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Abstract

Let p be a prime, e a positive integer, ¢ = p®, and let F, denote the finite field
of q elements. Let f;: Fg — IFy be arbitrary functions, where 1 <14 <[, 7 and [ are
integers. The digraph D = D(q;f), where f = (f1,..., f1): ]Fg — Fé, is defined as
follows. The vertex set of D is quﬂ. There is an arc from a vertex x = (x1,... ,2;41)
to a vertex y = (y1,...,y+1) if z;i +y; = fi—1(x,y1) forall i, 2 <i <1+ 1. In
this paper we study the strong connectivity of D and completely describe its strong
components. The digraphs D are directed analogues of some algebraically defined

graphs, which have been studied extensively and have many applications.
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1 Introduction and Results

In this paper, by a directed graph (or simply digraph) D we mean a pair (V, A), where
V = V(D) is the set of vertices and A = A(D) C V x V is the set of arcs. The order of D
is the number of its vertices. For an arc (u,v), the first vertex u is called its tail and the
second vertex v is called its head; we denote such an arc by v — v. For an integer k > 2,
a walk W from x1 to xj in D is an alternating sequence W = xya1x2a023 . .. Tp_1ap_1x of
vertices z; € V and arcs a; € A such that the tail of a; is ; and the head of a; is ;44 for
every 1, 1 <i < k— 1. Whenever the labels of the arcs of a walk are not important, we
use the notation 1 — x5 — - -+ — x, for the walk. In a digraph D, a vertex y is reachable
from a vertex x if D has a walk from z to y. In particular, a vertex is reachable from
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itself. A digraph D is strongly connected (or, just strong) if, for every pair z,y of distinct
vertices in D, y is reachable from z and x is reachable from y. A strong component of a
digraph D is a maximal induced subdigraph of D that is strong. For all digraph terms
not defined in this paper, see Bang-Jensen and Gutin [1].

Let p be a prime, e a positive integer, and ¢ = p®. Let I, denote the finite field of ¢
elements, and F; = IF,\ {0}. We write I} to denote the Cartesian product of n copies of .
Let f;: IF?] — [F, be arbitrary functions, where 1 <4 <[, 7 and [ are positive integers. The
digraph D = D(q; f1,..., fi), or just D(q;f), where f = (f1,..., fi): Fg — IFf], is defined
as follows. (Throughout all of the paper the bold font is used to distinguish elements of
FJ, j > 2, from those of Fy, and we simplify the notation f((z,y)) and f((z,y)) to f(z,y)
and f(z,y), respectively.) The vertex set of D is F,™'. There is an arc from a vertex
x = (x1,...,741) to a vertex y = (y1, ... ,y+1) if and only if

.fl?z—{—yz = fi_1<$1,y1) for allz 2 l—|—1

We call the functions f;, 1 < < I, the defining functions of D(q;f).

Ifl =1 and f(z,y) = fi(z,y) = 2™y™, 1 < m,n < ¢ — 1, we call D a monomial
digraph, and denote it by D(q;m,n).

The digraphs D(q;f) and D(q;m,n) are directed analogues of some algebraically
defined graphs, which have been studied extensively and have many applications. See
Lazebnik and Woldar [11] and references therein; for some subsequent work see Viglione
[15], Lazebnik and Mubayi [7], Lazebnik and Viglione [10], Lazebnik and Verstraéte [9],
Lazebnik and Thomason [8], Dmytrenko, Lazebnik and Viglione [3], Dmytrenko, Lazebnik
and Williford [4], Ustimenko [14], Viglione [16], Terlep and Williford [13], Kronenthal [6],
Cioaba, Lazebnik and Li [2], and Kodess [5].

We note that F, and F, can be viewed as vector spaces over F, of dimensions e and
el, respectively. For X C Ffl, by (X) we denote the span of X over F,, which is the
set of all finite linear combinations of elements of X with coefficients from F,. For any
vector subspace W of IFEI, dim(W) denotes the dimension of W over F,. If X C ]Fé, let
v+ X = {v+x:x € X} Finally, let Im(f) = {(fi(z,¥),..., fi(z,y)): (x,y) € F.} denote
the image of function f.

