size k. Thus MY has exactly two orbits U and W on V of length k|M|. Let U_M and W_M be the sets of M-orbits on U and W, respectively. Then U_M and W_M are Y-orbits on V_M .

Assume first that T is a nonabelian simple group. Then part (5) of Lemma 13 holds for the pair (X, Γ_M) . In particular, Y is the unique minimal normal subgroup of X. Let Δ be an M-orbit on V. Suppose that $T \cong A_7$. Then k = 105 and $T_\Delta \cong A_6 \times \mathrm{PSL}(3,2)$. It is easily shown that Γ_M is not X-locally primitive, which is not the case. Thus Y is unfaithful on both U_M and W_M . Let K be the kernel of Y acting on U_M . Then $K \cong T$

and, $Y = K \times K^x$ for $x \in X \setminus Y$. It is easily shown that $K \cong T$ is transitive on W_M . Recalling that $G/\mathbb{C}_G(M)$ is soluble, it follows that $K \leqslant \mathbb{C}_{MK}(M)$ and so $MK = M \times K$. Considering the action of MK on Δ , we conclude that K acts trivially on Δ . Then K acts trivially on U. Since K is transitive on W_M , we conclude that $\Gamma \cong K_{k,k}$. It follows that M = 1, and so (1) of this theorem occurs.

Now let $T \cong \mathbb{Z}_p$ for an odd prime p. Then k = p is coprime to |M|, and so |V| = 2k|M|. Noting that Γ_M has odd valency k, it implies that Γ_M has even order, and so |M| is odd. Moreover, by Lemma 13, $X \cong G/M \cong (\mathbb{Z}_k^2:\mathbb{Z}_l).\mathbb{Z}_2$ is nonabelian, where l is a divisor of k-1. Since |M| is square-free, M is soluble, and so G is soluble. Let F be the Fitting subgroup of G. Then $\mathbf{C}_G(F) \leqslant F \neq 1$. Suppose that F has at least three orbits on V. Since Γ is G-locally primitive and G-vertex-transitive, Γ is a normal cover of Γ_F ; in particular, F has square-free order. Then G/F is isomorphic to a subgroup of $\operatorname{Aut}\Gamma_F$ acting transitively on the arcs of Γ_F , and so G/F is not abelian. On other hand, since |F| is square-free, F is cyclic, and hence $\mathbf{C}_G(F) = F$ and $\operatorname{Aut}(F)$ is abelian. Since $G/F = \mathbf{N}_G(F)/\mathbf{C}_G(F) \lesssim \operatorname{Aut}(F)$, we know that G/F is abelian, a contradiction. Thus F has one or two orbits on V. Suppose that |F| is even. Let Q be the Sylow 2-subgroup of F. Then $Q \lhd G$. Consider the quotient Γ_Q . Since |V| is square-free and Γ is G-vertex-transitive, we get a graph of odd order k|M| and odd valency k, which is impossible. Then F has odd order, and hence F has exactly two orbits on V.

Assume |F| is divisible by k^2 . Let P be the Sylow k-subgroup of F. Then $\mathbb{Z}_k^2 \cong Y = \operatorname{soc}(X) = P \lhd G$. By Lemma 29, we conclude that $\Gamma \cong \mathsf{K}_{k,k}$. This implies that M = 1, and Γ and G are described as in (1) of Lemma 13. Then (1) of this theorem occurs.

Assume that |F| is not divisible by k^2 . Then $M \neq 1$; otherwise $\mathbb{Z}_k^2 \cong Y \leqslant F$, a contradiction. Since F has exactly two orbits on V, we know that |F| is divisible by k|M|. Let P be the Sylow k-subgroup of F. Then $\mathbb{Z}_k \cong P \triangleleft G$. Let q be the smallest prime divisor of |M|, and the let N be the q'-Hall subgroup of M. Then NP is a normal subgroup of G. It is easy to see that NP is intransitive on both U and W. Then the quotient graph Γ_{NP} is bipartite and of order 2q and valency k, and so q > k. Thus, since l is a divisor of k-1, each possible prime divisor of l is less than q. Note that FM is a subgroup of G. Then $|G| = 2lk^2|M|$ is divisible by $|FM| = \frac{|F||M|}{|F\cap M|}$. Recalling that |F|is divisible by k|M|, it follows that $M \leq F$. Let r be an arbitrary prime divisor of |F|, and let R be the Sylow r-subgroup of F. Then $R \triangleleft G$ and r is odd. Since G is transitive on V, all R-orbits on V have the same length. It implies that r is a divisor of |V|, and so r is a divisor of k|M|. The above argument yields that |F|=k|M|, and so |F| is square-free. Then F is cyclic and semiregular on V, $\mathbf{C}_G(F) = F$ and $\mathsf{Aut}(F)$ is abelian. Since $G_{\alpha} \cong G_{\alpha}F/F \leqslant G/F = \mathbf{N}_{G}(F)/\mathbf{C}_{G}(F) \lesssim \mathsf{Aut}(F)$, we know that both G_{α} and G/Fare abelian. By Lemma 8, $G_{\alpha} \cong \mathbb{Z}_k$. Since $|G:(FG_{\alpha})| = 2$, we have $G = F.\mathbb{Z}_{2k}$. Thus Ghas a normal regular subgroup $F:\mathbb{Z}_2$. Then Γ is isomorphic a Cayley graph $\mathsf{Cay}(F:\mathbb{Z}_2,S)$, where $S = \{s^{\tau^i} \mid 0 \leq i \leq k-1\}$ for an involution $s \in F: \mathbb{Z}_2$ and $\tau \in \mathsf{Aut}(F: \mathbb{Z}_2)$ of order ksuch that $\langle S \rangle = F:\mathbb{Z}_2$. Noting that $|F:\mathbb{Z}_2|$ is square-free, it follows that $F:\mathbb{Z}_2$ is a dihedral group, say D_{2n} . Then part (2) of this theorem occurs.

