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Abstract

We study the class of edge-transitive graphs of square-free order and valency at
most k. It is shown that, except for a few special families of graphs, only finitely
many members in this class are basic (namely, not a normal multicover of another
member). Using this result, we determine the automorphism groups of locally prim-
itive arc-transitive graphs with square-free order.

Keywords: edge-transitive graph; arc-transitive graph; stabilizer; quasiprimitive
permutation group; almost simple group

1 Introduction

For a graph Γ = (V,E), the number of vertices |V | is called the order of Γ. A graph
Γ = (V,E) is called edge-transitive if its automorphism group AutΓ acts transitively on the
edge set E. For convenience, denote by ETSQF(k) the class of connected edge-transitive
graphs with square-free order and valency at most k.

The study of special subclasses of ETSQF(k) has a long history, see for example [1, 4,
5, 17, 18, 21, 22, 23] for those graphs of order being a prime or a product of two primes.
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Recently, several classification results about the class ETSQF(k) were given. Feng and Li
[9] gave a classification of one-regular graphs of square-free order and prime valency. By
Li et al. [12, 14], one may obtain a classification of vertex-transitive and edge-transitive
tetravalent graphs of square-free order. By Li et al. [13] and Liu and Lu [16], one may
deduce an explicitly classification of ETSQF(3). In this paper, we give a characterization
about the class ETSQF(k).

A typical method for analyzing edge-transitive graphs is to take normal quotient. Let
Γ = (V,E) be a connected graph such that a subgroup G 6 AutΓ acts transitively on E.
Let N be a normal subgroup of G, denoted by N CG. Then either N is transitive on V ,
or each N -orbit is an independent set of Γ. Let VN be the set of all N -orbits on V . The
normal quotient ΓN (with respect to G and N) is defined as the graph with vertex set
VN such that distinct vertices B,B′ ∈ VN are adjacent in ΓN if and only if some α ∈ B
and some α′ ∈ B′ are adjacent in Γ. We call ΓN non-trivial if N 6= 1 and |VN | > 3.
It is well-known and easily shown that ΓN is an edge-transitive graph. Moreover, if all
N -orbits have the same length (which is obvious if G is transitive on V ), then ΓN is a
regular graph of valency a divisor of the valency of Γ; in this case, Γ is called a normal
multicover of ΓN .

A member in ETSQF(k) is called basic if it has no non-trivial normal quotients. Then
every member in ETSQF(k) is a multicover of some basic member, or has a non-regular
normal quotient (which might occur for vertex-intransitive graphs). Thus, to a great
extent, basic members play an important role in characterizing the graphs in ETSQF(k).
The first result of this paper shows that, except for a few special families of graphs, there
are only finitely many basic members in ETSQF(k).

Theorem 1. Let Γ = (V,E) be a connected graph of square-free order and valency k > 3.
Assume that G 6 AutΓ acts transitively on E and that each non-trivial normal subgroup
of G has at most 2 orbits on V . Then one of the following holds:

(1) Γ is a complete bipartite graph, and G is described in (1) and (5) of Lemma 13;

(2) G is one of the Frobenius groups Zp:Zk and Zp:Z2k, where p is a prime;

(3) soc(G) = M11,M12,M22,M23,M24 or J1;

(4) G = An or Sn with n < 3k;

(5) G = PSL(2, p) or PGL(2, p);

(6) soc(G) = PSL(2, pf ) with f > 2 and pf > 9, and either k is divisible by pf−1 or
f = 2 and k is divisible by p+ 1;

(7) soc(G) = Sz(2f ) and k is divisible by 22f−1;

(8) G is of Lie type defined over GF(pf ) with p 6 k, and either

(i) [d
2
]f < k, and G is a d-dimensional classical group with d > 3; or

the electronic journal of combinatorics 22(3) (2015), #P3.25 2



(ii) 2f < k, and soc(G) = G2(pf ), 3D4(pf ), F4(pf ), 2E6(pf ), or E7(pf ).

Remark 2 (Remarks on Theorem 1). For a finite group G, the socle soc(G) of G is the
subgroup generated by all minimal normal subgroups of G. A finite group is called almost
simple if soc(G) is a non-abelian simple group.

(a) The groups G in case (1) are known except for G being almost simple.

(b) The vertex-transitive graphs in case (5) are characterized in Theorem 27.

(c) Some properties about the graphs in cases (6)-(7) are given in Lemmas 14 and 15,
respectively.

It would be interest to give further characterization for some special cases.

Problem 3. (i) Characterize edge-transitive graphs of square-free order which admits
a group with socle PSL(2, q), Sz(q), An or a sporadic simple group.

(ii) Classify edge-transitive graphs of square-free order of small valencies.

For a graph Γ = (V,E) and G 6 AutΓ, the graph Γ is called G-locally primitive if,
for each α ∈ V , the stabilizer of α in G induces a primitive permutation group on the
neighbors of α in Γ. The second result of this paper determines, on the basis of Theorem
1, the automorphism groups of locally primitive arc-transitive graphs of square-free order.

Theorem 4. Let Γ = (V,E) be a connected G-locally primitive graph of square-free order
and valency k > 3. Assume that G is transitive on V and that Γ is not a complete bipartite
graph. Then one of the following statements is true.

(1) G = D2n:Zk, 2nk is square-free, k is the smallest prime divisor of nk, and Γ is a
bipartite Cayley graph of the dihedral group D2n;

(2) G = M :X, where M is of square-free order, X is almost simple with socle T descried
as in (3)-(6) and (8) of Theorem 1 such that MT = M × T , T has at most two
orbits on V and Γ is T -edge-transitive; in particular, if T = PSL(2, p), then M , Tα
and k are listed in Table 3, where α ∈ V .

2 Preliminaries

Let Γ = (V,E) be a graph without isolated vertices, and let G 6 AutΓ. The graph Γ
is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V or E,
respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. The graph Γ
is called G-arc-transitive if G acts transitively on the set of arcs of Γ. For a vertex α ∈ V ,
we denote by Γ(α) the set of neighbors of α in Γ, and by Gα the stabilizer of α in G.
Then it is easily shown that Γ is G-arc-transitive if and only if Γ is G-vertex-transitive
and, for α ∈ V , the vertex-stabilizer Gα acts transitively on Γ(α).
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Let Γ = (V,E) be a connected G-edge-transitive graph. Note that each edge of Γ gives
two arcs. Then either Γ is G-arc-transitive or G has exactly two orbits (of the same size
|E|) on the arc set of Γ. If Γ is not G-vertex-transitive then Γ is a bipartite graph and, for
α ∈ V , the stabilizerGα acts transitively on Γ(α). If Γ isG-arc-transitive, then there exists
g ∈ G \ Gα such that (α, β)g = (β, α) and, since Γ is connected, 〈g,Gα〉 = G; obviously,
this g can be chosen as a 2-element in NG(Gαβ) with g2 ∈ Gαβ, where Gαβ = Gα ∩ Gβ.
Suppose that Γ is G-vertex-transitive but not G-arc-transitive. Then the arc set of Γ is
partitioned into two G-orbits ∆ and ∆∗, where ∆∗ = {(α, β) | (β, α) ∈ ∆}. Thus, for
α ∈ V , the set Γ(α) is partitioned into two Gα-orbits ∆(α) = {β | (α, β) ∈ ∆} and
∆∗(α) = {β | (β, α) ∈ ∆}, which have equal size. Then we have the next lemma.

Lemma 5. Let Γ = (V,E) be a connected G-edge-transitive graph, and {α, β} ∈ E. Then
one of the following holds.

(1) The stabilizer Gα is transitive on Γ(α), |Γ(α)| = |Gα : Gαβ|, and either

(i) G is intransitive on V ; or

(ii) G = 〈g,Gα〉 for a 2-element g ∈ NG(Gαβ) \ Gα with (α, β)g = (β, α) and
g2 ∈ Gαβ.

(2) Γ is G-vertex-transitive, Gα has exactly two orbits on Γ(α) of the same size |Gα :
Gαβ|; in particular, |Γ(α)| = 2|Gα : Gαβ|.

Let Γ = (V,E) be a regular graph and G 6 AutΓ. For α ∈ V , the stabilizer Gα

induces a permutation group G
Γ(α)
α (on Γ(α)). Let G

[1]
α be the kernel of this action. Then

G
Γ(α)
α
∼= Gα/G

[1]
α . Considering the actions of Sylow subgroups of G

[1]
α on V , it is easily

shown that the next lemma holds, see [7] for example.

Lemma 6. Let Γ = (V,E) be a connected regular graph, G 6 AutΓ and α ∈ V . Assume
that Gα 6= 1. Let p be a prime divisor of |Gα|. Then p 6 |Γ(α)|. If further Γ is G-vertex-

transitive, then p divides |GΓ(α)
α | and, for β ∈ Γ(α), each prime divisor of |Gαβ| is less

than |Γ(α)|.

