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Abstract

We prove precise upper bounds for the minimum weight of a path on three
vertices in several natural classes of plane graphs with minimum degree 2 and girth
g from 5 to 7. In particular, we disprove a conjecture by S. Jendrol’ and M. Maceková
concerning the case g = 5 and prove the tightness of their upper bound for g = 5
when no vertex is adjacent to more than one vertex of degree 2. For g > 8, the
upper bound recently found by Jendrol’ and Maceková is tight.
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1 Introduction

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges
are allowed, but the degree of each vertex and face is at least three.

The degree of a vertex v or a face f , that is, the number of edges incident with v or
f (loops and cut-edges are counted twice), is denoted by d(v) or d(f), respectively. A
k-vertex is a vertex v with d(v) = k. By k+ or k− we denote any integer not smaller or
not greater than k, respectively. Hence, a k+-vertex v satisfies d(v) > k, etc.
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Let δ(G) be the minimum vertex degree, wk(G) be the minimum degree-sum of a path
on k vertices (hereafter called a k-path) in a plane graph, and g(G) be its girth, that is
the length of a shortest cycle. We will often drop the argument when the graph is clear
from context.

An edge uv is an (i, j)-edge if d(u) 6 i and d(v) 6 j. More generally, a path vi . . . vk
is a path of type (i1, . . . , ik) if d(vj) 6 ij whenever 1 6 j 6 k.

Already in 1904, Wernicke [20] proved that every NPM M5 with δ(M5) = 5 satisfies
w2 6 11, and Franklin [12] strengthened this to the existence of at least two 6−-neighbors
for a 5-vertex, which implies that M5 satisfies w3(M5) 6 17. Franklin’s bound 17 is
precise, as shown by putting a vertex inside each face of the dodecahedron and joining it
with the five boundary vertices.

It follows from Lebesgue’s results in [18] that each NPM has an edge of weight at
most 14 incident with a 3-vertex, or an edge of weight at most 11, where 11 is sharp. For
3-connected plane graphs, Kotzig [17] proved a precise result: w2 6 13.

In 1972, Erdős (see [13]) conjectured that Kotzig’s bound w2 6 13 holds for all planar
graphs with δ > 3. Barnette (see [13]) announced to have proved this conjecture, but
the proof has never appeared in print. The first published proof of Erdős’ conjecture is
due to Borodin [2]. More generally, Borodin [4, 5, 6] proved that every NPM contains
a (3, 10)-, or (4, 7)-, or (5, 6)-edge (as easy corollaries of some stronger structural facts
having applications to coloring of plane graphs, see [10]).

Note that δ(K2,t) = 2 and w2(K2,t) = t+ 2, so w2 is unbounded if δ 6 2. Anyway, its
finiteness may be enforced by certain additional constraints based, for example, on degree
properties of particular subgraphs. For example, an induced cycle v1 . . . v2k in a graph is 2-
alternating (Borodin [3]) if d(v1) = d(v3) = . . . = d(v2k−1) = 2. This notion, along with its
more sophisticated analogues (t-alternating subgraph, 3-alternator (Borodin, Kostochka,
and Woodall [8]), cycle consisting of 3-paths (Borodin–Ivanova [9]), etc.), turns out to
be useful for the study of graph coloring, since it sometimes provides crucial reducible
configurations in coloring and partition problems (more often, on sparse plane graphs,
see Borodin [10]). Its first application was to show that the total chromatic number of
planar graphs with maximum degree ∆ at least 14 equals ∆ + 1 (Borodin [3]).

In particular, forbidding 2-alternating 4-cycles implies w2 6 17 (Borodin [2]), while
forbidding all 2-alternating cycles implies w2 6 15 (Borodin [3]), where both bounds are
tight.

Nowadays, the maximum weight of edges is known for all most interesting classes of
plane graphs with given girth (further examples and references can be found in Borodin [4,
5, 6, 10]).

We now switch to the maximum weight w3 of 3-paths. In 1993, Ando, Iwasaki, and
Kaneko [1] proved that every 3-polytope satisfies w3 6 21, which is sharp due to the
Jendrol’ construction [15]. Jendrol’ [14] proves that each 3-polytope has a 3-path uvw
such that max{d(u), d(v), d(w)} 6 15 (the bound is precise). Jendrol’ [15] further shows
that such a path must belong to one of ten types, in which d(u) + d(v) + d(w) varies from
23 to 16.

