Connectivity of some algebraically defined digraphs

Aleksandr Kodess
Department of Mathematics
University of Rhode Island Rhode Island, U.S.A.
kodess@uri.edu

Felix Lazebnik*
Department of Mathematical Sciences
University of Delaware
Delaware, U.S.A.
fellaz@udel.edu

Submitted: Feb 20, 2015; Accepted: Aug 16, 2015; Published: Aug 28, 2015
Mathematics Subject Classifications: 05.60, 11T99

Dedicated to the memory of Vasyl Dmytrenko (1961-2013)

Abstract

Let p be a prime, e a positive integer, $q=p^{e}$, and let \mathbb{F}_{q} denote the finite field of q elements. Let $f_{i}: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}$ be arbitrary functions, where $1 \leqslant i \leqslant l, i$ and l are integers. The digraph $D=D(q ; \mathbf{f})$, where $\mathbf{f}=\left(f_{1}, \ldots, f_{l}\right): \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{l}$, is defined as follows. The vertex set of D is \mathbb{F}_{q}^{l+1}. There is an arc from a vertex $\mathbf{x}=\left(x_{1}, \ldots, x_{l+1}\right)$ to a vertex $\mathbf{y}=\left(y_{1}, \ldots, y_{l+1}\right)$ if $x_{i}+y_{i}=f_{i-1}\left(x_{1}, y_{1}\right)$ for all $i, 2 \leqslant i \leqslant l+1$. In this paper we study the strong connectivity of D and completely describe its strong components. The digraphs D are directed analogues of some algebraically defined graphs, which have been studied extensively and have many applications.

Keywords: Finite fields; Directed graphs; Strong connectivity

1 Introduction and Results

In this paper, by a directed graph (or simply digraph) D we mean a pair (V, A), where $V=V(D)$ is the set of vertices and $A=A(D) \subseteq V \times V$ is the set of arcs. The order of D is the number of its vertices. For an $\operatorname{arc}(u, v)$, the first vertex u is called its tail and the second vertex v is called its head; we denote such an arc by $u \rightarrow v$. For an integer $k \geqslant 2$, a walk W from x_{1} to x_{k} in D is an alternating sequence $W=x_{1} a_{1} x_{2} a_{2} x_{3} \ldots x_{k-1} a_{k-1} x_{k}$ of vertices $x_{i} \in V$ and arcs $a_{j} \in A$ such that the tail of a_{i} is x_{i} and the head of a_{i} is x_{i+1} for every $i, 1 \leqslant i \leqslant k-1$. Whenever the labels of the arcs of a walk are not important, we use the notation $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{k}$ for the walk. In a digraph D, a vertex y is reachable from a vertex x if D has a walk from x to y. In particular, a vertex is reachable from

[^0]itself. A digraph D is strongly connected (or, just strong) if, for every pair x, y of distinct vertices in D, y is reachable from x and x is reachable from y. A strong component of a digraph D is a maximal induced subdigraph of D that is strong. For all digraph terms not defined in this paper, see Bang-Jensen and Gutin [1].

Let p be a prime, e a positive integer, and $q=p^{e}$. Let \mathbb{F}_{q} denote the finite field of q elements, and $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$. We write \mathbb{F}_{q}^{n} to denote the Cartesian product of n copies of \mathbb{F}_{q}. Let $f_{i}: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}$ be arbitrary functions, where $1 \leqslant i \leqslant l, i$ and l are positive integers. The digraph $D=D\left(q ; f_{1}, \ldots, f_{l}\right)$, or just $D(q ; \mathbf{f})$, where $\mathbf{f}=\left(f_{1}, \ldots, f_{l}\right): \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{l}$, is defined as follows. (Throughout all of the paper the bold font is used to distinguish elements of $\mathbb{F}_{q}^{j}, j \geqslant 2$, from those of \mathbb{F}_{q}, and we simplify the notation $\mathbf{f}((x, y))$ and $f((x, y))$ to $\mathbf{f}(x, y)$ and $f(x, y)$, respectively.) The vertex set of D is \mathbb{F}_{q}^{l+1}. There is an arc from a vertex $\mathbf{x}=\left(x_{1}, \ldots, x_{l+1}\right)$ to a vertex $\mathbf{y}=\left(y_{1}, \ldots, y_{l+1}\right)$ if and only if

$$
x_{i}+y_{i}=f_{i-1}\left(x_{1}, y_{1}\right) \quad \text { for all } i, 2 \leqslant i \leqslant l+1 .
$$

We call the functions $f_{i}, 1 \leqslant i \leqslant l$, the defining functions of $D(q ; \mathbf{f})$.
If $l=1$ and $\mathbf{f}(x, y)=f_{1}(x, y)=x^{m} y^{n}, 1 \leqslant m, n \leqslant q-1$, we call D a monomial digraph, and denote it by $D(q ; m, n)$.

The digraphs $D(q ; \mathbf{f})$ and $D(q ; m, n)$ are directed analogues of some algebraically defined graphs, which have been studied extensively and have many applications. See Lazebnik and Woldar [11] and references therein; for some subsequent work see Viglione [15], Lazebnik and Mubayi [7], Lazebnik and Viglione [10], Lazebnik and Verstraëte [9], Lazebnik and Thomason [8], Dmytrenko, Lazebnik and Viglione [3], Dmytrenko, Lazebnik and Williford [4], Ustimenko [14], Viglione [16], Terlep and Williford [13], Kronenthal [6], Cioabă, Lazebnik and Li [2], and Kodess [5].

We note that \mathbb{F}_{q} and \mathbb{F}_{q}^{l} can be viewed as vector spaces over \mathbb{F}_{p} of dimensions e and $e l$, respectively. For $X \subseteq \mathbb{F}_{q}^{l}$, by $\langle X\rangle$ we denote the span of X over \mathbb{F}_{p}, which is the set of all finite linear combinations of elements of X with coefficients from \mathbb{F}_{p}. For any vector subspace W of $\mathbb{F}_{q}^{l}, \operatorname{dim}(W)$ denotes the dimension of W over \mathbb{F}_{p}. If $X \subseteq \mathbb{F}_{q}^{l}$, let $\mathbf{v}+X=\{\mathbf{v}+\mathbf{x}: \mathbf{x} \in X\}$. Finally, let $\operatorname{Im}(\mathbf{f})=\left\{\left(f_{1}(x, y), \ldots, f_{l}(x, y)\right):(x, y) \in \mathbb{F}_{q}^{2}\right\}$ denote the image of function \mathbf{f}.