A permutation group G on a set Ω is semiregular if Gα = 1 for each α ∈ Ω. A
transitive permutation group is regular if further it is semiregular.

Lemma 7. Let Γ be a connected G-vertex-transitive graph, N C G 6 AutΓ and α ∈ V .
Assume that N

Γ(α)
α is semiregular on Γ(α). Then N

[1]
α = 1.

Proof. Let β ∈ Γ(α). Then β = αx for some x ∈ G, and hence Nβ = Nαx = N ∩
Gαx = (N ∩Gα)x = (Nα)x. It follows that N

Γ(β)
β and N

Γ(α)
α are permutation isomorphic;

in particular, N
Γ(β)
β is semiregular on Γ(β). Thus N

[1]
α acts trivially on Γ(β), and so

N
[1]
α = N

[1]
β . Since Γ is connected, N

[1]
α fixes each vertex of Γ, hence N

[1]
α = 1.

Lemma 8. Let Γ = (V,E) be a connected graph, N C G 6 AutΓ and α ∈ V . Assume
that either N is regular on V , or Γ is a bipartite graph such that N is regular on both the
bipartition subsets of Γ. Then G

[1]
α = 1.
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Proof. Set X = NG
[1]
α . Then Xα = G

[1]
α and X

[1]
α = G

[1]
α , and hence X

Γ(α)
α = 1.

Assume first that N is regular on V . Then G = NGα. It follows that X is normal in
G. Thus our results follows from Lemma 7.

Now assume that Γ is a bipartite graph with bipartition subsets U and W , and that
N is regular on both U and W . Without loss of generality, we assume that α ∈ U .
Then Γ(α) ⊆ W , and Xα = Xβ for β ∈ Γ(α). Let γ ∈ Γ(β). Then γ ∈ U . Set
E0 = {{γ, β}x | x ∈ X}. Then Σ = (V,E0) is a spanning subgraph of Γ, and X acts
transitively on E0. Thus Σ is a regular graph, and Xα is transitive on Σ(α). Noting
Σ(α) ⊆ Γ(α), it follows that |Σ(α)| = 1, and hence Σ is a matching. In particular,

Xβ = Xγ. It follows that G
[1]
α = Xα = Xβ = Xγ. Since all vertices in U are equivalent

under X, we have Xγ acts trivially on Γ(γ). Then a similar argument as above leads to

G
[1]
α = Xγ = Xδ = Xθ for any δ ∈ Γ(γ) and θ ∈ Γ(δ). Then, by the connectedness, we

conclude that G
[1]
α fixes each vertex of Γ. Thus G

[1]
α = 1.

We end this section by quoting a known result.

Lemma 9 ([12]). Let Γ = (V,E) be a connected G-edge-transitive graph, N CG 6 AutΓ
and α ∈ V . Then all Nα-orbits on Γ(α) have the same length.

3 Complete bipartite graphs

We first list a well-known result in number theory. For integers a > 0 and n > 0, a prime
divisor of an − 1 is called primitive if it does not divide ai − 1 for any 0 < i < n.

Theorem 10 (Zsigmondy). For integers a, n > 2, if an−1 does not have primitive prime
divisors, then either (a, n) = (2, 6), or n = 2 and a+ 1 is a power of 2.

Let G be a permutation group on V , and let x be a permutation on V which centralizes
G. If x fixes some point α ∈ V , then x fixes αg for each g ∈ G. Thus the next simple
result follows.

Lemma 11. Let G be a permutation group on V . Assume that N is a normal transitive
subgroup of G. Then the centralizer CG(N) is semiregular on V , and CG(N) = N if
further N is abelian.

Recall that a transitive permutation group G is quasiprimitive if each non-trivial nor-
mal subgroup of G is transitive. Let G be a quasiprimitive permutation group on V , and
let B be a G-invariant partition on V . Then G induces a permutation group GB on B.
Assume that |B| > 2. Since G is quasiprimitive, G acts faithfully on B. Then GB ∼= G,
and so soc(GB) ∼= soc(G).

Lemma 12. Let G be a quasiprimitive permutation group of square-free degree. Then
soc(G) is simple, so either G is almost simple or G 6 AGL(1, p) for a prime p.

Proof. Let G be a quasiprimitive permutation group on V of square-free degree. Let B
be a G-invariant partition on V such that |B| > 2 and GB is primitive. Noting that |B| is
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square-free, by [15], soc(GB) is simple. Thus soc(G) ∼= soc(GB) is simple, and the result
follows.

Let G be a permutation group on V . For a subset U ⊆ V , denote by GU and G(U)

the subgroups of G fixing U set-wise and point-wise, respectively. For X 6 G and an
X-invariant subset U of V , denote by XU the restriction of X on U . Then XU ∼= X/X(U).

We now prove a reduction lemma for Theorem 1.

Lemma 13. Let Γ = (V,E) be a connected G-edge-transitive graph of square-free order
and valency k > 3, where G 6 AutΓ. Assume that each minimal normal subgroup of G
has at most two orbits on V . Then one of the following holds:

(1) Γ ∼= Kk,k, k is an odd prime, G ∼= (Z2
k:Zl).Z2 and Γ is G-vertex-transitive, where l

is a divisor of k − 1;

(2) |V | = p with p > 3 prime, k is even, G ∼= Zp:Zk and Γ is G-vertex-transitive;

(3) |V | = 2p with p > 3 prime, and G is isomorphic to one of Zp:Zk and Zp:Z2k;

(4) G is almost simple;

(5) Γ ∼= Kk,k, Γ is G-vertex-transitive, soc(G) is the unique minimal normal subgroup
of G, soc(G) ∼= T 2 for a nonabelian simple group T and, for α ∈ V , either

(i) soc(G)α ∼= H × T for a subgroup H of T with k = |T : H|; or

(ii) k = 105, T ∼= A7 and soc(G)α ∼= A6 × PSL(3, 2).

Proof. Let N be a minimal normal subgroup of G. Then N is a directed product of
isomorphic simple groups. Since Γ has valency k > 3, we know that |V | > 3. Since |V | is
square-free and N has at most two orbits on V , we conclude that N is not an elementary
abelian 2-group. In particular, N has no a subgroup of index 2.

Case 1. Assume first that G has two distinct minimal normal subgroups N and M .
Then N ∩M = 1, and hence NM = N ×M .

Suppose that both N and M are transitive on V . By Lemma 11, N and M are
regular on V ; in particular, |N | = |M | = |V |. Thus N and M are soluble, it implies that
N ∼= M ∼= Zp for an odd prime p. Again by Lemma 11, N = M , a contradiction.

Without loss of generality, we assume that N is intransitive on V . Then Γ is a bipartite
graph, whose bipartition subsets are N -orbits, say U and V \ U . A similar argument as
above paragraph yields that M has no subgroups of index 2. It follows that M fixes both
U and V \ U set-wise, and hence U and V \ U are two M -orbits on V .

Let X = NM and ∆ = U or V \ U . By Lemma 11, both N∆ and M∆ are regular
subgroups of X∆. Set N ∼= T i, where T is a simple group. Then N(∆)

∼= T j for some
j < i, and so N∆ ∼= N/N(∆)

∼= T i−j. It follows that |∆| = |N∆| = |T |i−j. Since T is
simple and |∆| is square-free, i−j = 1 and N∆ ∼= T ∼= Zp, where p = |∆| is an odd prime.
Similarly, M∆ ∼= Zp, and so M is abelian. In particular, X = N ×M is abelian and |X|
is a power of p. It implies that X∆ ∼= Zp. Then, by Lemma 11, N∆ = M∆ = X∆. Thus

the electronic journal of combinatorics 22(3) (2015), #P3.25 6



N ×M = X 6 X∆ × XV \∆ ∼= Z2
p. Then X ∼= Z2

p, and hence N ∼= M ∼= Zp. Moreover,
X(∆)

∼= Zp.
Let α ∈ ∆. Then Gα > X(∆). By Lemma 6, k = |Γ(α)| > p, and so Γ ∼= Kp,p. Noting

that N is regular on ∆ and V \∆, by Lemma 8, Gα acts faithfully on Γ(α), and so Gα

is isomorphic to a subgroup of the symmetric group Sp. Noting that Gα has a normal
subgroup X(∆)

∼= Zp, it follows that Gα is isomorphic to a subgroup of the Frobenius group
Zp:Zp−1. Write Gα

∼= Zp:Zl, where l is a divisor of p− 1. Then G∆ = NGα
∼= Z2

p:Zl.
Clearly, X(∆) has at least p+ 1 orbits on V . Then, by the assumptions of this lemma,

X(∆) is not normal in G. On the other hand, (X(∆))
g = (Xg)(∆g) = X(∆) for each g ∈ G∆,

yielding X(∆) C G∆. It follows that G 6= G∆, and hence G is transitive on V . Note that
|G : G∆| 6 2. Then part (1) of this lemma follows.