Case 2. $\operatorname{soc}(G/M) \cong \operatorname{soc}(X) = Y \cong \mathbb{Z}_p$. Since Γ_M is X-locally primitive, by Lemma 13, either $X \cong \mathbb{Z}_p : \mathbb{Z}_k$, or $X \cong \mathbb{Z}_p : \mathbb{Z}_{2k}$ and X is transitive on V_M . Moreover,

 $|V_M| = 2p$, (p, |M|) = 1, p > k and k is an odd prime. Let L = MY. Then L is a semiregular normal subgroup of G, and L has exactly two orbits U and W on V.

Let $X \cong \mathbb{Z}_p:\mathbb{Z}_k$. Then |G| = kp|M| = k|L|. Assume that |L| has a prime divisor q such that either a Sylow q-subgroup of L is not normal in L or q is the smallest prime divisor of |L|. It is easily shown that L has a unique q'-Hall subgroup N; in particular, N is normal in L. Then N is normal in G, and N has q-orbits on each of U and W. Thus the quotient graph Γ_N is bipartite and of order 2q and valency k. In particular, $k \leq q$. Further, $G/N = \mathbb{Z}_q:\mathbb{Z}_k$ is not abelian unless q = k. Since |N| is square-free, the outer automorphism group Out(N) of N is abelian, refer to [12]. Note that $G/(NC_G(N))$ is isomorphic a quotient of a subgroup of Out(N). Then $G/(NC_G(N))$ is abelian. Thus either q=k, or $NC_G(N)$ has order divisible by q. Suppose that q > k. Then q is not a divisor of |N| as $N \leq L$ and |L| is square-free. Note that $N\mathbf{C}_G(N)/N \cong \mathbf{C}_G(N)/(N \cap \mathbf{C}_G(N))$. It follows that $|\mathbf{C}_G(N)|$ is divisible by q. Let Q be a Sylow q-subgroup of $\mathbf{C}_G(N)$. Then Q is also a Sylow q-subgroup of G, and hence $Q \leq L$. Moreover, $NQ/N \triangleleft G/N$, and so $NQ \triangleleft G$. Since $NQ = N \times Q$, we know that $Q \triangleleft G$, which contradicts the choice of q. Therefore, q = k. This says that k is the smallest prime divisor of |G|, and either $L \cong \mathbb{Z}_n$ or $L \cong \mathbb{Z}_{\frac{n}{k}}:\mathbb{Z}_k$, where n = |L|. Thus $G = \mathbb{Z}_n:\mathbb{Z}_k$ or $\mathbb{Z}_{\frac{n}{k}}:\mathbb{Z}_k^2$, and k is the smallest prime divisor of nk.

Now let $X \cong \mathbb{Z}_p:\mathbb{Z}_{2k}$. Then G has a normal regular subgroup $R = L:\mathbb{Z}_2$, and Γ is isomorphic a Cayley graph $\mathsf{Cay}(R,S)$, where $S = \{s^{\tau^i} \mid 0 \leqslant i \leqslant k-1\}$ for an involution $s \in R$ and an automorphism $\tau \in \mathsf{Aut}(R)$ of order k such that $\langle S \rangle = R$. Noting that |R| is square-free, it follows that R is a dihedral group, say D_{2n} . Then $G = \mathsf{D}_{2n}:\mathbb{Z}_k$. Let q be the smallest prime divisor of n. Then G has a normal subgroup N with |G:N| = 2qk. It is easily shown that the quotient graph Γ_N is bipartite and of valency k and order k. Then $k \leqslant q$, and so k is the smallest prime divisor of k. Thus part (2) follows. \square

Now we are ready to give a proof of Theorem 4.

Proof of Theorem 4. Let $\Gamma = (V, E)$ be a G-locally primitive arc-transitive graph, and let $M \triangleleft G$ be maximal subject to that M has at least three orbits on V. Then Γ is a normal cover of $\Sigma := \Gamma_M$. Note that Γ and Σ has even valency if |M| is even.