In this paper we study strong connectivity of $D(q ; \mathbf{f})$. We mention that by Lagrange's interpolation (see, for example, Lidl, Niederreiter [12]), each f_{i} can be uniquely represented by a bivariate polynomial of degree at most $q-1$ in each of the variables. We therefore also call functions f_{i} defining polynomials.

In order to state our results, we need the following notation. For every $\mathbf{f}: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{l}$, we define

$$
\begin{aligned}
& \mathbf{g}(t)=\mathbf{f}(t, 0)-\mathbf{f}(0,0), \quad \mathbf{h}(t)=\mathbf{f}(0, t)-\mathbf{f}(0,0), \\
& \tilde{\mathbf{f}}(x, y)=\mathbf{f}(x, y)-\mathbf{g}(y)-\mathbf{h}(x), \\
& \mathbf{f}_{\mathbf{0}}(x, y)=\mathbf{f}(x, y)-\mathbf{f}(0,0), \quad \text { and } \\
& \tilde{\mathbf{f}}_{\mathbf{0}}(x, y)=\mathbf{f}_{\mathbf{0}}(x, y)-\mathbf{g}(y)-\mathbf{h}(x) .
\end{aligned}
$$

As $\mathbf{g}(0)=\mathbf{h}(0)=\mathbf{0}$, one can view the coordinate function g_{i} of \mathbf{g} (respectively, h_{i} of $\mathbf{h}), i=1, \ldots, l$, as the sum of all terms of the polynomial f_{i} containing only indeterminate
x (respectively, y), and having zero constant term. We, however, wish to emphasise that in the definition of $\tilde{\mathbf{f}}(x, y), \mathbf{g}$ is evaluated at y, and \mathbf{h} at x. Also, we will often write a vector $\left(v_{1}, v_{2}, \ldots, v_{l+1}\right) \in \mathbb{F}_{q}^{l+1}=V(D)$ as an ordered pair $\left(v_{1}, \mathbf{v}\right) \in \mathbb{F}_{q} \times \mathbb{F}_{q}^{l}$, where $\mathbf{v}=\left(v_{2}, \ldots, v_{l+1}\right)$.

The main result of this paper is the following theorem, which gives necessary and sufficient conditions for the strong connectivity of $D(q ; \mathbf{f})$ and provides a description of its strong components in terms of $\left\langle\operatorname{Im}\left(\tilde{\mathbf{f}}_{0}\right)\right\rangle$ over \mathbb{F}_{p}.

Theorem 1. Let $D=D(q ; \mathbf{f}), D_{0}=D\left(q ; \mathbf{f}_{\mathbf{0}}\right), W_{0}=\left\langle\operatorname{Im}\left(\tilde{\mathbf{f}}_{0}\right)\right\rangle$ over \mathbb{F}_{p}, and $d=\operatorname{dim}\left(W_{0}\right)$ over \mathbb{F}_{p}. Then the following statements hold.
(i) If q is odd, then the digraphs D and D_{0} are isomorphic. Furthermore, the vertex set of the strong component of D_{0} containing a vertex (u, \mathbf{v}) is

$$
\begin{gather*}
\left\{\left(a, \mathbf{v}+\mathbf{h}(a)-\mathbf{g}(u)+W_{0}\right): a \in \mathbb{F}_{q}\right\} \cup\left\{\left(b,-\mathbf{v}+\mathbf{h}(b)+\mathbf{g}(u)+W_{0}\right): b \in \mathbb{F}_{q}\right\} \\
=\left\{\left(a, \pm \mathbf{v}+\mathbf{h}(a) \mp \mathbf{g}(u)+W_{0}\right)\right\} . \tag{1}
\end{gather*}
$$

The vertex set of the strong component of D containing a vertex (u, \mathbf{v}) is $\left\{\left(a, \mathbf{v}+\mathbf{h}(a)-\mathbf{g}(u)+W_{0}\right): a \in \mathbb{F}_{q}\right\} \cup\left\{\left(b,-\mathbf{v}+\mathbf{h}(b)+\mathbf{g}(u)+\mathbf{f}(0,0)+W_{0}\right): b \in \mathbb{F}_{q}\right\}$.

In particular, $D \cong D_{0}$ is strong if and only if $W_{0}=\mathbb{F}_{q}^{l}$ or, equivalently, $d=e l$.
If q is even, then the strong component of D containing a vertex (u, \mathbf{v}) is

$$
\begin{gather*}
\left\{\left(a, \mathbf{v}+\mathbf{h}(a)+\mathbf{g}(u)+W_{0}\right): a \in \mathbb{F}_{q}\right\} \cup\left\{\left(a, \mathbf{v}+\mathbf{h}(a)+\mathbf{g}(u)+\mathbf{f}(0,0)+W_{0}\right): a \in \mathbb{F}_{q}\right\} \tag{3}\\
=\left\{(a, \mathbf{v}+\mathbf{h}(a)+\mathbf{g}(u)+W): a \in \mathbb{F}_{q}\right\},
\end{gather*}
$$

where $W=W_{0}+\langle\{f(0,0)\}\rangle=\langle\operatorname{Im}(\tilde{\mathbf{f}})\rangle$.
(ii) If q is odd, then $D \cong D_{0}$ has $\left(p^{e l-d}+1\right) / 2$ strong components. One of them is of order p^{e+d}. All other $\left(p^{e l-d}-1\right) / 2$ strong components are isomorphic, and each is of order $2 p^{e+d}$.

If q is even, then the number of strong components in D is $2^{e l-d}$, provided $\mathbf{f}(0,0) \in W_{0}$, and it is $2^{e l-d-1}$ otherwise. In each case, all strong components are isomorphic, and are of orders 2^{e+d} and 2^{e+d+1}, respectively.

We note here that for q even the digraphs D and D_{0} are generally not isomorphic.
We apply this theorem to monomial digraphs $D(q ; m, n)$. For these digraphs we can restate the connectivity results more explicitly.