Case 2. Assume that N := soc(G) is the unique minimal normal subgroup of G.
Assume that N is simple. If N is nonabelian then (4) occurs. Assume that N ∼= Zp

for some odd prime p. Then N is regular on each N -orbit on V . Thus Gα is faithful on
Γ(α) by Lemma 8, where α ∈ V . Noting that CG(N) is normal in G, we conclude that
CG(N) = N . Thus G/N = NG(N)/CG(N) . Aut(N) ∼= Zp−1, and so G . AGL(1, p).
Set G ∼= Zp:Zm, where m is a divisor of p − 1. Let α ∈ U . Then Gα

∼= NGα/N 6
G/N ∼= Zm; in particular, Gα is cyclic. Recalling that Gα is faithful on Γ(α), it implies
that Gα

∼= Zk. Thus one of (2) and (3) occurs by noting that |G : (NGα)| 6 2.
In the following we assume that N ∼= T l for an integer l > 2 and a simple group T .

If N is transitive on V then G is quasiprimitive on V , and hence soc(G) = N is simple
by Lemma 12, a contradiction. If G is intransitive on V , then G is faithful on each of its
orbits, and then N is simple by Lemma 12, again a contradiction. Thus, in the following,
we assume further that Γ is G-vertex-transitive and N has two orbits U and W on V .
Note that |U | = |W | = |V |

2
is odd and square-free.

Since Γ is G-vertex-transitive, |G : GU | = 2. Let x ∈ G \ GU . Then G = GU〈x〉,
x2 ∈ GU , Ux = W and W x = U . Let B be a GU -invariant partition of U such that
(GU)B is primitive. Set C = {Bx | B ∈ B}. Then (GU)C is also primitive. By [15], both
soc((GU)B) and soc((GU)C) are simple. Then soc((GU)B) ∼= soc((GU)C) ∼= T . Let K be
the kernel of GU acting on B. Then Kx is the kernel of GU acting on C, and Kx2 = K.
Since K,Kx CGU , we have K ∩Kx CGU . Noting that (K ∩Kx)x = K ∩Kx, it follows
that K ∩Kx CG. Since K ∩Kx has at least 2|B| > 2 orbits on V , we have K ∩Kx = 1.
Then GU . GU/K ×GU/K

x ∼= (GU)B × (GU)C, yielding N ∼= T 2.
We claim that T is a nonabelian simple group. Suppose that T ∼= Zp for some

(odd) prime p. Then (GU)B ∼= (GU)C . Zp:Zp−1, and so G = GU .Z2 . ((Zp:Zp−1) ×
(Zp:Zp−1)).Z2. Let H be a p′-Hall subgroup of G with x ∈ H. Then G = N :H,
H . (Zp−1 × Zp−1).Z2. Moreover, HU is p′-Hall subgroup of GU , H = HU〈x〉 and
HU . Zp−1 × Zp−1. Note that N is the unique minimal normal subgroup of G. Then H
is maximal in G, and thus G can be viewed as a primitive subgroup of the affine group
AGL(2, p). Since HU is an abelian normal subgroup of H, by [19, 2.5.10], HU is cyclic. It
follows that HU . Zp−1. Since HU has index 2 in H, by [19, 2.5.7], HU is an irreducible
subgroup of GL(2, p). Then, by [19, 2.3.2], |HU | is not a divisor of p− 1, a contradiction.
Therefore, T is a nonabelian simple group.
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Set N = T1×T2, where T1
∼= T2

∼= T . Since T1 and T2 are isomorphic nonabelian simple
groups, T1 and T2 are the only non-trivial normal subgroups of N . Thus N(U) ∈ {1, T1, T2}.
For g ∈ GU , we have (N(U))

g = (N g)(Ug) = N(U). Thus N(U) CGU . Let x ∈ G \GU . Then
Ux = W and W x = U , yielding (N(U))

x = N(W ) and (N(W ))
x = N(U). It follows that

either {N(U), N(W )} = {T1, T2} or N is faithful on both U and W . The former case yields
that N(U) acts transitively on W , and so (i) of part (5) follows.

Assume that N is faithful on both U and W . Then neither T1 nor T2 is transitive on
U . Let O be the set of T1-orbits on U , and let O ∈ O. Then T2 is transitive on O. Thus T
has two transitive permutation representations of degrees |O| and |O|, respectively. Then
T has two primitive permutation representations of degrees n1 and n2, where n1 > 1 is a
divisor of |O| and n2 > 1 is a divisor of |O|. Since |V | = 2|U | = 2|O||O| is square-free, n1

and n2 are odd, square-free and coprime. Inspecting [15, Tables 1-4], we conclude that T
is either an alternating group or a classical group of Lie type.

Suppose that T = PSL(d, q) with d > 3. By the Atlas [8], neither PSL(3, 2) nor
PSL(4, 2) has maximal subgroups of coprime indices. Thus we assume that (d, q) 6= (3, 2)
or (4, 2). Then, by [15, Table 3],

{n1, n2} ⊆

{∏i−1
j=0(qm−j − 1)∏i
j=1(qj − 1)

| 1 6 i < d

}
∪

{∏2i−1
j=0 (qm−j − 1)

(
∏i

j=1(qj − 1))2
| 1 6 i <

d

2

}
.

If qd − 1 has a primitive prime divisor r, then both n1 and n2 are divisible by r, which
is not possible. Thus qd − 1 has no primitive prime divisor, and so (q, d) = (2, 6) by
Theorem 10. Computation of n1 and n2 shows that this is not the case.

Similarly, we exclude other classes of classical groups of Lie type except for PSL(2, pf ),
where p is a prime. By the Atlas [8], we exclude PSL(2, pf ) while pf 6 31. Suppose that
T = PSL(2, pf ) with pf > 32. By [15, Table 3], one of n1 and n2 is pf + 1 and the other
one is divisible by p. This is not possible since one of pf + 1 and p is even.

Now let T = Ac for some c > 5. By the above argument, we may assume that Ac is
not isomorphic to a classical simple group of Lie type. Then c 6= 5, 6 or 8. Note that
for c > 5 and a < b < c

2
, the binomial coefficient (cb) = (ca)(

c−a
b−a)/(

b
b−a). It is easily shown

that (ca) > (bb−a) = (ba); in particular, (ca) is not a divisor of (bb−a). Thus (ca) and (cb) are not
comprime, and so at most one of n1 and n2 equals to a binomial coefficient. Checking the
actions listed in [15, Table 1] implies that either c = 7, or c = 2a for a ∈ {6, 9, 10, 12, 36}.
Suppose the later case occurs. Then one of n1 and n2 is 1

2
(2a
a ) and the other one is a

binomial coefficient, say (2a
b ). But computation shows that such two integers are not

coprime, a contradiction. Therefore, T = A7.
Checking the subgroups of A7, we conclude that {n1, n2} = {|O|, |O|} = {7, 15}. Take

α ∈ O. Recall that Γ is G-vertex-transitive. Then there is an element x ∈ G \ GU such
that {α, αx} ∈ E, Ux = W and W x = U . Since N = T1×T2 is the unique minimal normal
subgroup of G, we know that T x1 = T2 and T x2 = T1. It follows Ox is a T2-orbit on W , and
so Ox := {Ohx | h ∈ GU} is the set of T2-orbits on W . Moreover, T1 acts transitively on
Ox. Note that |O| = |Ox| and |O| = |Ox|. Thus, without loss of generality, we may assume
that |O| = 7 and |O| = 15. Then (T2)O ∼= PSL(3, 2) and (T1)α ∼= A6, where α ∈ O. Recall
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that T2 is intransitive on V . Since T2 C N and N is transitive on U , we conclude that
each T2-orbit on U has size 15. It follows that (T2)O = (T2)α. Then Nα > (T1)α × (T2)α,
and so Nα = (T1)α × (T2)α ∼= A6 × PSL(3, 2) as |N : Nα| = |U | = |O||O| = 105. Note
that Nαx = (Nα)x = ((T1)α × (T2)α)x = (T2)αx × (T1)αx . Then it is easily shown that
Nα ∩Nαx = ((T1)α ∩ (T1)αx)× ((T2)α ∩ (T2)αx) ∼= S4×S4. By the choice of x, we conclude
that |Γ(α)| > |Nα : (Nα ∩ Nαx)| > 105. Thus Γ = K105,105, and hence (ii) of part (5)
occurs.

4 Graphs associated with PSL(2, pf) and Sz(2f)

Let Γ = (V,E) be a connected graph of square-free order and valency k. Assume that
G 6 AutΓ is almost simple with socle T . Assume further that G is transitive on E and
that T has at most two orbits on V . Let {α, β} ∈ E. Then |Tα| = |Tβ| as Γ is a regular
graph. Then |Tβ : Tαβ| = |Tα : Tαβ| and, by Lemma 9, |Tα : Tαβ| is a divisor of k = |Γ(α)|.
Moreover, since |V | is square-free, it is easily shown that Tα 6= Tβ.