In this paper we study strong connectivity of D(q; f). We mention that by Lagrange’s
interpolation (see, for example, Lidl, Niederreiter [12]), each f; can be uniquely represented
by a bivariate polynomial of degree at most ¢ — 1 in each of the variables. We therefore
also call functions f; defining polynomials.

In order to state our results, we need the following notation. For every f: IFg — IFfI, we

define
g(t) = £(¢,0) — £(0,0), h(t) =£(0,) —£(0,0),
f(z,y) = f(z,y) — g(y) — h(v),
fo(z,y) = f(z,y) — £(0,0), and
fo(z,y) = fo(w,y) — g(y) — h(x).

As g(0) = h(0) = 0, one can view the coordinate function g; of g (respectively, h; of
h), i =1,...,1, as the sum of all terms of the polynomial f; containing only indeterminate
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r (respectively, y), and having zero constant term. We, however, wish to emphasise that
in the definition of f(x,y), g is evaluated at y, and h at z. Also, we will often write
a vector (vi,vs,...,u41) € Fit! = V(D) as an ordered pair (vy,v) € Fy x F., where
VvV = (UQ, . ,’Ul+1).

The main result of this paper is the following theorem, which gives necessary and

sufficient conditions for the strong connectivity of D(g;f) and provides a description of its
strong components in terms of (Im(fy)) over F,,.

Theorem 1. Let D = D(¢;f), Dy = D(q; fo), Wy = (Im(fo)) over F,, and d = dim(Wj)
over IF,,. Then the following statements hold.

(i) If q is odd, then the digraphs D and Dy are isomorphic. Furthermore, the vertex set
of the strong component of Dy containing a vertex (u,v) is

{(a,v+h(a) —g(u)+ Wo):ae ]Fq} U {(b, —v+h(b) +glu)+Wy):be Fq}

— {(a, v+ n(a) F glu) + W) }. (1)
The vertez set of the strong component of D containing a vertex (u,v) is

{(a,v—l—h(a)—g(u)—l—Wo): ac Fq}u{(b, —v+h(b)+g(u)+£(0,0)+ W) : b e ]Fq}.
(2)

In particular, D = Dy is strong if and only if Wy = IFfJ or, equivalently, d = el.

If q is even, then the strong component of D containing a vertex (u,v) is

{(a, vrh(a)+g(w)+Wo): a € Fq}u{(a,v+h(a)+g(u)+f(0, 0)+Wo): a € IE‘q} (3)

— {(a,v—l—h(a) +g(u) +W):ac Fq},

where W = Wy + ({f(0,0)}) = (Im(f)).

(ii) If q is odd, then D = Dy has (p~? + 1)/2 strong components. One of them is of
order p*t. All other (p'=¢ —1)/2 strong components are isomorphic, and each is of
order 2pte.

If q is even, then the number of strong components in D is 2= provided £(0,0) € W,
and it is 27971 otherwise. In each case, all strong components are isomorphic, and
are of orders 2% and 2¢+9* | respectively.

We note here that for ¢ even the digraphs D and D, are generally not isomorphic.
We apply this theorem to monomial digraphs D(q;m,n). For these digraphs we can
restate the connectivity results more explicitly.
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Theorem 2. Let D = D(q;m,n) and let d = (¢ — 1, m,n) be the greatest common divisor
of g — 1, m and n. For each positive divisor e; of e, let ¢; := (¢ —1)/(p® — 1), and let gs
be the largest of the q; that divides d. Then the following statements hold.

(i) The vertex set of the strong component of D containing a vertex (u,v) is
{(x,v+Fpes): v € F} U{(x,—v +Fpes): x € F,}. (4)
In particular, D s strong if and only if g = 1 or, equivalently, e, = e.