Theorem 2. Let $D=D(q ; m, n)$ and let $d=(q-1, m, n)$ be the greatest common divisor of $q-1, m$ and n. For each positive divisor e_{i} of e, let $q_{i}:=(q-1) /\left(p^{e_{i}}-1\right)$, and let q_{s} be the largest of the q_{i} that divides d. Then the following statements hold.
(i) The vertex set of the strong component of D containing a vertex (u, v) is

$$
\begin{equation*}
\left\{\left(x, v+\mathbb{F}_{p^{e_{s}}}\right): x \in \mathbb{F}_{q}\right\} \cup\left\{\left(x,-v+\mathbb{F}_{p^{e_{s}}}\right): x \in \mathbb{F}_{q}\right\} \tag{4}
\end{equation*}
$$

In particular, D is strong if and only if $q_{s}=1$ or, equivalently, $e_{s}=e$.
(ii) If q is odd, then D has $\left(p^{e-e_{s}}+1\right) / 2$ strong components. One of them is of order $p^{e+e_{s}}$. All other $\left(p^{e-e_{s}}-1\right) / 2$ strong components are all isomorphic and each is of order $2 p^{e+e_{s}}$.

If q is even, then D has $2^{e-e_{s}}$ strong components, all isomorphic, and each is of order $2^{e+e_{s}}$.

Our proof of Theorem 1 is presented in Section 2, and the proof of Theorem 2 is in Section 3. In Section 4 we suggest two areas for further investigation.

2 Connectivity of $D(q ; f)$

Theorem 1 and our proof below were inspired by the ideas from [15], where the components of similarly defined bipartite simple graphs were described.

We now prove Theorem 1.
Proof. Let q be odd. We first show that $D \cong D_{0}$. The map $\phi: V(D) \rightarrow V\left(D_{0}\right)$ given by

$$
\begin{equation*}
(x, \mathbf{y}) \mapsto\left(x, \mathbf{y}-\frac{1}{2} \mathbf{f}(0,0)\right) \tag{5}
\end{equation*}
$$

is clearly a bijection. We check that ϕ preserves adjacency. Assume that $\left(\left(x_{1}, \mathbf{x}_{2}\right),\left(y_{1}, \mathbf{y}_{2}\right)\right)$ is an arc in D, that is, $\mathbf{x}_{2}+\mathbf{y}_{2}=\mathbf{f}\left(x_{1}, y_{1}\right)$. Then, since $\phi\left(\left(x_{1}, \mathbf{x}_{2}\right)\right)=\left(x_{1}, \mathbf{x}_{2}-\frac{1}{2} \mathbf{f}(0,0)\right)$ and $\phi\left(\left(y_{1}, \mathbf{y}_{2}\right)\right)=\left(y_{1}, \mathbf{y}_{2}-\frac{1}{2} \mathbf{f}(0,0)\right)$, we have

$$
\left(\mathbf{x}_{2}-\frac{1}{2} \mathbf{f}(0,0)\right)+\left(\mathbf{y}_{2}-\frac{1}{2} \mathbf{f}(0,0)\right)=\mathbf{f}\left(x_{1}, y_{1}\right)-\mathbf{f}(0,0)=\mathbf{f}_{0}\left(x_{1}, y_{1}\right)
$$

and so $\left(\phi\left(\left(x_{1}, \mathbf{x}_{2}\right)\right), \phi\left(\left(y_{1}, \mathbf{y}_{2}\right)\right)\right)$ is an arc in D_{0}. As the above steps are reversible, ϕ preserves non-adjacency as well. Thus, $D(q ; \mathbf{f}) \cong D\left(q ; \mathbf{f}_{\mathbf{0}}\right)$.

We now obtain the description (1) of the strong components of D_{0}, and then explain how the description (2) of the strong components of D follows from (1).

Note that as $\mathbf{f}_{\mathbf{0}}(0,0)=\mathbf{0}$, we have $\mathbf{g}(t)=\mathbf{f}_{\mathbf{0}}(t, 0), \mathbf{h}(t)=\mathbf{f}_{\mathbf{0}}(0, t), \mathbf{g}(0)=\mathbf{h}(0)=\mathbf{0}$, and $\tilde{\mathbf{f}}_{\mathbf{0}}(x, y)=\mathbf{f}_{\mathbf{0}}(x, y)-\mathbf{g}(y)-\mathbf{h}(x)$.

Let $\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{d} \in \operatorname{Im}\left(\tilde{\mathbf{f}}_{0}\right)$ be a basis for W_{0}. Now, choose $x_{i}, y_{i} \in \mathbb{F}_{q}$ be such that $\tilde{\mathbf{f}}_{0}\left(x_{i}, y_{i}\right)=\tilde{\alpha}_{i}, 1 \leqslant i \leqslant d$.

Let (u, \mathbf{v}) be a vertex of D_{0}. We first show that a vertex $(a, \mathbf{v}+\mathbf{y})$ is reachable from (u, \mathbf{v}) if $\mathbf{y} \in \mathbf{h}(a)-\mathbf{g}(u)+W_{0}$. In order to do this, we write an arbitrary $\mathbf{y} \in \mathbf{h}(a)-\mathbf{g}(u)+W_{0}$ as

$$
\mathbf{y}=\mathbf{h}(a)-\mathbf{g}(u)+\left(a_{1} \tilde{\alpha}_{1}+\cdots+a_{d} \tilde{\alpha}_{d}\right),
$$

for some $a_{1}, \ldots, a_{d} \in \mathbb{F}_{p}$, and consider the following directed walk in D_{0} :