Lemma 14. Let Γ = (V,E) be a connected G-edge-transitive graph of square-free order
and valency k. Assume that soc(G) = PSL(2, pf ) with f > 2 and pf > 9, and that soc(G)
has at most two orbits on V . Then one of the following statements holds:

(i) f = 2, Tα = PGL(2, p) or PSL(2, p), and k is divisible by p or p+ 1;

(ii) Tα = Zf−1
p :Zl for a divisor l of p − 1, and k is divisible by pf−1; further, if Γ is

G-locally primitive then k = pf−1;

(iii) Tα = Zfp :Zl for a divisor l of pf−1, and k is divisible by pf ; further, if Γ is G-locally
primitive then k = pf .

Proof. Let T = soc(G). Take α ∈ V and a maximal subgroup M of T with Tα 6 M .
Then both |T : M | and |M : Tα| are square-free as |T : Tα| is square-free. By [15], either

M = Zfp :Z pf−1
(2,p−1)

and |T : M | = pf + 1, or f = 2, M = PGL(2, p) and |T : M | = p(p2+1)
2

.

Assume that Tα is insoluble. Then f = 2 and Tα = PGL(2, p) or PSL(2, p). Let
β ∈ Γ(α). Recall that Tα 6= Tβ and |Tβ : Tαβ| = |Tα : Tαβ| is a divisor of k. If
Tα = PSL(2, p) then, by [11, II.8.27], |Tα : Tαβ| is divisible by p or p + 1. Suppose that
Tα = PGL(2, p). Then Tα is maximal in T , and so T = 〈Tα, Tβ〉. Thus |Tβ : Tαβ| > 2 as
T is simple; in particular, PSL(2, p) 6= Tαβ. Checking the subgroups of Tα which do not
contain PSL(2, p) (refer to [3]), we conclude that |Tα : Tαβ| is divisible by p or p+1. Thus
part (i) occurs.

In the following, we assume that Tα is soluble. Since p2 is not a divisor of |T : Tα|,
each Sylow p-subgroup of Tα has pf or pf−1. Then, inspecting the subgroups of T , we
conclude that Tα ∼= Tβ for β ∈ Γ(α), and that Tα has a unique Sylow p-subgroup.

Let Q be a Sylow p-subgroup of Tαβ. Then Q is normal in Tαβ. Suppose that Q 6= 1.
Let P1 and P2 be the Sylow p-subgroups of Tα and Tβ, respectively. Then P1∩P2 = Q 6= 1.
By [11, II.8.5], any two distinct Sylow p-subgroups of T intersect trivially. It follows P1
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and P2 are contained the same Sylow p-subgroup, say P of T . In particular, P1 = Pα and
P2 = Pβ. For γ ∈ Γ(β), since Γ is G-edge-transitive, we have |Tαβ| = |Tβγ|. A similar
argument implies that Pγ is the Sylow p-subgroup of Tγ. It follows from the connectedness
of Γ that Pδ is the Sylow p-subgroup of Tδ for any δ ∈ V . Thus P contains a normal
subgroup 〈Pδ | δ ∈ V 〉 6= 1 of G, a contradiction. Thus, Tαβ is of order coprime to p, and
so |Tα : Tαβ| is divisible by |P1| = pf−1 or pf . Thus, by Lemma 9, k is divisible by pf−1

or pf , respectively.
If M = PGL(2, p) then, inspecting the subgroups of M , we conclude that Tα = Zp:Zl,

where l is a divisor of p − 1 and divisible by 4. Assume that M = Zfp :Z pf−1
(2,p−1)

. Then

Tα = Zfp :Zl or Zf−1
p :Zl with l dividing pf−1

(2,p−1)
. Suppose that Tα = Zf−1

p :Zl. Noting that
M is a Frobenius group, Tα is also a Frobenius group. It follows that l is a divisor of
pf−1 − 1, and so l divides p− 1.

Assume further that Γ is G-locally primitive. Then T
Γ(α)
α is a normal transitive soluble

subgroup of the primitive permutation group G
Γ(α)
α of degree k. Since k is divisible by

|P1|, we have soc(G
Γ(α)
α ) ∼= Ztp for some integer t > 1 such that k = pt > |P1|. It follows

T
Γ(α)
α
∼= Ztp:Zl′ , where l′ is a divisor of l. Since P1 is the Sylow p-subgroup of Tα, we have

pt 6 |P1|. Then k = |P1| = pf−1 or pf . Thus one of (ii) and (iii) follows.

The following lemma gives a characterization of graphs admitting Suzuki groups.

Lemma 15. Let Γ = (V,E) be a connected G-edge-transitive graph of square-free order
and valency k. Assume that soc(G) = Sz(2f ) with odd f > 3, and that soc(G) has at most
two orbits on V . Then k is divisible by 22f−1 and Γ is not G-locally primitive.

Proof. Let α ∈ V and β ∈ Γ(α). Since |T : Tα| is square-free, 4 does not divide |T : Tα|,
and hence 22f−1 divides |Tα|. Then, inspecting the subgroups of T (see [20]), we get
Tα = [2n]:Zl, where n = 2f or 2f − 1, and l is a divisor of 2f − 1. So Tα has a unique
Sylow 2-subgroup. By [20], for a Sylow 2-subgroup Q of T , all involutions of Q are
contained in the center of Q. Noting that any two distinct conjugations of Q generate T ,
it follows any two distinct Sylow 2-subgroups of T intersect trivially. Thus, by a similar
argument as in the above lemma, we know that Tαβ has odd order. Thus k = |Γ(α)| is
divisible by n = 22f or 22f−1.

Finally, suppose that G
Γ(α)
α is a primitive group. Let Q1 be the Sylow 2-subgroup

of Tα, and Q be a Sylow 2-subgroup of T = Sz(2f ) with Q > Q1. Then Q = Q1 or
Q1.Z2. By a similar argument as in the above lemma, we conclude that Q1 is isomorphic
to soc(G

Γ(α)
α ). It follows that Q1 is an elementary abelian 2-group. By [20], Q1 lies in the

center of Q, and so Q is abelian, which is impossible. Then this lemma follows.

5 Proof of Theorem 1

Let Γ = (V,E) be a connected graph of square-free order and valency k. Assume that a
subgroup G 6 AutΓ acts transitively on E and that each non-trivial normal subgroup of
G has at most 2 orbits on V . By Lemma 13, to complete the proof of the theorem, we
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may assume that G is almost simple. Let T = soc(G) and α ∈ V . Then T is transitive
or has exactly two orbits on V , and every prime divisor of |Tα| is at most k.

Let U be a T -orbit, and let B be a T -invariant partition on U such that |B| > 2 and
TB is primitive. Noting that |B| is square-free, T is listed in [15, Tables 1-4]. In particular,
if T is one of sporadic simple groups then part (3) of Theorem 1 follows.

Assume that T = An, where n > 5. Suppose that n > 3k. By [15], there exists a
prime p such that k < p < 3k/2, and thus p2 divides |T |, and p divides |Tα|. So p 6 k,
which is a contradiction. Therefore, n < 3k, as in part (4) of Theorem 1.

We next deal with the classical groups and the exceptional groups of Lie type. If
T = PSL(2, pf ) or Sz(2f ) then, by Lemmas 14 and 15, one of parts (5), (6) and (7) of
Theorem 1 follows. Thus the following two lemmas will fulfill the proof of Theorem 1.

Lemma 16. Let T be a d-dimensional classical simple group of Lie type over GF(pf ),
where p is a prime. Then either T = PSL(2, p), or p 6 k and one of the following holds:

(i) T = PSL(2, pf ) with f > 2;

(ii) [d
2
]f < k; if further T = PSU(d, pf ) then 2[d

2
]f < k and [d

2
] is odd.

Proof. Let α ∈ V . Then |T : Tα| is square-free and, by Lemma 6, each prime divisor of
|Tα| is at most k. Assume that T 6= PSL(2, p). Let P be a Sylow p-subgroup of T . Then
p2 divides |P |. Since |T : Tα| is square-free, p divides |Tα|, and so p 6 k.

Assume that d > 3. Let d0 = [d
2
], the largest integer no more than d

2
. Check the orders

of classical simple groups of Lie type, see [2, Section 47] for example. We conclude that
either

(1) (p2d0f − 1)(pd0f − 1) divides (d, pf − 1)|T |; or

(2) T = PSU(d, pf ) with d0 odd, and (p2d0f − 1)(pd0f + 1) divides (d, pf + 1)|T |.

Consider part (1) first. Suppose that pd0f − 1 has a primitive prime divisor r. Then
r > d0f , and hence either r = d = 3 and f = 1, or r2 divides |T |. For the former,
T = PSL(3, p), and so [d

2
]f = 1 < k. For the latter, r divides |Tα|, and so d0f < r 6 k.

Suppose that pd0f − 1 has no primitive prime divisor. By Theorem 10, either d0f = 2
and p + 1 is a power of 2, or (p, d0f) = (2, 6). For the former, [d

2
]f = d0f = 2 < k.