(i1) If q is odd, then D has (p* ¢ + 1)/2 strong components. One of them is of order
petes. All other (p©= % — 1)/2 strong components are all isomorphic and each is of
order 2ptes,

If q is even, then D has 2°7% strong components, all isomorphic, and each is of
order 267¢s .

Our proof of Theorem 1 is presented in Section 2, and the proof of Theorem 2 is in
Section 3. In Section 4 we suggest two areas for further investigation.

2 Connectivity of D(q;f)

Theorem 1 and our proof below were inspired by the ideas from [15], where the components
of similarly defined bipartite simple graphs were described.

We now prove Theorem 1.

Proof. Let ¢ be odd. We first show that D = Dy. The map ¢: V(D) — V(Dy) given by

(5,3) = (. = 5£(0,0) )

is clearly a bijection. We check that ¢ preserves adjacency. Assume that ((z1,%2), (y1,y2))
is an arc in D, that is, Xo + y2 = f(z1,y1). Then, since ¢((z1,%2)) = (21, %2 — 3£(0,0))
and ¢((y1,y2)) = (1,2 — 5£(0,0)), we have

(x9 — %f(O, 0)) + (y2 — %f(ou 0)) = f(z1,51) — £(0,0) = fo(x1, 1),

and so (¢((z1,%2)), ¢((y1,y2))) is an arc in Dy. As the above steps are reversible, ¢

preserves non-adjacency as well. Thus, D(q;f) = D(q;f).

We now obtain the description (1) of the strong components of Dy, and then explain
how the description (2) of the strong components of D follows from (1).
_ Note that as f(0,0) = 0, we have g(t) = fo(Z,0), h(t) = £0(0,1), g(0) = h(0) = 0, and

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.27 4



Let aq,...,0q4 € Im(f'o) be a basis for W,. Now, choose z;,y; € F, be such that
fo(wi,y:) = ay, 1 <i < d
Let (u,v) be a vertex of Dy. We first show that a vertex (a,v +y) is reachable from
(u,v)ify € h(a)—g(u)+Wj. In order to do this, we write an arbitrary y € h(a)—g(u)+W,
as
y = h(a) — g(u) + (@161 + - - - + agtia),

for some ay,... ,aq € IFp, and consider the following directed walk in Dy:

(u,v) = (0, —v +fo(u,0)) = (0, —v + g(u))

(
— (0,v —g(u)) (6)
— (21, —v +g(u) + £o(0,21)) = (21, —v + g(u) + h(z1)) (7)
= (y1, v — g(u) —h(x1) + fo(21,41)) (8)
— (0, —v +g(u) + h(z1) — fo(z1, y1) + 8(¥1)) (9)
= (0, —v +g(u) — fo(z1,11)) = (0,—v + g(u) — &) (10)
)

— (0,v —g(u) + a1)). (11

Traveling through vertices whose first coordinates are 0, 1, y1, 0, 0, and 0 again (steps
6-11) as many times as needed, one can reach vertex (0,v — g(u) 4+ a;é7). Continuing a
similar walk through vertices whose first coordinates are 0, x;, y;, 0, 0, and 0, 2 <7 < d,
as many times as needed, one can reach vertex (0,v — g(u) + (a16q + ... + a;&;)), and so
on, until the vertex (0, —v + g(u) — (a16q + - - - + aqtq)) is reached. The vertex (a,v +y)
will be its out-neighbor. Here we indicate just some of the vertices along this path:

.
(O, —g(u) + a1aq)

(x2, —v + g(u) — a1aq + h(xg))

(y2,v — g(u) + ardy — h(xy) + fo (w2, 12))

(0, =v + g(u) — ardn + h(z2) — fo(z2, y2) + 8(12))
(0, —v +g(u) — a1y — ao)

= (0,v —g(u) + a1&1 + az)

o
.
5
o

‘

= (0, v + g(u) — a161 — azd)

— ...

=(0,—v+gu) — (@161 + - - - + aqiq))

— (a,v —g(u) + h(a) + (a1a1 + - - - + agdy))
= (a,v+Yy).