$$
\begin{align*}
(u, \mathbf{v}) & \rightarrow\left(0,-\mathbf{v}+\mathbf{f}_{\mathbf{0}}(u, 0)\right)=(0,-\mathbf{v}+\mathbf{g}(u)) \\
& \rightarrow(0, \mathbf{v}-\mathbf{g}(u)) \tag{6}\\
& \rightarrow\left(x_{1},-\mathbf{v}+\mathbf{g}(u)+\mathbf{f}_{\mathbf{0}}\left(0, x_{1}\right)\right)=\left(x_{1},-\mathbf{v}+\mathbf{g}(u)+\mathbf{h}\left(x_{1}\right)\right) \tag{7}\\
& \rightarrow\left(y_{1}, \mathbf{v}-\mathbf{g}(u)-\mathbf{h}\left(x_{1}\right)+\mathbf{f}_{\mathbf{0}}\left(x_{1}, y_{1}\right)\right) \tag{8}\\
& \rightarrow\left(0,-\mathbf{v}+\mathbf{g}(u)+\mathbf{h}\left(x_{1}\right)-\mathbf{f}_{\mathbf{0}}\left(x_{1}, y_{1}\right)+\mathbf{g}\left(y_{1}\right)\right) \tag{9}\\
& =\left(0,-\mathbf{v}+\mathbf{g}(u)-\tilde{\mathbf{f}}_{\mathbf{0}}\left(x_{1}, y_{1}\right)\right)=\left(0,-\mathbf{v}+\mathbf{g}(u)-\tilde{\alpha}_{1}\right) \tag{10}\\
& \left.\rightarrow\left(0, \mathbf{v}-\mathbf{g}(u)+\tilde{\alpha}_{1}\right)\right) . \tag{11}
\end{align*}
$$

Traveling through vertices whose first coordinates are $0, x_{1}, y_{1}, 0,0$, and 0 again (steps $6-11)$ as many times as needed, one can reach vertex $\left(0, \mathbf{v}-\mathbf{g}(u)+a_{1} \tilde{\alpha}_{1}\right)$. Continuing a similar walk through vertices whose first coordinates are $0, x_{i}, y_{i}, 0,0$, and $0,2 \leqslant i \leqslant d$, as many times as needed, one can reach vertex $\left(0, \mathbf{v}-\mathbf{g}(u)+\left(a_{1} \tilde{\alpha}_{1}+\ldots+a_{i} \tilde{\alpha}_{i}\right)\right)$, and so on, until the vertex $\left(0,-\mathbf{v}+\mathbf{g}(u)-\left(a_{1} \tilde{\alpha}_{1}+\cdots+a_{d} \tilde{\alpha}_{d}\right)\right)$ is reached. The vertex $(a, \mathbf{v}+\mathbf{y})$ will be its out-neighbor. Here we indicate just some of the vertices along this path:

$$
\begin{aligned}
& \rightarrow \ldots \\
& \rightarrow\left(0, \mathbf{v}-\mathbf{g}(u)+a_{1} \tilde{\alpha}_{1}\right) \\
& \rightarrow\left(x_{2},-\mathbf{v}+\mathbf{g}(u)-a_{1} \tilde{\alpha}_{1}+\mathbf{h}\left(x_{2}\right)\right) \\
& \rightarrow\left(y_{2}, \mathbf{v}-\mathbf{g}(u)+a_{1} \tilde{\alpha}_{1}-\mathbf{h}\left(x_{2}\right)+\mathbf{f}_{\mathbf{0}}\left(x_{2}, y_{2}\right)\right) \\
& \rightarrow\left(0,-\mathbf{v}+\mathbf{g}(u)-a_{1} \tilde{\alpha}_{1}+\mathbf{h}\left(x_{2}\right)-\mathbf{f}_{\mathbf{0}}\left(x_{2}, y_{2}\right)+\mathbf{g}\left(y_{2}\right)\right) \\
& =\left(0,-\mathbf{v}+\mathbf{g}(u)-a_{1} \tilde{\alpha}_{1}-\tilde{\alpha}_{2}\right) \\
& \rightarrow\left(0, \mathbf{v}-\mathbf{g}(u)+a_{1} \tilde{\alpha}_{1}+\tilde{\alpha}_{2}\right) \\
& \rightarrow \ldots \\
& =\left(0,-\mathbf{v}+\mathbf{g}(u)-a_{1} \tilde{\alpha}_{1}-a_{2} \tilde{\alpha}_{2}\right) \\
& \rightarrow \ldots \\
& =\left(0,-\mathbf{v}+\mathbf{g}(u)-\left(a_{1} \tilde{\alpha}_{1}+\cdots+a_{d} \tilde{\alpha}_{d}\right)\right) \\
& \rightarrow\left(a, \mathbf{v}-\mathbf{g}(u)+\mathbf{h}(a)+\left(a_{1} \tilde{\alpha}_{1}+\cdots+a_{d} \tilde{\alpha}_{d}\right)\right) \\
& =(a, \mathbf{v}+\mathbf{y}) .
\end{aligned}
$$

Hence, $(a, \mathbf{v}+\mathbf{y})$ is reachable from (u, \mathbf{v}) for any $a \in \mathbb{F}_{q}$ and any $\mathbf{y} \in \mathbf{h}(a)-\mathbf{g}(u)+W_{0}$, as claimed. A slight modification of this argument shows that $(a,-\mathbf{v}+\mathbf{y})$ is reachable from (u, \mathbf{v}) for any $\mathbf{y} \in \mathbf{h}(a)+\mathbf{g}(u)+W_{0}$.

Let us now explain that every vertex of D_{0} reachable from (u, \mathbf{v}) is in the set

$$
\left\{\left(a, \pm \mathbf{v} \mp \mathbf{g}(u)+\mathbf{h}(a)+W_{0}\right): a \in \mathbb{F}_{q}\right\} .
$$

We will need the following identities on \mathbb{F}_{q} and \mathbb{F}_{q}^{2}, respectively, which can be checked easily using the definition of $\tilde{\mathbf{f}}$:

$$
\begin{aligned}
& \tilde{\mathbf{f}}_{\mathbf{0}}(t, 0)=\mathbf{g}(t)-\mathbf{h}(t)=-\tilde{\mathbf{f}}_{\mathbf{0}}(0, t) \text { and } \\
& \mathbf{f}_{\mathbf{0}}(x, y)=\mathbf{g}(x)+\mathbf{h}(y)+\tilde{\mathbf{f}}_{\mathbf{0}}(x, y)-\tilde{\mathbf{f}}_{\mathbf{0}}(0, y)+\tilde{\mathbf{f}}_{\mathbf{0}}(0, x) .
\end{aligned}
$$

The identities immediately imply that for every $t, x, y \in \mathbb{F}_{q}$,

$$
\begin{aligned}
& \mathbf{g}(t)-\mathbf{h}(t) \in W_{0} \text { and } \\
& \mathbf{f}_{\mathbf{0}}(x, y)=\mathbf{g}(x)+\mathbf{h}(y)+w \text { for some } w=w(x, y) \in W_{0}
\end{aligned}
$$