Assume that (p, d0f) = (2, 6). Then (d0, f) = (1, 6), (2, 3), (3, 2), or (6, 1). It follows that
(d, f) = (3, 6), (4, 3), (5, 3), (6, 2), (7, 2), (12, 1) or (13, 1). Thus |T | is divisible by 72, and
so |Tα| is divisible by 7. Then [d

2
]f = d0f = 6 < 7 6 k by Lemma 6.

Now assume that T = PSU(d, pf ) with d0 = [d
2
] odd. Then (p2d0f − 1)(pd0f + 1)

divides (d, pf + 1)|T |. A similar argument shows that either p2d0f − 1 has no primitive
prime divisor, or 2d0f < k. Assume that p2d0f − 1 has no primitive prime divisor. Then
either 2d0f = 2, or (p, 2d0f) = (2, 6). For the former, 2d0f = 2 < k. Suppose that
(p, 2d0f) = (2, 6). Then d0f = 3, and so (d, pf ) = (3, 23), (6, 2) or (7, 2). Thus |T | is
divisible by 72, and so 2d0f = 6 < 7 6 k.

Finally we consider the exceptional simple groups of Lie type.
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Lemma 17. Let T be an exceptional simple group of Lie type defined over GF(pf ) with
p prime. Then p 6 k, and one of the following holds:

(i) T = Sz(2f );

(ii) T = G2(pf ) or 3D4(pf ), pf 6= 23 and 2f < k;

(iii) T = F4(pf ), 2E6(pf ) or E7(pf ), pf 6= 2 and 6f < k.

Proof. Note that T has order divisible by p2. Then p divides |Tα|, and so p 6 k. By [15,
Table 4], T is one of Sz(2f ), G2(pf ), 3D4(pf ), F4(pf ), 2E6(pf ) and E7(pf ).

For T = G2(pf ) or 3D4(pf ), the order |T | is divisible by (pf + 1)2 and |T : Tα| is
divisible by pf + 1. If p2f − 1 has a primitive prime divisor r, then |T | is divisible by r2,
and |Tα| is divisible by r, hence 2f < r 6 m. Assume that p2f − 1 has no primitive prime
divisor. Then either f = 1 and 2f = 2 < k, or (p, 2f) = (2, 6). For the latter, T = G2(8)
or 3D4(8), and so 9 is a divisor of |T : Tα|, which contradicts that |T : Tα| is square-free.
Thus T is described as in part (ii) of this lemma.

Assume that T is one of F4(pf ), 2E6(pf ) and E7(pf ). Then |T | is divisible by (p6f −1)2

and |T : Tα| is divisible by p6f−1
pf−1

. If p6f − 1 has a primitive divisor r say, then r divides

|Tα|, and hence 6f < r 6 k. If p6f − 1 has no primitive prime divisor, then p = 2 and
f = 1, and so |T : Tα| is not square-free as it is divisible by 9, and hence T is described
as in part(iii) of this lemma.

6 Graphs associated with PSL(2, p)

In this section, we investigate vertex- and edge-transitive graphs associated with PSL(2, p),
and then give a characterization for such graphs.

6.1 Examples

It is well-known that vertex- and edge-transitive graphs can be described as coset graphs.
Let G be a finite group and H be a core-free subgroup of G, where core-free means that
∩g∈GHg = 1. Let [G : H] = {Hx | x ∈ G}, the set of right cosets of H in G. For an
element g ∈ G \ H, define the coset graph Γ := Cos(G,H,H{g, g−1}H) on [G : H] such
that (Hx,Hy) is an arc of Γ if and only if yx−1 ∈ H{g, g−1}H. Then Γ is a well-defined
regular graph, and G induces a subgroup of AutΓ acting on [G : H] by right multiplication.
The next lemma collects several basic facts on coset graphs.

Lemma 18. Let G be a finite group and H a core-free subgroup of G. Take g ∈ G \ H
and set Γ = Cos(G,H,H{g, g−1}H). Then Γ is G-vertex-transitive and G-edge-transitive.
Moreover,

(1) Γ is G-arc-transitive if and only if H{g, g−1}H = HxH for some 2-element x ∈
NG(H ∩Hg) \H with x2 ∈ H ∩Hg;

(2) Γ is connected if and only if 〈H, g〉 = G.
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Now we construct several examples.

Example 19. Let T = PSL(2, p), Zp:Zl ∼= H < T and Zl ∼= K < H, where l is an even
divisor of p−1

2
with p−1

2l
odd. Then NT (K) ∼= Dp−1. Set NT (K) = 〈a〉:〈b〉. It is easily

shown that 〈b,H〉 = T . Then Cos(T,H,HbH) is a connected T -arc-transitive graph of
valency p.

Example 20. Let T = PSL(2, p) and H a dihedral subgroup of T .

(1) Let Z2
∼= K < H ∼= D2r for an odd prime r such that |T : H| is square-free. Let

ε = ±1 such that 4 divides p + ε. Then NT (K) = K×〈a〉:〈b〉 ∼= Z2×D p+ε
2

∼= Dp+ε,

where b is an involution and, if r divides p+ε, we may choose b such that b centralizes
H. Then, for 1 6 i < p+ε

2
, the coset graph Cos(T,H,HaibH) is a connected T -arc-

transitive graph of valency r.

(2) Let G = T or PGL(2, p) and Z2
2
∼= K < H ∼= D4r for an odd prime r with |G : H|

square-free. Suppose that G contains a subgroup isomorphic to S4. Then NG(K) =
K:〈y, z〉 ∼= S4, where z is an involution with yz = y−1. Then Cos(G, Tα, TαyzTα) is
a G-arc-transitive graph of valency r.

Example 21. Let A4
∼= H < T = PSL(2, p) < G = PGL(2, p) with |T : H| square-

free and Z3
∼= K < H. Let ε = ±1 with 3 dividing p + ε. Then NT (K) ∼= Dp+ε and

NG(K) ∼= D2(p+ε). Moreover,

(1) Cos(T,H,HxH) is a connected (T, 2)-arc-transitive graph of valency 4, where x ∈
NT (K) \NT (H) is an involution;

(2) Cos(G,H,HxH) is a connected (G, 2)-arc-transitive graph of valency 4, where x ∈
NG(K) \ (T ∪NG(H)) is an involution.

Example 22. Let S4
∼= H < T = PSL(2, p) with |T : H| square-free.

(1) Let D8
∼= K < H, and X = T or PGL(2, p) such that |X : H| is square-free and

X has a Sylow 2-subgroup isomorphic to D16. Then D16
∼= NX(K) = K:〈z〉 for

an involution z ∈ X \H, and Cos(X,H,HzH) is a connected (X, 2)-arc-transitive
graph of valency 3.

(2) Let S3
∼= K < H and G = PGL(2, p), and ε = ±1 with 3 dividing p + ε. Then

NG(K) = 〈o〉×K for an involution o. Set X = 〈o,H〉. Then X = T or PGL(2, p)
depending on whether or not 12 divides p+ ε. Thus Cos(X,H,HoH) is a connected
(X, 2)-arc-transitive graph of valency 4.

Example 23. Let A5
∼= H < T = PSL(2, p) < G = PGL(2, p) and K < H with K ∼= A4,

D10 or S3. Then NG(K) = K:〈z〉 ∼= S4, D20 or D12, respectively, where z ∈ G \H is an
involution. Set X = 〈z,H〉. Then X = T or PGL(2, p), and Cos(X,H,HzH) is either a
connected (X, 2)-arc-transitive graph of valency 5 or 6, or a connected X-locally primitive
graph of valency 10.
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6.2 A characterization

Let Γ = (V,E) be a connected G-edge-transitive graph of square-free order and valency
k > 3, where G 6 AutΓ. Assume that T := soc(G) = PSL(2, p) for a prime p > 5, and
that G acts transitively on V .

Let α ∈ V . Then |T : Tα| is square-free; in particular, Tα has even order. Since

|G : T | 6 2, either T is transitive on V , or T has two orbits on V of the same length |V |
2

.
Thus |V | = |T : Tα| or 2|T : Tα|.

Note that the subgroups of T are known, refer to [11, II.8.27]. We next analyze one
by one the possible candidates for Tα.

Lemma 24. Assume that Tα is cyclic. Then Tα ∼= Zm for an even divisor m of p±1
2

, T
is transitive on V , Γ is not G-locally-primitive, and one of the following holds:

(i) Γ is T -edge-transitive, and k = m or 2m;

(ii) G = PGL(2, p), Gα
∼= Z2m or D2m, and k = 2m or 4m.

Proof. Note Tα is a cyclic group of even order. By Lemma 7, Tα is faithful and semiregular
on Γ(α). It is easy to check that no primitive group contains a normal semiregular cyclic
subgroup of even order. Thus Γ is not G-locally-primitive. By [11, II.8.5], Tα is contained
in a subgroup conjugate to Z p±1

2
in T . Thus Tα ∼= Zm for an even divisor m of p±1

2
. Then

p(p∓ 1) is a divisor of |T : Tα|, and so |T : Tα| is even. It follows that T is transitive on
V . Note that |Gα| = m or 2m. It follows that Γ has valency m, 2m or 4m. Then (i) or
(ii) is associated with the case that T is transitive or intransitive on E, respectively.