Note that the graphs of 3-polytopes are precisely the 3-connected planar graphs due
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to Steinitz’s famous theorem [19]. The requirement of 3-connectedness is essential for the
finiteness of w3, as shown by the construction K∗2,2t obtained from the double 2t-pyramid
by deleting a t-matching from the 2t-cycle formed by 4-vertices (Borodin [7]).

Moreover, Borodin [7] showed that only the presence in a NPM of K∗2,4 is responsible
for the unboundedness of w3. The following refinement of the bound w3 6 21 by Ando,
Iwasaki, and Kaneko [1] holds:

Theorem 1 (Borodin [7]). Every normal plane map without K∗2,4 has
(i) either w3 6 18 or a vertex of degree 6 15 adjacent to two 3-vertices, and
(ii) either w3 6 17 or w2 6 7.

As mentioned above, the bounds w3 6 21 and w3 6 17 are tight. For a long time, it
was not known whether the bound w3 6 18 in Theorem 1 is sharp or not; its sharpness was
recently confirmed in Borodin et al. [11]. In particular, Ando, Iwasaki, and Kaneko’s [1]
precise bound w3 6 21 is valid for all NPMs with w2 > 6 (Borodin [7]). Also, Theorem 1
immediately implies that Franklin’s precise bound w3 6 17 is valid for all normal plane
maps with δ > 4.

Recently, Borodin et al. [11] precisely described 3-paths in all normal plane maps
without K∗2,4 (in particular, in planar graphs with δ > 3 and in 3-polytopes) by showing
that they belong to eight specific types having weight from 17 to 21, where all parameters
are best possible.

Note that the star graph K1,n satisfies δ = 1 and w3 = n+ 2. The behavior of 3-paths
with low degree-sum in sparse planar graphs with δ = 2 was recently studied by Jendrol’
and Maceková [16]. As observed in [16], if we join vertices a and b by independent paths
axiyib with 1 6 i 6 n, then w3 = n+ 4.

Theorem 2 ([16]). Every planar graph G with δ = 2 and girth g(G) > g > 5 has a 3-path
of one of the following types:

(i) (2,∞, 2), (2, 2, 6), (2, 3, 5), (2, 4, 4) or (3, 3, 3) if g = 5,
(ii) (2, 2,∞), (2, 3, 5), (2, 4, 3) or (2, 5, 2) if g = 6,
(iii) (2, 2, 6), (2, 3, 3) or (2, 4, 2) if g = 7,
(iv) (2, 2, 5) or (2, 3, 3) if 8 6 g 6 9,
(v) (2, 2, 3) or (2, 3, 2) if 10 6 g 6 15, and
(vi) (2, 2, 2) if g > 16.

In particular, Theorem 2 yields the following bounds for w3.

Corollary 3. Every planar graph G with δ = 2 and girth g(G) > g > 5 has:
(i) either a (2,∞, 2)-path or w3 6 10 if g = 5,
(ii) either a (2, 2,∞)-path or w3 6 10 if g = 6,
(iii) w3 6 10 if g = 7,
(iv) w3 6 9 if 8 6 g 6 9,
(v) w3 6 7 if 10 6 g 6 15, and
(vi) w3 = 6 if g > 16,
where the bounds for g > 8 are sharp.
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Also, they conjectured that the bound in Corollary 3(i) can be lowered to 9.

Conjecture 4 ([16]). Every planar graph with δ = 2 and girth g = 5 has either a
(2,∞, 2)-path or w3 6 9.

The purpose of this paper is to establish precise upper bounds on w3 whenever 5 6
g 6 7 under the assumptions of Corollary 3, and also in a broader class of planar graphs
with g = 6. In particular, we disprove Conjecture 4.

Our new results are in Theorems 5–7 below.

Theorem 5. There is a plane graph with δ = 2, g = 5, and w3 = 10, having neither a
(2,∞, 2)-path nor (2, 2,∞)-path.

In particular, Theorem 5 shows the tightness of the upper bound in Corollary 3(i).

Theorem 6. Every plane graph with δ = 2 and g = 6 has either a (2, 2,∞, 2)-path or
w3 6 9, which bound is tight.

We see that Theorem 6 extends Corollary 3(ii) and improves the upper bound in it.