Consider a path with k arcs, where $k>0$ and even, from (u, \mathbf{v}) to $(a, \mathbf{v}+\mathbf{y})$:

$$
(u, \mathbf{v})=\left(x_{0}, \mathbf{v}\right) \rightarrow\left(x_{1}, \ldots\right) \rightarrow\left(x_{2}, \ldots\right) \rightarrow \cdots \rightarrow\left(x_{k}, \mathbf{v}+\mathbf{y}\right)=(a, \mathbf{v}+\mathbf{y})
$$

Using the definition of an arc in D_{0}, and setting $\mathbf{f}_{\mathbf{0}}\left(x_{i}, x_{i+1}\right)=\mathbf{g}\left(x_{i}\right)+\mathbf{h}\left(x_{i+1}\right)+w_{i}$, and $\mathbf{g}\left(x_{i}\right)-\mathbf{h}\left(x_{i}\right)=w_{i}^{\prime}$, with all $w_{i}, w_{i}^{\prime} \in W_{0}$, we obtain:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{f}_{\mathbf{0}}\left(x_{k-1}, x_{k}\right)-\mathbf{f}_{\mathbf{0}}\left(x_{k-2}, x_{k-1}\right)+\cdots+\mathbf{f}_{\mathbf{0}}\left(x_{1}, x_{2}\right)-\mathbf{f}_{\mathbf{0}}\left(x_{0}, x_{1}\right) \\
& =\sum_{i=0}^{k-1}(-1)^{i+1} \mathbf{f}_{\mathbf{0}}\left(x_{i}, x_{i+1}\right)=\sum_{i=0}^{k-1}(-1)^{i+1}\left(\mathbf{g}\left(x_{i}\right)+\mathbf{h}\left(x_{i+1}\right)+w_{i}\right) \\
& =-\mathbf{g}\left(x_{0}\right)+\mathbf{h}\left(x_{k}\right)+\sum_{i=1}^{k-1}(-1)^{i-1}\left(\mathbf{g}\left(x_{i}\right)-\mathbf{h}\left(x_{i}\right)\right)+\sum_{i=0}^{k-1}(-1)^{i+1} w_{i} \\
& =-\mathbf{g}\left(x_{0}\right)+\mathbf{h}\left(x_{k}\right)+\sum_{i=1}^{k-1}(-1)^{i-1} w_{i}^{\prime}+\sum_{i=0}^{k-1}(-1)^{i+1} w_{i} .
\end{aligned}
$$

Hence, $\mathbf{y} \in-\mathbf{g}\left(x_{0}\right)+\mathbf{h}\left(x_{k}\right)+W_{0}$. Similarly, for any path

$$
(u, \mathbf{v})=\left(x_{0}, \mathbf{v}\right) \rightarrow\left(x_{1}, \ldots\right) \rightarrow\left(x_{2}, \ldots\right) \rightarrow \cdots \rightarrow\left(x_{k}, \mathbf{v}+\mathbf{y}\right)=(a,-\mathbf{v}+\mathbf{y})
$$

with k arcs, where k is odd and at least 1 , we obtain $\mathbf{y} \in \mathbf{g}\left(x_{0}\right)+\mathbf{h}\left(x_{k}\right)+W_{0}$.
The digraph D_{0} is strong if and only if $W_{0}=\left\langle\operatorname{Im}\left(\tilde{f}_{0}\right)\right\rangle=\mathbb{F}_{q}^{l}$ or, equivalently, $d=e l$. Hence part (i) of the theorem is proven for D_{0} and q odd.

Let (u, \mathbf{v}) be an arbitrary vertex of a strong component of D. The image of this vertex under the isomorphism ϕ, defined in (5), is ($u, \mathbf{v}-\frac{1}{2} \mathbf{f}(0,0)$), which belongs to the strong component of D_{0} whose description is given by (1) with \mathbf{v} replaced by $\mathbf{v}-\frac{1}{2} \mathbf{f}(0,0)$. Applying the inverse of ϕ to each vertex of this component of D_{0} immediately yields the description of the component of D given by (2). This establishes the validity of part (i) of Theorem 1 for q odd.

For q even we first apply an argument similar to the one we used above for establishing components of D_{0} for q odd. As $p=2$, the argument becomes much shorter, and we obtain (3). Then we note that if

$$
(u, \mathbf{v})=\left(x_{0}, \mathbf{v}\right) \rightarrow\left(x_{1}, \ldots\right) \rightarrow\left(x_{2}, \ldots\right) \rightarrow \cdots \rightarrow\left(x_{k}, \mathbf{v}+\mathbf{y}\right)
$$

is a path in D, then

$$
\mathbf{y}=\sum_{i=0}^{k-1} \mathbf{f}_{0}\left(x_{i}, x_{i+1}\right)+\delta \cdot \mathbf{f}(0,0)
$$

where $\delta=1$ if k is odd, and $\delta=0$ if k is even.
For (ii), we first recall that any two cosets of W_{0} in $\mathbb{F}_{p}^{k l}$ are disjoint or coincide. It is clear that for q odd, the cosets (1) coincide if and only if $\mathbf{v} \in \mathbf{g}(u)+W_{0}$. The vertex set of this strong component is $\left\{\left(a, \mathbf{h}(a)+W_{0}\right): a \in \mathbb{F}_{q}\right\}$, which shows that this is the unique component of such type. As $\left|W_{0}\right|=p^{d}$, the component contains $q \cdot p^{d}=p^{e+d}$ vertices. In all other cases the cosets are disjoint, and their union is of order $2 q p^{d}=2 p^{e+d}$. Therefore the number of strong components of D_{0}, which is isomorphic to D, is

$$
\frac{|V(D)|-p^{e+d}}{2 p^{e+d}}+1=\frac{p^{e(l+1)}-p^{e+d}}{2 p^{e+d}}+1=\frac{p^{e l-d}+1}{2} .
$$

For q even, our count follows the same ideas as for q odd, and the formulas giving the number of strongly connected components and the order of each component follow from (3).