Lemma 25. Assume that |Tα| is divisible by p. Then Tα ∼= Zp:Zl, T is transitive on V
and Γ has valency divisible by p, where l is an even divisor of p−1

2
with p−1

2l
odd. If Γ is

G-locally primitive, then Γ is isomorphic to the graph in Example 19.

Proof. By [11, II.8.27], recalling that Tα has even order, Tα ∼= Zp:Zl for an even divisor

l of p−1
2

. Since |T : Tα| = p2−1
2l

= (p+1)p−1
2l

is even and square-free, p−1
2l

is odd and T is
transitive on V . By Lemma 7, noting that Tα is a Frobenius group, Tα acts faithfully on
Γ(α). In particular, each Tα-orbit on Γ(α) has size divisible by p.

Assume that Γ is G-locally primitive. Then Tα is transitive on Γ(α) as Tα C Gα.
It implies that Γ has valency p and Γ is T -arc-transitive. Then Γ ∼= Cos(T, Tα, TαxTα)
for some x ∈ NT (Tαβ) with x2 ∈ Tαβ and 〈x, Tα〉 = T , where β ∈ Γ(α). Note that
NT (Tαβ) ∼= Dp−1. We write NT (Tαβ) = 〈a〉:〈b〉. Let M be a maximal subgroup of T with
Tα 6 M ∼= Zp:Z p−1

2
. Then Z p−1

2

∼= NM(Tαβ) 6 NT (Tαβ). Thus a ∈ M . Write p−1
2

= ij,

where i is odd and j is a power of 2. Then 〈a〉 = 〈ai〉×〈aj〉. Since Tαβ ∼= Zl and p−1
2l

is odd, we have ai ∈ Tαβ 6 Tα. Since l is even, j 6= 1. It follows from 〈x, Tα〉 = T

that x = asiatjb for some s and t. Then TαxTα = Tαa
tjbTα = (TαbTα)a

− tj2 . Noting that

a−
tj
2 normalizes Tα, we have Γ ∼= Cos(T, Tα, TαxTα) ∼= Cos(T, Tα, TαbTα) as constructed in

Example 19.
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Lemma 26. Assume that Tα ∼= D2m with m > 1 coprime to p. Then m is a divisor of
p±1

2
, and Γ has valency divisible by m

2
or m. If Γ is G-locally-primitive, then Γ has odd

prime valency r, Tα ∼= D2r or D4r, and Γ is isomorphic to one of the graphs given in
Example 20.

Proof. The first part follows from that |Tα| is a divisor of |T | = p(p2−1)
2

.
Let {α, β} be an edge of Γ. Suppose that Tαβ contains a cyclic subgroup C of order

no less than 3. Then C is the unique subgroup of order |C| in both Tα and Tβ. For
an arbitrary edge {γ, δ}, since Γ is G-edge-transitive, {γ, δ} = {α, β}x for x ∈ G, so
Tγδ = Tαxβx = T ∩ Gαxβx = T ∩ (Gαβ)x = (Tαβ)x. Then Cx is the unique subgroup of
order |C| in both Tγ and Tδ. So C 6 Tγ for γ ∈ Γ(α) ∪ Γ(β). Since Γ is connected, C
fixes each vertex of Γ, and so C = 1 as C 6 AutΓ, a contradiction. Thus |Tαβ| is a divisor
of 4, and hence Γ has valency divisible by m

2
or m.

Assume that Γ is G-locally primitive. Then T
Γ(α)
α contains a transitive normal cyclic

subgroup. Thus |Γ(α)| = r is an odd prime, and T
Γ(α)
α
∼= Tα/T

[1]
α
∼= (TαG

[1]
α )/G

[1]
α
∼= D2r.

Note that T
[1]
α is a normal cyclic subgroup of Tα. By the argument in above paragraph,

|T [1]
α | 6 2. It follows that Tα ∼= D2r or D4r.

Let Tα ∼= D2r. Then |T : Tα| is even, so T is transitive on V , and hence Γ is T -
arc-transitive. Then Γ ∼= Cos(T, Tα, TαxTα) for some x ∈ NT (Tαβ) with x2 ∈ Tαβ and
〈x, Tα〉 = T . Let ε = ±1 such that 4 divides p + ε. Then NT (Tαβ) = Tαβ×〈a〉:〈b〉 ∼=
Z2×D p+ε

2

∼= Dp+ε. It implies that x is an involution. If r does not divides p + ε, then

x = aib for some 1 6 i 6 p+ε
2

. Assume that r is a divisor of p + ε. Then Tα is contained
in a maximal subgroup M ∼= Dp+ε of T , and NM(Tαβ) ∼= Z2

2 contains the center of M .
Without loss of generality, we choose b in the center of M , and so x = aib for 1 6 i < p+ε

2
.

Thus Γ is isomorphic to a graph given in Example 20 (1).
Now let Tα ∼= D4r. Then Tαβ ∼= Z2

2. If T is not transitive on V Γ, then G = PGL(2, p),
Γ is a bipartite graph, and Tα = Gα. Thus we set X = PSL(2, p) or PGL(2, p) depending
respectively on whether or not T is is transitive on V Γ. Then Γ ∼= Cos(X,Tα, TαxTα)
for some x ∈ NX(Tαβ) \ Tαβ with x2 ∈ Tαβ; in particular, NX(Tαβ)/Tαβ is of even order
It implies that NT (Tαβ) ∼= S4. Let M be the maximal subgroup of X with Tα 6 M .
Then 8 divides |M |, and NM(Tαβ) ∼= D8. Take D8r

∼= M1 > Tα. Then NM(Tαβ) =
NM1(Tαβ). We write NX(Tαβ) = Tαβ:(〈y〉:〈z〉), where z ∈ NM(Tαβ) and 〈y〉:〈z〉 ∼= S3.
Noting that x 6∈ NM(Tαβ) and x is of even order, we have x = x1y

iz for some x1 ∈ Tαβ
and i = 1 or 2. Noting that z normalizes Tα and yz = y−1, we have Cos(X,Tα, TαxTα) =
Cos(X,Tα, Tαy

izTα) ∼= Cos(X,Tα, TαyzTα). Thus Γ is isomorphic to the graph given in
Example 20 (2).

Theorem 27. Let Γ = (V,E) be a connected G-edge-transitive graph of square-free order
and valency k > 3, where G 6 AutΓ. Assume that soc(G) = PSL(2, p) for a prime p > 5,
and that G is transitive on V . Then, for α ∈ V , the pair (soc(G)α, k) lies in Table 1.
Further, if Γ is G-locally primitive, then (soc(G)α, k) lies in Table 2.
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soc(G)α k remark

Zm m, 2m, 4m m is an even divisor of p±1
2

Zp:Zl pm, 2pm, 4pm (p−1)
2l

is odd, m
∣∣ l

D2m
m
2
,m, 2m, 4m m divides p±1

2

A4 l, 2l l ∈ {4, 6, 12}, 32 6
∣∣ p2 − 1, TE is transitive

2l, 4l p ≡ ±3(mod 8), G = PGL(2, p)
S4 l, 2l l > 3, l

∣∣ 24, p ≡ ±1(mod 8), Gα = Tα
A5 l, 2l l > 5, l

∣∣ 60, p ≡ ±1(mod 10), Gα = Tα

Table 1:

soc(G)α k Γ remark
Zp:Zl p Example 19 (p− 1)/2l is odd
D4r r Example 20 (1) prime r 6= p, 32 6

∣∣ (p2 − 1)
D2r r Example 20 (2) prime r 6= p, 16 6

∣∣ (p2 − 1)
A4 4 Example 21 32 6

∣∣ (p2 − 1)
S4 3, 4 Example 22 p ≡ ±1(mod 8)
A5 5, 6, 10 Example 23 p ≡ ±1(mod 10)

Table 2:

Proof. Let Γ = (V,E) be a connected G-edge-transitive graph of square-free order and
valency k > 3, where G 6 AutΓ. Assume that T := soc(G) = PSL(2, p) for a prime p > 5,
and that G acts transitively on V . Let {α, β} ∈ E.

Noting that |G : Gα| = |T : Tα| or 2|T : Tα|, we have |Gα : Tα| = 1 or 2. Then Tα has
at most two orbits on each Gα-orbits on Γ(α). By Lemma 9, we have k = |Γ(α)| = l, 2l or
4l, where l = |Tα : Tαβ|. By Lemmas 24, 25 and 26, we need only consider the remaining
case: Tα ∼= A4, S4 or A5.

Let Tα ∼= S4 or A5. Checking the maximal subgroups of PGL(2, p) (see [3], for exam-
ple), we know that PGL(2, p) has no subgroups of order 2|Tα|. It follows that Gα = Tα.