If G is soluble then, by Theorem 30, one of part (1) of Theorem 4 occurs. Thus we assume that G is insoluble. Then G = M:X, where T := soc(X) is a simple group descried in (3)-(6) and (8) of Theorem 1. By Lemma 29, we conclude that either Γ is T-arc-transitive, or Γ is T-edge-transitive and T has exactly two orbits on V. We next consider the case where T = PSL(2, p) for a prime $p \ge 5$.

Let Δ be an M-orbit on V. Then either T_{Δ} is transitive on Δ ; or T_{Δ} has exactly two orbits on Δ and, in this case, T is intransitive on V and $M \times T$ is transitive on V. We take a normal subgroup N of G such that N = M if the first case occurs, or N is the 2'-Hall subgroup of M if the second case occurs. Let Δ_1 be an N-orbit contained in Δ . Then $T_{\Delta} = T_{\Delta_1}$ is transitive on Δ_1 and N is regular on Δ_1 . Considering the action of $N \times T_{\Delta}$, we conclude that $N \cong T_{\Delta}/K$, where K is the kernel of T_{Δ} on Δ_1 . Note that T_{Δ} is known by Theorem 27, and that $|V| = |T:T_{\alpha}|$ or $2|T:T_{\alpha}|$ is square-free. Then we get Table 3 by checking possible normal subgroups of T_{Δ} with square-free index.

References

- [1] B. Alspach and M. Y. Xu. $\frac{1}{2}$ -transitive graphs of order 3p. J. Algebraic Combin., $3:347-355,\ 1994.$
- [2] M. Aschbacher. Finite group theory. Cambridge University Press, Cambridge, 1993.
- [3] P. J. Cameron, G. R. Omidi, and B. Tayfeh-Rezaie. 3-Design from PGL(2,q). The Electronic J. Combin., 13:#R50, 2006.
- [4] C. Y. Chao. On the classification of symmetric graphs with a prime number of vertices. *Trans. Amer. Math. Soc.*, 158:247–256, 1971.
- [5] Y. Cheng and J. Oxley. On weakly symmetric graphs of order twice a prime. *J. Combin. Theory Ser. B*, 42:196–211, 1987.
- [6] M. Conder and P. Dobcsányi. Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput., 40:41–63, 2002.
- [7] M. D. Conder, C. H. Li, and C. E. Praeger. On the Weiss conjucture for finite locally primitive graphs. *Pro. Edinburgh Math. Soc.*, 43:129–138, 2000.
- [8] J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker, and R. A. Wilson. *Atlas of Finite Groups*. Clarendon Press, Oxford, 1985.
- [9] Y. Q. Feng and Y. T. Li. One-regular graphs of square-free order of prime valency. European J. Combin., 32:165–175, 2011.
- [10] M. Giudici, C. H. Li, and C. E. Praeger. Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc., 356:291–317, 2004.
- [11] B. Huppert. Endliche Gruppen I. Springer-Verlag, 1967.
- [12] C. H. Li, Z. Liu, and Z. P. Lu. Tetravalent edge-transitive Cayley graphs of square free order. *Discrete Math.*, 312:1952–1967, 2012.
- [13] C. H. Li, Z. P. Lu, and G. X. Wang. Vertex-transitive cubic graphs of square-free order. *J. Graph Theory*, 75:1–19, 2014.
- [14] C. H. Li, Z. P. Lu, and G. X. Wang. The vertex-transitive and edge-transitive tetravalent graphs of square-free order. *J. Algebraic Combin.*, 42:25–50, 2015.
- [15] C. H. Li and Ákos Seress. The primitive permutation groups of square free degree. Bull. London Math. Soc., 35:635–644, 2003.
- [16] G. X. Liu and Z. P. Lu. On edge-transitive cubic graphs of square-free order. *European J. Combin.*, 45:41–46, 2015.
- [17] C. E. Praeger, R. J. Wang, and M. Y. Xu. Symmetric graphs of order a product of two distinct primes. *J. Combin. Theory Ser. B*, 58:299–318, 1993.
- [18] C. E. Praeger and M. Y. Xu. Vertex-primitive graphs of order a product of two distinct primes. J. Combin. Theory Ser. B, 59:245–266, 1993.
- [19] M. W. Short. The Primitive Soluble Permutation Groups of Degree less than 256. Springer-Verlag, 1992.

- [20] M. Suzuki. On a class of doubly transitive groups. Ann. Math.(2), 75:105–145, 1962.
- [21] R. J. Wang. Half-transitive graphs of order a product of two distinct primes. *Comm. Alg.*, 22:915–927, 1994.
- [22] R. J. Wang and M. Y. Xu. A classification of symmetric graphs of order 3p. J. Combin. Theory Ser. B, 58:197–216, 1993.
- [23] J. X. Zhou and Y. Q. Feng. Tetravalent one-regular graphs of order 2pq. J. Algebraic Combin., 29:457–471, 2009.