For the isomorphism of strong components of the same order, let q be odd, and let D_{1} and D_{2} be two distinct strong components of D_{0} each of order $2 p^{e+d}$. Then there exist $\left(u_{1}, \mathbf{v}_{1}\right),\left(u_{2}, \mathbf{v}_{2}\right) \in V\left(D_{0}\right)$ with $\mathbf{v}_{1} \notin \mathbf{g}\left(u_{1}\right)+W_{0}$ and $\mathbf{v}_{2} \notin \mathbf{g}\left(u_{2}\right)+W_{0}$ such that $V\left(D_{1}\right)=$ $\left\{\left(a, \mathbf{v}_{1}+\mathbf{h}(a)-\mathbf{g}\left(u_{1}\right)+W_{0}\right): a \in \mathbb{F}_{q}\right\}$ and $V\left(D_{2}\right)=\left\{\left(a, \mathbf{v}_{2}+\mathbf{h}(a)-\mathbf{g}\left(u_{2}\right)+W_{0}\right): a \in \mathbb{F}_{q}\right\}$.

Consider a map $\psi: V\left(D_{1}\right) \rightarrow V\left(D_{2}\right)$ defined by

$$
\left(a, \pm \mathbf{v}_{1}+\mathbf{h}(a) \mp \mathbf{g}\left(u_{1}\right)+\mathbf{y}\right) \mapsto\left(a, \pm \mathbf{v}_{2}+\mathbf{h}(a) \mp \mathbf{g}\left(u_{2}\right)+\mathbf{y}\right),
$$

for any $a \in \mathbb{F}_{q}$ and any $\mathbf{y} \in W_{0}$. Clearly, ψ is a bijection. Consider an arc (α, β) in D_{1}. If $\alpha=\left(a, \mathbf{v}_{1}+\mathbf{h}(a)-\mathbf{g}\left(u_{1}\right)+\mathbf{y}\right)$, then $\beta=\left(b,-\mathbf{v}_{1}-\mathbf{h}(a)+\mathbf{g}\left(u_{1}\right)-\mathbf{y}+\mathbf{f}_{\mathbf{0}}(a, b)\right)$ for some $b \in \mathbb{F}_{q}$. Let us check that $(\psi(\alpha), \psi(\beta))$ is an arc in D_{2}. In order to find an expression for the second coordinate of $\psi(\beta)$, we first rewrite the second coordinate of β as $-\mathbf{v}_{1}+\mathbf{h}(a)+\mathbf{g}\left(u_{1}\right)+\mathbf{y}^{\prime}$, where $\mathbf{y}^{\prime} \in W_{0}$. In order to do this, we use the definition of $\tilde{\mathbf{f}}_{\mathbf{0}}$ and the obvious equality $\mathbf{g}(b)-\mathbf{h}(b)=\tilde{\mathbf{f}}_{\mathbf{0}}(b, 0) \in W_{0}$. So we have:

$$
\begin{aligned}
& -\mathbf{v}_{1}-\mathbf{h}(a)+\mathbf{g}\left(u_{1}\right)-\mathbf{y}+\mathbf{f}(a, b) \\
= & -\mathbf{v}_{1}-\mathbf{h}(a)+\mathbf{g}\left(u_{1}\right)-\mathbf{y}+\tilde{\mathbf{f}}_{0}(a, b)+\mathbf{g}(b)+\mathbf{h}(a) \\
= & -\mathbf{v}_{1}+\mathbf{h}(b)+\mathbf{g}\left(u_{1}\right)+(\mathbf{g}(b)-\mathbf{h}(b))-\mathbf{y}+\tilde{\mathbf{f}}_{0}(a, b) \\
= & -\mathbf{v}_{1}+\mathbf{h}(b)+\mathbf{g}\left(u_{1}\right)+\mathbf{y}^{\prime},
\end{aligned}
$$

where $\mathbf{y}^{\prime}=(\mathbf{g}(b)-\mathbf{h}(b))-\mathbf{y}+\tilde{\mathbf{f}}_{\mathbf{0}}(a, b) \in W_{0}$. Now it is clear that $\psi(\alpha)=\left(a, \mathbf{v}_{2}+\mathbf{h}(a)-\right.$ $\left.\mathbf{g}\left(u_{2}\right)+\mathbf{y}\right)$ and $\psi(\beta)=\left(b,-\mathbf{v}_{2}+\mathbf{h}(b)+\mathbf{g}\left(u_{2}\right)+\mathbf{y}^{\prime}\right)$ are the tail and the head of an arc in D_{2}. Hence ψ is an isomorphism of digraphs D_{1} and D_{2}.

An argument for the isomorphism of all strong components for q even is absolutely similar. This ends the proof of the theorem.

We illustrate Theorem 1 by the following example.
Example 3. Let $p \geqslant 3$ be prime, $q=p^{2}$, and $\mathbb{F}_{q} \cong \mathbb{F}_{p}(\xi)$, where ξ is a primitive element in \mathbb{F}_{q}. Let us define $f: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}$ by the following table:

y	0	1	$x \neq 0,1$
0	0	ξ	1
1	ξ	2ξ	ξ
$y \neq 0,1$	2	ξ	0

As 1 and ξ are values of $f,\langle\operatorname{Im}(f)\rangle=\mathbb{F}_{q}^{2}$. Nevertheless, $D(q ; f)$ is not strong as we show below.