Then k = l or 2l depending whether or not T
Γ(α)
α is transitive. If Tα ∼= S4, then T

Γ(α)
α
∼= S3

or S4, which implies that l > 3 and l divides 24. If Tα ∼= A5, Then l > 5 is a divisor of 60.
Let Tα ∼= A4. Assume that T is transitive on E. Then k = l or 2l, where l = |Tα : Tαβ|

for α ∈ Γ(α). By Lemma 7, l 6= 3. Thus l ∈ {4, 6, 12}. Assume that T is intransitive
on E. Then G = PGL(2, p) and Gα

∼= S4, and hence p ≡ ±3(mod 8) by checking the

maximal subgroups of G. By Lemma 7, we conclude that T
Γ(α)
α
∼= A4 and G

Γ(α)
α
∼= S4. It

follows that k = 2l or 4l for l ∈ {4, 6, 12}.
Further, if Γ is G-locally primitive, then k = 4 for Tα ∼= A4, k = 3 or 4 for Tα ∼= S4,

and k = 5, 6 or 10 for Tα ∼= A5. Next we determine the G-locally primitive graphs.
Let Tα ∼= A4. Then Tαβ ∼= Z3, and Γ is (G, 2)-arc-transitive and of valency 4. Let X =

T or PGL(2, p) depending T is transitive or intransitive on V . Then NX(Tαβ) ∼= Dt(p+ε),
where t = |X : T | and ε = ±1 such that 3 divides p+ ε. Let x ∈ NX(Tαβ) with x2 ∈ Tαβ
and 〈x, Tα〉 = X. Then x is either an involution or of order 6, and xy is an involution
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M Tα k T -orbits remark
Zm Zp:Zl p 1 m and (p− 1)/2ml are odd
1 D4r r 1, 2 prime r 6= p, 32 6

∣∣ (p2 − 1)
1 D2r r 1, 2 prime r 6= p, 16 6

∣∣ (p2 − 1)
1 A4 4 1, 2 32 6

∣∣ (p2 − 1)
Z3 Z2

2 4 1, 2 32 6
∣∣ (p2 − 1)

Z6, S3 Z2
2 4 2 16 6

∣∣ (p2 − 1)
1 S4 3, 4 1, 2 p ≡ ±1(mod 8)
Z2 A4 4 1 32 6

∣∣ (p2 − 1)
S3 Z2

2 4 1 32 6
∣∣ (p2 − 1)

Z2 S4 4 2 32 6
∣∣ (p2 − 1)

1 A5 5, 6, 10 1 p ≡ ±1(mod 10)
Z2 A5 6, 10 2 p ≡ ±1(mod 10), 16 6

∣∣ (p2 − 1)

Table 3:

for some y ∈ Tαβ. Note that TαxTα = TαxyTα. Thus, writing Γ as a coset graph, Γ is
isomorphic to one of the graphs in Example 21.

Let Tα ∼= S4. Then Gα = Tα. If Γ has valency 3, then Γ is isomorphic the graph given
in Example 22 (1). If Γ has valency 4, then Gαβ

∼= S3 and NG(Gαβ) = Z2×S3, it follows
that Γ is isomorphic the graph given in Example 22 (2).

Finally, if Tα = A5 then Gα = Tα and Gαβ
∼= A4, D10 or S3, and thus Γ is isomorphic

one of the graphs given in Example 23.

7 Locally primitive arc-transitive graphs

In this section we give a proof of Theorem 4. We first prove a technical lemma.

Lemma 28. Let G be a transitive permutation group on V of square-free degree and let M
be a normal subgroup of G. Assume that M is semiregular on V and G/M acts faithfully
on the M-orbits. Then there is X 6 G such that G = M :X.

Proof. The result is trivial if M = 1. Thus we assume that M 6= 1. Note that M has
square-free order. Let p be the largest prime divisor of |M | and P be the Sylow p-subgroup
of M . Then P is cyclic and is normal in G. Let α ∈ V and B be the P -orbit with α ∈ B.
Let VP be the set of P -orbits. Then |B| = p is coprime to |VP |. Then GB = P :Gα contains
a Sylow p-subgroup P × Q of G, where Q is a Sylow p-subgroup of Gα. It follows from
[2, 10.4] that the extension G = P.(G/P ) splits over P . Thus G = P :H for some H < G
with H ∩ P = 1. If M = P , then the result follows. We assume M 6= P in the following.

Let K be the kernel of G acting on VP . Noting that each M -orbit on V consists
of several P -orbits, we know that K fixes each M -orbits set-wise. It follows from the
assumptions that K 6M . Then, considering the action of M on its an orbit, we conclude
that K = P . Thus H is faithful and transitive on VP . Further, M = M∩PH = P (M∩H)
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implies that M∩H is semiregular on VP . It is easily shown that H/(M∩H) acts faithfully
on the (M ∩H)-orbits on VP . Noting that |VP | < |V |, we may assume by induction that
H = (M ∩ H)X with X ∩ (M ∩ H) = 1. Then G = P ((M ∩ H)X) = MX, and
M ∩X 6M ∩H yielding M ∩X 6M ∩H ∩X = 1, hence our result follows.

Let Γ = (V,E) be a connected G-locally primitive graph. Suppose that G has a normal
subgroup N which has at least three orbits on V . Then either the quotient graph ΓN is
a star, or Γ is a normal cover of ΓN , refer to [10, Theorem 1.1]. Then following lemma is
easily shown.

Lemma 29. Let Γ = (V,E) be a connected G-locally primitive and G-symmetric graph.
Let N be a normal subgroup of G. If N is not semiregular on V , then N is transitive on
E and has at most two orbits on V .

Theorem 30. Let Γ = (V,E) be a connected G-locally primitive graph of square-free
order and valency k > 2. Let M C G be maximal subject to that M has at least three
orbits on V . Assume further that ΓM is not a star. Then one of the following holds.

(1) M = 1, Γ and G are described as in (1) or (5) of Lemma 13;

(2) Γ is a bipartite graph, G ∼= D2n:Zk, Zn:Zk or Zn
k
:Z2

k, and k is the smallest prime
divisor of nk;

(3) G = M :X, Msoc(X) = M × soc(X) and soc(X) is a simple group descried in
(3)-(6) and (8) of Theorem 1.

Proof. Since ΓM is not a star, Γ is a normal cover of ΓM , hence M is semiregular on
V ; in particular, |M | is coprime to |VM |. By the choice of M , we know that G/M is
faithful on either VM or one of two G/M -orbits on VM . Then, by Lemma 28, we have
G = M :X. Note that ΓM is G/M -locally primitive, and the pair G/M and ΓM satisfies
the assumptions in Theorem 1. Let Y = soc(X). Then, by Lemma 13, ΓM ∼= Kk,k and
Y ∼= T 2 for a simple group T , or Y is a minimal normal subgroup of X.

Since |M | is square-free, M has soluble automorphism group Aut(M). Noting that
G/CG(M) = NG(M)/CG(M) . Aut(M), it follows that G/CG(M) is soluble. If Y is a
nonabelian simple group then Y 6 CG(M), and hence MY = M × Y , and so part (3) of
this theorem occurs. We next complete the proof in two cases.

Case 1. ΓM ∼= Kk,k and Y ∼= T 2 for a simple group T . In this case, by Lemma 13, X
is transitive on VM , and so ΓM is X-arc-transitive. Then Γ is G-arc-transitive. Moreover,
Y has exactly two orbits on VM of size k. Thus MY has exactly two orbits U and W on
V of length k|M |. Let UM and WM be the sets of M -orbits on U and W , respectively.
Then UM and WM are Y -orbits on VM .

Assume first that T is a nonabelian simple group. Then part (5) of Lemma 13 holds
for the pair (X,ΓM). In particular, Y is the unique minimal normal subgroup of X. Let
∆ be an M -orbit on V . Suppose that T ∼= A7. Then k = 105 and T∆

∼= A6 × PSL(3, 2).
It is easily shown that ΓM is not X-locally primitive, which is not the case. Thus Y is
unfaithful on both UM and WM . Let K be the kernel of Y acting on UM . Then K ∼= T

the electronic journal of combinatorics 22(3) (2015), #P3.25 18



and, Y = K × Kx for x ∈ X \ Y . It is easily shown that K ∼= T is transitive on WM .
Recalling that G/CG(M) is soluble, it follows that K 6 CMK(M) and so MK = M ×K.
Considering the action of MK on ∆, we conclude that K acts trivially on ∆. Then K
acts trivially on U . Since K is transitive on WM , we conclude that Γ ∼= Kk,k. It follows
that M = 1, and so (1) of this theorem occurs.