Theorem 7. Every plane graph with δ = 2 and g > 7 has w3 6 9, which bound is tight
whenever 7 6 g 6 9.

So, Theorem 7 improves the upper bound in Corollary 3(iii).

2 Proof of Theorem 5

Proof of Theorem 5. In Fig. 1, we see a half of a plane graph with the desired properties:
δ = 2, g = 5, w3 = 10, and no (2,∞, 2)-path.

More specifically, the bounding cycle of the graph to be obtained may be encoded as
5, 3, 5, 3, . . . according to the degrees of its vertices. Moreover, its internal half may be
encoded as 52, 31, 51, 30 . . ., where the subscripts show the number of ingoing edges. For
the exterior half, we have a similar encoding 51, 30, 52, 31 . . ., so the two halves can be
glued in this order.

3 Proof of Theorems 6 and 7

Proof of Theorems 6 and 7. Forbidding (2, 2,∞, 2)-paths in Theorem 6 is justified by the
already mentioned graph with w3 =∞ and g = 6 in which vertices a and b are joined by
independent paths axiyib with 1 6 i 6 n. We note that forbidding (2, 2,∞, 2)-paths still
allows both (2, 2,∞)-paths and (2,∞, 2)-paths. The sharpness of the bound on w3 follows
by putting a 2-vertex on every edge of the icosahedron, which results in w3 = 2 + 5 + 2
under the absence of (2, 2,∞, 2)-paths.

To confirm the tightness of Theorem 7, we put two 2-vertices on every edge of the
icosahedron. If desired, we can then fix one of 9-faces and contract any two 2-vertices in
its boundary to obtain g = 7.
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Figure 1: A counterexample to Conjecture 4.

3.1 Discharging and its consequences

Let M be a counterexample to the upper bounds on w3 in Theorems 6 or 7. Without
loss of generality, we can assume that M is connected. Let V , E, and F be the sets of
vertices, edges and faces of M , respectively. Euler’s formula |V | − |E| + |F | = 2 for M
may be rewritten as ∑

v∈V

(d(v)− 6) +
∑
f∈F

(2d(f)− 6) = −12. (1)

Every vertex v contributes the charge µ(v) = d(v)−6 to (1), so only the charges of 5−-
vertices are negative. Every face f contributes the non-negative charge µ(f) = 2d(f)− 6
to (1). Using the properties of M as a counterexample, we define a local redistribution of
µ’s, preserving their sum, such that the new charge µ′(x) is non-negative for all x ∈ V ∪F .
This will contradict the fact that the sum of the new charges is, by (1), equal to −12.

Throughout the paper, we denote the vertices adjacent to a vertex or incident with
face x in a cyclic order by v1, . . . , vd(x). Let ∂(f) be the boundary of a face f , ni(f) be
the number of i-vertices in ∂(f), and ρ(f) = µ(f)− 2n2(f)− n3(f)− 1

2
n4(f).

Now we apply the following rule of discharging.

R. Every face f gives to each incident vertex v:
(a) 2 if d(v) = 2,
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(b) 1 if d(v) = 3,
(c) 1

2
if d(v) = 4, and

(d) max{ ρ(f)
n5(f)

, 1
2
} if d(v) = 5.

Thus, the 6+-vertices do not receive any charge from faces.

If the degrees of vertices incident with a face f constitute a multi-set {d1, . . . , dd(f)}
with d1 6 . . . dd(f), then f is a (d1, . . . , dd(f))-face. For example, a (2, 2, 3, 3, 4, . . .)-face is
incident with precisely two 2-vertices and two 3-vertices.

Lemma 8. Every 6+-face f (not necessarily in M) such that each 3-path in ∂(f) has
weight at least 10 gives the following charge to each incident 5-vertex according to the
rule R:

(i) 0 if f is a (2, 2, 3, 3, . . .)-face with d(f) = 6,
(ii) at least 1

4
if f is a (2, 2, 3, 4+, . . .)-face with d(f) = 6, and

(iii) 1
2

otherwise.

Proof. CASE 1. d(f) = 6. Due to the absence of (2, 2,∞, 2)-paths in M , we see that f is
incident with at most three 2-vertices. Moreover, the only possibility for three 2-vertices
is d(v1) = d(v3) = d(v5) = 2, in which case the other three incident vertices have degrees
at least 6.