In this example, since $l=1$, the function $\mathbf{f}=f$. Since $f(0,0)=0, f_{0}=f$, and

$$
\mathbf{g}(t)=g(t)=f(t, 0)=\left\{\begin{array}{ll}
0, & t=0, \\
\xi, & t=1, \\
1, & \text { otherwise }
\end{array}, \quad \mathbf{h}(t)=h(t)=f(0, t)=\left\{\begin{array}{ll}
0, & t=0, \\
\xi, & t=1, \\
2, & \text { otherwise }
\end{array} .\right.\right.
$$

The function $\tilde{\mathbf{f}}_{\mathbf{0}}(x, y)=\tilde{f}(x, y)=f(x, y)-f(y, 0)-f(0, x)$ can be represented by the table

y	0	1	$x \neq 0,1$
0	0	0	-1
1	0	0	-2
$y \neq 0,1$	1	-1	-3

and so $\left\langle\operatorname{Im}\left(\tilde{f}_{0}\right)\right\rangle=\mathbb{F}_{p} \neq\langle\operatorname{Im}(f)\rangle=\mathbb{F}_{p^{2}}$.
As $l=1, e=2$, and $d=1, D(q ; f)$ has $\left(p^{l e-d}+1\right) / 2=(p+1) / 2$ strong components. For $p=5$, there are three of them. If $\mathbb{F}_{25}=\mathbb{F}_{5}[\xi]$, where ξ is a root of $X^{2}+4 X+2 \in \mathbb{F}_{5}[X]$, these components can be presented as:

$$
\begin{gathered}
\left\{\left(a, h(a)+\mathbb{F}_{5}\right): a \in \mathbb{F}_{25}\right\}, \\
\left\{\left(a, h(a)-\xi+\mathbb{F}_{5}\right): a \in \mathbb{F}_{25}\right\} \cup\left\{\left(b, h(b)+\xi+\mathbb{F}_{5}\right): b \in \mathbb{F}_{25}\right\}, \\
\left\{\left(a, h(a)+2 \xi+\mathbb{F}_{5}\right): a \in \mathbb{F}_{25}\right\} \cup\left\{\left(b, h(b)-2 \xi+\mathbb{F}_{5}\right): b \in \mathbb{F}_{25}\right\} .
\end{gathered}
$$

3 Connectivity of $D(q, m, n)$

The goal of this section is to prove Theorem 2.
For any $t \geqslant 2$ and integers a_{1}, \ldots, a_{t}, not all zero, let (a_{1}, \ldots, a_{t}) (respectively $\left[a_{1}, \ldots, a_{t}\right]$) denote the greatest common divisor (respectively, the least common multiple) of these numbers. Moreover, for an integer a, let $\bar{a}=(q-1, a)$. Let $<\xi>=\mathbb{F}_{q}^{*}$, i.e., ξ is a generator of the cyclic group \mathbb{F}_{q}^{*}. (Note the difference between $<\cdot>$ and $\langle\cdot\rangle$ in our notation.) Suppose $A_{k}=\left\{x^{k}: x \in \mathbb{F}_{q}^{*}\right\}, k \geqslant 1$. It is well known (and easy to show) that $A_{k}=<\xi^{\bar{k}}>$ and $\left|A_{k}\right|=(q-1) / \bar{k}$.

We recall that for each positive divisor e_{i} of $e, q_{i}=(q-1) /\left(p^{e_{i}}-1\right)$.
Lemma 4. Let q_{s} be the largest of the q_{i} dividing \bar{k}. Then $\mathbb{F}_{p^{e s}}$ is the smallest subfield of \mathbb{F}_{q} in which A_{k} is contained. Moreover, $\left\langle A_{k}\right\rangle=\mathbb{F}_{p^{e_{s}}}$.

Proof. By definition of \bar{k}, q_{s} divides k, so $k=t q_{s}$ for some integer t. Thus for any $x \in \mathbb{F}_{q}$,

$$
x^{k}=x^{t q_{s}}=\left(x^{\frac{p^{e}-1}{p^{e s-1}}}\right)^{t} \in \mathbb{F}_{p^{e_{s}}},
$$

as $x^{\left(p^{e}-1\right) /\left(p^{e_{s}}-1\right)}$ is the norm of x over $\mathbb{F}_{p^{e_{s}}}$ and hence is in $\mathbb{F}_{p^{e_{s}}}$. Suppose now that $A_{k} \subseteq \mathbb{F}_{p^{e_{i}}}$, where $e_{i}<e_{s}$. Since A_{k} is a subgroup of $\mathbb{F}_{p^{e_{i}}}^{*}$, we have that $\left|A_{k}\right|$ divides $\left|\mathbb{F}_{p_{i} e_{i}}^{*}\right|$, that is, $(q-1) / \bar{k}$ divides $p^{e_{i}}-1$. Then $\bar{k}=r \cdot(q-1) /\left(p^{e_{i}}-1\right)=r q_{i}$ for some integer r. Hence, q_{i} divides \bar{k}, and a contradiction is obtained as $q_{i}>q_{s}$. This proves that $\left\langle A_{k}\right\rangle$ is a subfield of $\mathbb{F}_{p^{e_{s}}}$ not contained in any smaller subfield of \mathbb{F}_{q}. Thus $\left\langle A_{k}\right\rangle=\mathbb{F}_{p^{e_{s}}}$.

Let $A_{m, n}=\left\{x^{m} y^{n}: x, y \in \mathbb{F}_{q}^{*}\right\}, m, n \geqslant 1$. Then, obviously, $A_{m, n}$ is a subgroup of \mathbb{F}_{q}^{*}, and $A_{m, n}=A_{m} A_{n}$ - the product of subgroups A_{m} and A_{n}.

Lemma 5. Let $d=(q-1, m, n)$. Then $A_{m, n}=A_{d}$.
Proof. As A_{m} and A_{n} are subgroups of \mathbb{F}_{q}^{*}, we have

$$
\begin{equation*}
\left|A_{m, n}\right|=\left|A_{m} A_{n}\right|=\frac{\left|A_{m}\right|\left|A_{n}\right|}{\left|A_{m} \cap A_{n}\right|} \tag{12}
\end{equation*}
$$

It is well known (and easy to show) that if x is a generator of a cyclic group, then for any integers a and $b,<x^{a}>\cap<x^{b}>=<x^{[a, b]}>$. Therefore, $A_{m} \cap A_{n}=<\xi^{[\bar{m}, \bar{n}]}>$ and $\left|A_{m} \cap A_{n}\right|=(q-1) /[\bar{m}, \bar{n}]$.

We wish to show that $\left|A_{m, n}\right|=\left|A_{d}\right|$, and since in a cyclic group any two subgroups of equal order are equal, that would imply $A_{m, n}=A_{d}$.