Now let T ∼= Zp for an odd prime p. Then k = p is coprime to |M |, and so |V | = 2k|M |.
Noting that ΓM has odd valency k, it implies that ΓM has even order, and so |M | is odd.
Moreover, by Lemma 13, X ∼= G/M ∼= (Z2

k:Zl).Z2 is nonabelian, where l is a divisor of
k − 1. Since |M | is square-free, M is soluble, and so G is soluble. Let F be the Fitting
subgroup of G. Then CG(F ) 6 F 6= 1. Suppose that F has at least three orbits on
V . Since Γ is G-locally primitive and G-vertex-transitive, Γ is a normal cover of ΓF ; in
particular, F has square-free order. Then G/F is isomorphic to a subgroup of AutΓF
acting transitively on the arcs of ΓF , and so G/F is not abelian. On other hand, since
|F | is square-free, F is cyclic, and hence CG(F ) = F and Aut(F ) is abelian. Since
G/F = NG(F )/CG(F ) . Aut(F ), we know that G/F is abelian, a contradiction. Thus
F has one or two orbits on V . Suppose that |F | is even. Let Q be the Sylow 2-subgroup
of F . Then QCG. Consider the quotient ΓQ. Since |V | is square-free and Γ is G-vertex-
transitive, we get a graph of odd order k|M | and odd valency k, which is impossible.
Then F has odd order, and hence F has exactly two orbits on V .

Assume |F | is divisible by k2. Let P be the Sylow k-subgroup of F . Then Z2
k
∼= Y =

soc(X) = P C G. By Lemma 29, we conclude that Γ ∼= Kk,k. This implies that M = 1,
and Γ and G are described as in (1) of Lemma 13. Then (1) of this theorem occurs.

Assume that |F | is not divisible by k2. Then M 6= 1; otherwise Z2
k
∼= Y 6 F , a

contradiction. Since F has exactly two orbits on V , we know that |F | is divisible by
k|M |. Let P be the Sylow k-subgroup of F . Then Zk ∼= P C G. Let q be the smallest
prime divisor of |M |, and the let N be the q′-Hall subgroup of M . Then NP is a normal
subgroup of G. It is easy to see that NP is intransitive on both U and W . Then the
quotient graph ΓNP is bipartite and of order 2q and valency k, and so q > k. Thus, since
l is a divisor of k − 1, each possible prime divisor of l is less than q. Note that FM is
a subgroup of G. Then |G| = 2lk2|M | is divisible by |FM | = |F ||M |

|F∩M | . Recalling that |F |
is divisible by k|M |, it follows that M 6 F . Let r be an arbitrary prime divisor of |F |,
and let R be the Sylow r-subgroup of F . Then RCG and r is odd. Since G is transitive
on V , all R-orbits on V have the same length. It implies that r is a divisor of |V |, and
so r is a divisor of k|M |. The above argument yields that |F | = k|M |, and so |F | is
square-free. Then F is cyclic and semiregular on V , CG(F ) = F and Aut(F ) is abelian.
Since Gα

∼= GαF/F 6 G/F = NG(F )/CG(F ) . Aut(F ), we know that both Gα and G/F
are abelian. By Lemma 8, Gα

∼= Zk. Since |G : (FGα)| = 2, we have G = F.Z2k. Thus G
has a normal regular subgroup F :Z2. Then Γ is isomorphic a Cayley graph Cay(F :Z2, S),
where S = {sτ i | 0 6 i 6 k − 1} for an involution s ∈ F :Z2 and τ ∈ Aut(F :Z2) of order k
such that 〈S〉 = F :Z2. Noting that |F :Z2| is square-free, it follows that F :Z2 is a dihedral
group, say D2n. Then part (2) of this theorem occurs.

Case 2. soc(G/M) ∼= soc(X) = Y ∼= Zp. Since ΓM is X-locally primitive, by
Lemma 13, either X ∼= Zp:Zk, or X ∼= Zp:Z2k and X is transitive on VM . Moreover,
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|VM | = 2p, (p, |M |) = 1, p > k and k is an odd prime. Let L = MY . Then L is a
semiregular normal subgroup of G, and L has exactly two orbits U and W on V .

Let X ∼= Zp:Zk. Then |G| = kp|M | = k|L|. Assume that |L| has a prime divisor q
such that either a Sylow q-subgroup of L is not normal in L or q is the smallest prime
divisor of |L|. It is easily shown that L has a unique q′-Hall subgroup N ; in particular, N
is normal in L. Then N is normal in G, and N has q-orbits on each of U and W . Thus the
quotient graph ΓN is bipartite and of order 2q and valency k. In particular, k 6 q. Further,
G/N = Zq:Zk is not abelain unless q = k. Since |N | is square-free, the outer automorphism
group Out(N) of N is abelian, refer to [12]. Note that G/(NCG(N)) is isomorphic a
quotient of a subgroup of Out(N). Then G/(NCG(N)) is abelian. Thus either q = k,
or NCG(N) has order divisible by q. Suppose that q > k. Then q is not a divisor of
|N | as N 6 L and |L| is square-free. Note that NCG(N)/N ∼= CG(N)/(N ∩ CG(N)).
It follows that |CG(N)| is divisible by q. Let Q be a Sylow q-subgroup of CG(N). Then
Q is also a Sylow q-subgroup of G, and hence Q 6 L. Moreover, NQ/N C G/N , and so
NQ C G. Since NQ = N × Q, we know that Q C G, which contradicts the choice of q.
Therefore, q = k. This says that k is the smallest prime divisor of |G|, and either L ∼= Zn
or L ∼= Zn

k
:Zk, where n = |L|. Thus G = Zn:Zk or Zn

k
:Z2

k, and k is the smallest prime
divisor of nk.

Now let X ∼= Zp:Z2k. Then G has a normal regular subgroup R = L:Z2, and Γ is

isomorphic a Cayley graph Cay(R, S), where S = {sτ i | 0 6 i 6 k − 1} for an involution
s ∈ R and an automorphism τ ∈ Aut(R) of order k such that 〈S〉 = R. Noting that |R|
is square-free, it follows that R is a dihedral group, say D2n. Then G = D2n:Zk. Let q be
the smallest prime divisor of n. Then G has a normal subgroup N with |G : N | = 2qk.
It is easily shown that the quotient graph ΓN is bipartite and of valency k and order 2q.
Then k 6 q, and so k is the smallest prime divisor of nk. Thus part (2) follows.

Now we are ready to give a proof of Theorem 4.

Proof of Theorem 4. Let Γ = (V,E) be a G-locally primitive arc-transitive graph, and let
M CG be maximal subject to that M has at least three orbits on V . Then Γ is a normal
cover of Σ := ΓM . Note that Γ and Σ has even valency if |M | is even.

If G is soluble then, by Theorem 30, one of part (1) of Theorem 4 occurs. Thus
we assume that G is insoluble. Then G = M :X, where T := soc(X) is a simple group
descried in (3)-(6) and (8) of Theorem 1. By Lemma 29, we conclude that either Γ is
T -arc-transitive, or Γ is T -edge-transitive and T has exactly two orbits on V . We next
consider the case where T = PSL(2, p) for a prime p > 5.

Let ∆ be an M -orbit on V . Then either T∆ is transitive on ∆; or T∆ has exactly two
orbits on ∆ and, in this case, T is intransitive on V and M × T is transitive on V . We
take a normal subgroup N of G such that N = M if the first case occurs, or N is the
2′-Hall subgroup of M if the second case occurs. Let ∆1 be an N -orbit contained in ∆.
Then T∆ = T∆1 is transitive on ∆1 and N is regular on ∆1. Considering the action of
N × T∆, we conclude that N ∼= T∆/K, where K is the kernel of T∆ on ∆1. Note that T∆

is known by Theorem 27, and that |V | = |T : Tα| or 2|T : Tα| is square-free. Then we get
Table 3 by checking possible normal subgroups of T∆ with square-free index.
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[6] M. Conder and P. Dobcsányi. Trivalent symmetric graphs on up to 768 vertices. J.
Combin. Math. Combin. Comput., 40:41–63, 2002.

[7] M. D. Conder, C. H. Li, and C. E. Praeger. On the Weiss conjucture for finite locally
primitive graphs. Pro. Edinburgh Math. Soc., 43:129–138, 2000.

[8] J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker, and R. A. Wilson. Atlas of
Finite Groups. Clarendon Press, Oxford, 1985.

[9] Y. Q. Feng and Y. T. Li. One-regular graphs of square-free order of prime valency.
European J. Combin., 32:165–175, 2011.

[10] M. Giudici, C. H. Li, and C. E. Praeger. Analysing finite locally s-arc transitive
graphs. Trans. Amer. Math. Soc., 356:291–317, 2004.

[11] B. Huppert. Endliche Gruppen I. Springer-Verlag, 1967.

[12] C. H. Li, Z. Liu, and Z. P. Lu. Tetravalent edge-transitive Cayley graphs of square
free order. Discrete Math., 312:1952–1967, 2012.

[13] C. H. Li, Z. P. Lu, and G. X. Wang. Vertex-transitive cubic graphs of square-free
order. J. Graph Theory, 75:1–19, 2014.

[14] C. H. Li, Z. P. Lu, and G. X. Wang. The vertex-transitive and edge-transitive
tetravalent graphs of square-free order. J. Algebraic Combin., 42:25–50, 2015.
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