Note that f is incident with at most four 3−-vertices, for otherwise we would have
three consecutive 3−-vertices in ∂(f), which is a contradiction.

First suppose f is incident with precisely two 2-vertices. If there are also (precisely)
two incident 3-vertices (see Fig. 2), then µ(f) = 6 is shared in full among the four vertices
of smallest degree by R, and 0 is given to each incident 5-vertex if any, which proves
Lemma 8(i).

u
u

u
6+

22

u
u

u3 3

5

?
0

u
u

u
5+

32

u
u

u3 2

5

?
0

u
u

u
5

2

u
u

u3 2

5

?

4 ∨ 5

1
4 ∨ 1

3

Figure 2: The only 6+-faces giving less than 1
2

to their 5-vertices.

Now suppose f is incident with two 2-vertices and one 3-vertex. Thus five units of
charge are given to these three vertices. If f is incident with at least one 6+-vertex, then
the two remaining 4+-vertices receive 1

2
each, as desired. So suppose f is also incident

with three vertices of degree from 4 to 5. The only possible such face contains a (5, 2, 3, 5)-
path, is shown in Fig. 2, and therefore gives 1

4
or 1

3
to each incident 5-vertex, which proves

Lemma 8(ii).
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To complete Case 1, we observe that any other 6-face is either a (2, 2, 4+ . . .)-face or
(2+, 3+, 3+ . . .)-face. In both cases, f gives at most 9

2
to its three vertices of smallest de-

grees, which means that each incident 5-vertex receives 1
2

from f , as stated in Lemma 8(iii).

Remark 9. From now on, we run induction on d(f), where d(f) > 7. In particular, we are
in the situation of Lemma 8(iii). Furthermore, our proof below does not use the absence
of (2, 2,∞, 2)-paths in ∂(f).

CASE 2. d(f) = 7 (Induction Base). Recall that µ(f) = 8. Note that f is incident
with at most four 3−-vertices, for otherwise we would have three consecutive 3−-vertices
in ∂(f). On the other hand, if there are at most three 3−-vertices in ∂(f), then f gives
them at most 6 units of charge and thus can afford giving 1

2
to each of the four remaining

vertices, as desired.
Therefore, we are done unless f is incident with precisely four 3−-vertices. Further-

more, if there are at least two 3-vertices among them, then f has at least 2 to give to the
three 4+-vertices, which is enough to satisfy Lemma 8(iii). Thus we have two subcases to
consider.

Subcase 2.1. f is incident with four 2-vertices and three 4+-vertices. Here, the four
2-vertices are split 2 + 1 + 1 or 2 + 2 + 0 in ∂(f) by 4+-vertices, which means that any
4+-vertex in ∂(f) is actually a 6+-vertex since w3 > 10, and we are done.

Subcase 2.2. f is incident with three 2-vertices, a 3-vertex, and three 4+-vertices.
Now f has 1 to share among its three 4+-vertices, so we are done unless f is incident with
precisely three vertices of degree between 4 and 5.

Clearly, this cannot happen if two 2-vertices in ∂(f) are adjacent due to w3 > 10.
Note that then there are two 2-vertices in ∂(f) at distance precisely two from each other
(since there are only four 3+-vertices separating the three 2-vertices). However, a vertex
with two neighbors of degree 2 cannot be a 5−-vertex, a contradiction.

CASE 3. d(f) > 7 (Induction Step). As said in Remark 9, f is assumed to be
any 7+-face with the property that each 3-path P3 in ∂(f) satisfies w3(P3) > 10, and
(2, 2,∞, 2)-paths in ∂(f) are allowed.

Suppose v2 is a vertex of the smallest degree in ∂(f) = v1 . . . vd(f). Let a face f ′ be
defined by dropping v2 from ∂(f); namely, we put ∂(f ′) = v1v3 . . . vd(f).

Clearly, ∂(f ′) satisfies w3(P3) > 10 for each 3-path P3 in ∂(f ′). Indeed, every P3 that
lies in ∂(f ′) but not in ∂(f) satisfies either P3 = v1v3v4 or P3 = v3v1vd(f). However, by
the choice of v2, we have w3(P3) > d(v1) + d(v2) + d(v3) > 10, as desired.

Note that d(f ′) = d(f) − 1 and µ(f ′) = µ(f) − 2. By the inductive assumption,
µ′(f ′) > 0. Since f and f ′ give the same charge by the rule R to every vertex in ∂(f ′),
while f gives at most 2 to v2 by R, we have µ′(f) > µ′(f ′) + 2− 2 > 0.