Hence, (a,v +y) is reachable from (u,v) for any a € F, and any y € h(a) — g(u) + Wh,
as claimed. A slight modification of this argument shows that (a, —v + y) is reachable
from (u,v) for any y € h(a) + g(u) + Ws.
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Let us now explain that every vertex of Dy reachable from (u,v) is in the set
{(a,£vF g(u) +h(a) + Wy): a €F,}.

We will need the following identities on [F, and Fg, respectively, which can be checked
easily using the definition of f:

f‘O(tv O) = g(t) - h(t) = _f‘O(Ou t) and
The identities immediately imply that for every ¢, z,y € F,,

g(t) —h(t) € Wy and
fo(x,y) = g(x) + h(y) + w for some w = w(x,y) € Wp.

Consider a path with k arcs, where £ > 0 and even, from (u, v) to (a,v +y):
(u,v) = (20, V) = (21,...) = (x9,...) = -+ = (v, vV +y) = (a,v+y).

Using the definition of an arc in Dy, and setting fo(z;, x;11) = g(x;) + h(z;41) + w;, and
g(z;) — h(x;) = w}, with all w;, w, € Wy, we obtain:

y = fo(xp_1, ) — fo(@r—o, xp—1) + - - - + fo (21, 22) — fo (20, 21)

= '_ (—1)"" o (i, 2ig1) = z—:(—l)iﬂ(g(%) +h(2it1) + w;)

= —g(r) + h(a) + 3 (-1 (e~ h(e) + 3 (-1,
k-1 k—1

= —g(w0) + h(w) + 3 (=) wi + 3 (=)

Hence, y € —g(x¢) + h(xy) + Wy. Similarly, for any path
(u,v) = (x0, V) = (21,...) = (x2,...) = - = (2, V+Yy) = (a, -V +Y),

with & arcs, where £ is odd and at least 1, we obtain y € g(zo) + h(zx) + Wo.
The digraph Dy is strong if and only if Wy = (Im(fp)) = F., or, equivalently, d = el.
Hence part (i) of the theorem is proven for Dy and ¢ odd.

Let (u,v) be an arbitrary vertex of a strong component of D. The image of this
vertex under the isomorphism ¢, defined in (5), is (u,v — 3£(0,0)), which belongs to the
strong component of Dy whose description is given by (1) with v replaced by v — $£(0,0).
Applying the inverse of ¢ to each vertex of this component of Dy immediately yields the

description of the component of D given by (2). This establishes the validity of part (i) of
Theorem 1 for ¢ odd.
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For ¢ even we first apply an argument similar to the one we used above for establishing
components of Dy for ¢ odd. As p = 2, the argument becomes much shorter, and we
obtain (3). Then we note that if

(u,v) = (xo,v) = (21,...) = (29,...) = -+ = (v, V+Y)

is a path in D, then
k—1

y = Zfo(ﬂ%xiﬂ) + 6 -£(0,0),
i=0

where 6 = 1 if £ is odd, and § = 0 if k is even.

For (i), we first recall that any two cosets of Wy in F}' are disjoint or coincide. It is
clear that for ¢ odd, the cosets (1) coincide if and only if v € g(u) + Wy. The vertex set
of this strong component is {(a,h(a) + Wy): a € F,}, which shows that this is the unique
component of such type. As |Wy| = p?, the component contains ¢ - p? = p**? vertices. In
all other cases the cosets are disjoint, and their union is of order 2gp? = 2p®*?. Therefore
the number of strong components of Dy, which is isomorphic to D, is

|V(D)| _pe+d 1o p6(1+1) _pe+d 1o pelfd + 1
2pe+d 2pe+d 2

For ¢ even, our count follows the same ideas as for ¢ odd, and the formulas giving the
number of strongly connected components and the order of each component follow from

(3)-

For the isomorphism of strong components of the same order, let ¢ be odd, and let Dy
and D, be two distinct strong components of Dy each of order 2p®*t¢. Then there exist
(u1,v1), (ug, ve) € V(Dy) with vi € g(uy) + Wy and v & g(us) + Wy such that V(D;) =
{(a,vi+h(a)—g(u1)+Wy): a € F,} and V(D3) = {(a,ve+h(a) —g(u2) +Wy): a € F,}.