From (12) we find

$$
\begin{equation*}
\left|A_{m, n}\right|=\frac{(q-1) / \bar{m} \cdot(q-1) / \bar{n}}{(q-1) / \overline{[\bar{m}, \bar{n}]}}=\frac{(q-1) \cdot \overline{[\bar{m}, \bar{n}]}}{\bar{m} \cdot \bar{n}} . \tag{13}
\end{equation*}
$$

We wish to simplify the last fraction in (13). Let M and N be such that $q-1=M \bar{m}=N \bar{n}$. As $d=(q-1, m, n)=(\bar{m}, \bar{n})$, we have $\bar{m}=d m^{\prime}$ and $\bar{n}=d n^{\prime}$ for some co-prime integers
m^{\prime} and n^{\prime}. Then $q-1=d m^{\prime} M=d n^{\prime} N$ and $(q-1) / d=m^{\prime} M=n^{\prime} N$. As $\left(m^{\prime}, n^{\prime}\right)=1$, we have $M=n^{\prime} t$ and $N=m^{\prime} t$ for some integer t. This implies that $q-1=d m^{\prime} n^{\prime} t$. For any integers a and b, both nonzero, it holds that $[a, b]=a b /(a, b)$. Therefore, we have

$$
[\bar{m}, \bar{n}]=\left[d m^{\prime}, d n^{\prime}\right]=\frac{d m^{\prime} d n^{\prime}}{\left(d m^{\prime}, d n^{\prime}\right)}=\frac{d m^{\prime} d n^{\prime}}{d\left(m^{\prime}, n^{\prime}\right)}=d m^{\prime} n^{\prime}
$$

Hence, $\overline{\bar{m}, \bar{n}]}=(q-1,[\bar{m}, \bar{n}])=\left(d m^{\prime} n^{\prime} t, d m^{\prime} n^{\prime}\right)=d m^{\prime} n^{\prime}$, and

$$
\left|A_{m, n}\right|=\frac{(q-1) \cdot d m^{\prime} n^{\prime}}{\bar{m} \cdot \bar{n}}=\frac{(q-1) \cdot d m^{\prime} n^{\prime}}{d m^{\prime} \cdot d n^{\prime}}=\frac{q-1}{d}
$$

Since $\bar{d}=(q-1, d)=d$ and $\left|A_{d}\right|=(q-1) / \bar{d}$, we have $\left|A_{m, n}\right|=\left|A_{d}\right|$ and so $A_{m, n}=A_{d}$.

We are ready to prove Theorem 2.
Proof. For $D=D(q ; m, n)$, we have

$$
\left\langle\operatorname{Im}\left(\tilde{\mathbf{f}}_{\mathbf{0}}\right)\right\rangle=\langle\operatorname{Im}(f)\rangle=\left\langle\operatorname{Im}\left(x^{m} y^{n}\right)\right\rangle=\left\langle A_{m, n}\right\rangle=\left\langle A_{d}\right\rangle=\mathbb{F}_{p^{e_{s}}},
$$

where the last two equalities are due to Lemma 5 and Lemma 4.
Part (i) follows immediately from applying Theorem 1 with $W=\mathbb{F}_{p^{e_{s}}}, \mathbf{g}=\mathbf{h}=0$. Also, D is strong if and only if $\mathbb{F}_{p^{e_{s}}}=\mathbb{F}_{q}$, that is, if and only if $e_{s}=e$, which is equivalent to $q_{s}=1$.

The other statements of Theorem 2 follow directly from the corresponding parts of Theorem 1.

4 Open problems

We would like to conclude this paper with two suggestions for further investigation.
Problem 1. Suppose the digraphs $D(q ; \mathbf{f})$ and $D(q ; m, n)$ are strong. What are their diameters?

Problem 2. Study the connectivity of graphs $D(\mathbb{F} ; \mathbf{f})$, where $\mathbf{f}: \mathbb{F}^{2} \rightarrow \mathbb{F}^{l}$, and \mathbb{F} is a finite extension of the field \mathbb{Q} of rational numbers.

Acknowledgement

The authors are thankful to the anonymous referees whose thoughtful comments improved the paper; to Jason Williford for pointing to a mistake in the original version of Theorem 1; and to William Kinnersley for carefully reading the paper and pointing to a number of small errors.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer 2009.
[2] S.M. Cioabă, F. Lazebnik and W. Li, On the Spectrum of Wenger Graphs, J. Combin. Theory Ser. B 107: (2014), 132-139.
[3] V. Dmytrenko, F. Lazebnik and R. Viglione, An Isomorphism Criterion for Monomial Graphs, J. Graph Theory 48 (2005), 322-328.
[4] V. Dmytrenko, F. Lazebnik and J. Williford, On monomial graphs of girth eight. Finite Fields Appl. 13 (2007), 828-842.
[5] A. Kodess, Properties of some algebraically defined digraphs, Doctoral Thesis, University of Delaware, 2014.
[6] B.G. Kronenthal, Monomial graphs and generalized quadrangles, Finite Fields Appl. 18 (2012), 674-684.
[7] F. Lazebnik, D. Mubayi, New lower bounds for Ramsey numbers of graphs and hypergraphs, Adv. Appl. Math. 8 (3/4) (2002), 544-559.
[8] F. Lazebnik, A. Thomason, Orthomorphisms and the construction of projective planes, Math. Comput. 73 (247) (2004), 1547-1557.
[9] F. Lazebnik, J. Verstraëte, On hypergraphs of girth five, Electron. J. Combin. 10 (2003), \#R25, 1-15.
[10] F. Lazebnik, R. Viglione, An infinite series of regular edge- but not vertex-transitive graphs, J. Graph Theory 41 (2002), 249-258.
[11] F. Lazebnik, A.J. Woldar, General properties of some families of graphs defined by systems of equations, J. Graph Theory 38 (2) (2001), 65-86.
[12] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 2, Cambridge University Press, 1997.
[13] T.A. Terlep, J. Williford, Graphs from Generalized Kac-Moody Algebras, SIAM J. Discrete Math. 26 no. 3 (2012), 1112-1120.
[14] V.A. Ustimenko, On the extremal regular directed graphs without commutative diagrams and their applications in coding theory and cryptography, Albanian J. Math. 1 (01/2007), 283-295.
[15] R. Viglione, Properties of some algebraically defined graphs, Doctoral Thesis, University of Delaware, 2002.
[16] R. Viglione, On the Diameter of Wenger Graphs, Acta Appl. Math. 104 (2) (11/2008), 173-176.

[^0]: *Partially supported by NSF grant DMS-1106938-002