3.2 Completing the proof of Theorems 6 and 7

It remains to prove that each 5-vertex v satisfies µ′(v) > 0. Indeed, then we have µ′(x) > 0
for every x ∈ V ∪ F , which contradicts (1):
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0 6
∑
v∈V

µ′(v) =
∑
v∈V

µ(v) = −12.

First suppose g > 7. In view of Remark 9, we actually proved in Lemma 8 that every
face gives 1

2
to each incident 5-vertex v, regardless of the presence of (2, 2,∞, 2)-paths in

our M , which means that µ′(v) > 5− 6 + 5× 1
2
> 0.

This completes the proof of Theorem 7.

Finally, suppose g = 6. By Lemma 8, v receives at least 1
4

from an incident face f ,
unless f is a (2, 2, 3, 3, . . .)-face with d(f) = 6 (see Fig. 2). So if v is not incident with
such a face, then we have µ′(v) > 5− 6 + 5× 1

4
> 0.

Now suppose f1 = v1vv2xyz is a (2, 2, 3, 3, . . .)-face with ∂(f) = v1vv2xyz (see Fig. 3).
Since d(v) = 5 and w3 > 10, we have two possibilities to consider.

t
t

t
6+

22

t
t

t
?
0

"
""

33 tt
t t

5+

�-1
2

1
2

t
t

t
t

t
t

?
0

"
""

3 t
t t

5+

� 1
2

t
t

5+

3+

3+

*
1
2

t
t

t
t

t
t

?
0

"
""

3 t
t t

5+

� 1
2

t
t

5+

*

3 2

2

�
�t t3

5+

�

1
2

5

0

tt
t

t
t

?
0

"
""

3 t
t t� 1

2

t
t

5+

4 ∨ 5

*
≥ 1

4

3

2

t�

≥ 1
4

t

5+
5+

5

3 2 2

5

(a) (b) (c) (d)

t t

x

y

z

v2
v1 u5

v5

v

v4
v3

u2

Figure 3: Every 5-vertex receiving 0 from an incident 6-face receives at least 1 in total.

CASE A. d(v1) = d(v2) = 3 and d(x) = d(z) = 2 (see Fig. 3a). Here, each of the
faces f2 = v3vv2u2 . . . and f5 = v5vv1u5 . . . gives 1

2
to v due to Lemma 8. Indeed, f5,

say, contains a path vv1u5 with d(u5) > 5 (because of the path zv1u5), d(v1) = 3, and
d(v) = 5, but such a path does not appear in faces giving less than 1

2
to a 5-vertex, which

are depicted in Fig. 2.
CASE B. d(v1) = d(x) = 3 and d(v2) = d(z) = 2 (see Fig. 3(b–d)). As observed in

Case A, the face f5 = v5vv1u5 . . . gives 1
2

to v. Thus v has to collect at least 1
2

or 1
4

+ 1
4

from other faces.
We first look at the face f2 = . . . v2vv3u2. If d(u2) > 3 (see Fig. 3b), then f2 brings

another 1
2

to v by Lemma 8 since d(v3) > 3 due to w3 > 10, and we are done.
So suppose d(u2) = 2 (see Fig. 3(c–d)). Now if f2 gives 0 to v, which is equivalent

to say that d(v3) = 3 (see Fig. 3c and Fig.2), then the face f3 = v4vv3u3 . . . gives 1
2

to v
since d(u3) > 5 because of the path u2v3u3, as desired.

It remains to assume that 4 6 d(v3) 6 5 (see Fig. 3d), for otherwise f2 already gives
1
2

to v, and we are done. Now each of the faces f2 and f3 = v3vv4 gives at least 1
4

to v
(see Fig. 2 for the faces giving 0 to v), as required.

This completes the proof of Theorem 6.
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summary). Mat. Čas., 5:101–113, 1955.

[18] H. Lebesgue, Quelques conséquences simples de la formule d’Euler. J. Math. Pures
Appl., 19:27–43, 1940.

the electronic journal of combinatorics 22(3) (2015), #P3.28 9



[19] E. Steinitz, Polyeder und Raumeinteilungen. Enzykl. Math. Wiss., 3:1–139, 1922.
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