Consider a map 1 : V(Dy) — V(D3) defined by

(a,£vy +h(a) Fglur) +y) — (a,£ve + h(a) F gu) +y),

for any a € F, and any y € Wy. Clearly, ¢ is a bijection. Consider an arc («, ) in
D;. If o = (a,v; + h(a) — g(u1) +y), then g = (b, —v; — h(a) + g(u1) —y + fo(a,d))
for some b € F,. Let us check that (¢(«),¢(5)) is an arc in D,. In order to find an
expression for the second coordinate of ¥(3), we first rewrite the second coordinate of /3
as —vi +h(a) +g(ui) +y', where y' € Wy. In order to do this, we use the definition of fo
and the obvious equality g(b) — h(b) = fo(b,0) € Wy. So we have:

—vi—h(a) +g(u) —y +£(a,b)
= —v; —h(a) + g(u1) —y + fo(a, b) + g(b) + h(a)
—vi+h(b) +g(ur) + (g(b) — h(b)) —y + fo(a, b)
=—vi+h() +gw)+y,
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where y' = (g(b) — h(b)) — y + fo(a,b) € Wy. Now it is clear that ¥ («) = (a, vy + h(a) —
g(uz) +y) and ¢(B) = (b, —vy + h(b) + g(uz) + y’) are the tail and the head of an arc in
Ds. Hence 1 is an isomorphism of digraphs D; and Ds.

An argument for the isomorphism of all strong components for ¢ even is absolutely
similar. This ends the proof of the theorem. n

We illustrate Theorem 1 by the following example.

Example 3. Let p > 3 be prime, ¢ = p?, and F, = F,(¢), where ¢ is a primitive element
in Fy. Let us define f: F; — F, by the following table:

) 0 1 x+#£0,1
0 0 ¢ 1
1 § 2 §
y#£0,112 ¢ 0

As 1 and £ are values of f, (Im(f)) = F;. Nevertheless, D(g; f) is not strong as we show
below.

In this example, since [ = 1, the function f = f. Since f(0,0) =0, fo = f, and

0, t=0, 0, t=0,
gt)=g(t)=f(t,0)=<¢ t=1, , h({)=h)=/f(01) =& t=1,
1, otherwise 2, otherwise

The function fo(z,y) = f(z,y) = f(x,y) — f(y,0) — f(0,z) can be represented by the
table

x
) 0 1 2#0,1
o |0 o -1 |,
1 0o 0 -2
y#0,11 -1 -3

and so (Im(fo)) = F, # (Im(f)) = Fpe.

Asl=1,e=2,andd=1, D(q; f) has (p’*~?+1)/2 = (p + 1)/2 strong components.
For p = 5, there are three of them. If Fo5 = F5[¢], where £ is a root of X?+4X +2 € F5[X],
these components can be presented as:

{(a,h(a) +F5): a € Fa5},

{(a,h(a) = E+TF5): a € Fos} U{(b,h(b) + {+TF5): b € Fos},
{(a,h(a) +26 +TF5): a € Fos} U {(b,h(b) — 2§ +F5): b € Fa5}.
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3 Connectivity of D(q, m,n)

The goal of this section is to prove Theorem 2.

For any t > 2 and integers ay,...,a;, not all zero, let (ai,...,a;) (respectively
la1,...,a;]) denote the greatest common divisor (respectively, the least common mul-
tiple) of these numbers. Moreover, for an integer a, let @ = (¢ — 1,a). Let <& >=T}, ie,
¢ is a generator of the cyclic group F}. (Note the difference between < - > and (-) in our
notation.) Suppose A, = {z*: x € F;}, k > 1. It is well known (and easy to show) that
Ay =< & > and |A;] = (¢ — 1) /k.

We recall that for each positive divisor e; of e, ¢; = (¢ — 1)/(p% — 1).

Lemma 4. Let g, be the largest of the q; dividing k. Then Fye. is the smallest subfield of
[F, in which Ay is contained. Moreover, (A) = Fpes.

Proof. By definition of k, ¢, divides k, so k = tgs for some integer ¢. Thus for any = € F,,

€-1

t
p
.Tk = xtqs = (xpesf1> c ]Fpes’

as P D/~ is the norm of z over Fj. and hence is in F... Suppose now that
A, € Fpei, where e; < e,. Since Ay is a subgroup of F.,, we have that |Ag| divides [F7,
that is, (¢ — 1) /k divides p* — 1. Then k =7 - (¢ — 1)/(p® — 1) = r¢; for some integer r.
Hence, ¢; divides k, and a contradiction is obtained as ¢; > ¢,. This proves that (A;) is a
subfield of Fpe. not contained in any smaller subfield of F,. Thus (Ay) = Fpe.. O

?

*

Let A, = {2™y": v,y € F;}, m,n > 1. Then, obviously, A, , is a subgroup of F},

and A, , = A, A, — the product of subgroups A,, and A,,.
Lemma 5. Let d = (¢ —1,m,n). Then A,,, = Aa.
Proof. As A,, and A, are subgroups of F}, we have

[ Am|[An|

. 12
|Am N A, (12)

’Am,n’ = ‘AmAn| =

It is well known (and easy to show) that if = is a generator of a cyclic group, then for
any integers a and b, < 2% > N < 2¥ >=< ! > Therefore, A,, N A, =< ™7 > and
We wish to show that |A,,,| = |A4|, and since in a cyclic group any two subgroups of

equal order are equal, that would imply A,,, = Aqa.
From (12) we find

(¢—/m-(g-1)/n _ (¢—1)-[m 7]

|Am,n| = —— ——
(¢ —1)/[m, m-n

(13)

We wish to simplify the last fraction in (13). Let M and N be such that ¢g—1 = Mm = N7.
Asd=(¢q—1,m,n) = (m,n), we have m = dm’ and i = dn’ for some co-prime integers
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m’ and n/. Then ¢ —1=dm'M =dn’N and (¢ —1)/d=m'M =n'N. As (m/,n') =1, we
have M = n't and N = m/t for some integer ¢. This implies that ¢ — 1 = dm/n’t. For any
integers a and b, both nonzero, it holds that [a,b] = ab/(a,b). Therefore, we have
dm/dn’ dm/dn’
[m,n] = [dm/,dn'] = e _ AR _ g,

(dm/,dn')  d(m/,n)

Hence, [m, 7] = (¢ — 1, [m,n]) = (dm/n’t,dm/n’) = dm/n’, and

Ay = (q—1)~dm’n’: (q—1)~dm’n':q—1
e m-n dm’ - dn' d -’

Since d = (¢ — 1,d) = d and |44 = (¢ — 1)/d, we have |A,,,| = |A4 and so
Am,n = Ad' O

We are ready to prove Theorem 2.

Proof. For D = D(q;m,n), we have

(Im(fo)) = (Im(f)) = (Im(z™y")) = (Apn) = (Ad) = Fpe.,

where the last two equalities are due to Lemma 5 and Lemma 4.

Part (i) follows immediately from applying Theorem 1 with W = Fp., g = h = 0.
Also, D is strong if and only if Fpe, = [Fy, that is, if and only if e; = e, which is equivalent
to gs = 1.

The other statements of Theorem 2 follow directly from the corresponding parts of
Theorem 1. O

4 Open problems
We would like to conclude this paper with two suggestions for further investigation.

Problem 1. Suppose the digraphs D(q;f) and D(q;m,n) are strong. What are their
diameters?

Problem 2. Study the connectivity of graphs D(F; f), where f: F? — F', and F is a finite
extension of the field Q of rational numbers.
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