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Abstract

In the domination game, introduced by Brešar, Klavžar, and Rall in 2010, Dom-
inator and Staller alternately select a vertex of a graph G. A move is legal if the
selected vertex v dominates at least one new vertex – that is, if we have a u ∈ N [v]
for which no vertex from N [u] was chosen up to this point of the game. The game
ends when no more legal moves can be made, and its length equals the number
of vertices selected. The goal of Dominator is to minimize whilst that of Staller
is to maximize the length of the game. The game domination number γg(G) of G
is the length of the domination game in which Dominator starts and both players
play optimally. In this paper we establish an upper bound on γg(G) in terms of
the minimum degree δ and the order n of G. Our main result states that for every
δ > 4,

γg(G) 6
15δ4 − 28δ3 − 129δ2 + 354δ − 216

45δ4 − 195δ3 + 174δ2 + 174δ − 216
n.

Particularly, γg(G) < 0.5139 n holds for every graph of minimum degree 4, and
γg(G) < 0.4803 n if the minimum degree is greater than 4. Additionally, we prove
that γg(G) < 0.5574 n if δ = 3.

Keywords: domination game; game domination number; 3/5-conjecture; minimum
degree.
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1 Introduction

In this note, our subject is the domination game introduced by Brešar, Klavžar, and Rall
in [4].

1.1 Basic definitions

For a simple undirected graph G = (V,E) and for a vertex v ∈ V , the open neighborhood
of v is NG(v) = {u : uv ∈ E}, while its closed neighborhood is NG[v] = NG(v) ∪ {v}.
Then the degree dG(v) of v is just |NG(v)| and the minimum degree min{dG(v) : v ∈ V }
is denoted by δ(G). As usual, we will write N(v), N [v] and d(v) for NG(v), NG[v] and
dG(v), respectively, if G is clear from the context.

Each vertex dominates itself and its neighbors, moreover a set S ⊆ V dominates
exactly those vertices which are contained in N [S] =

⋃
v∈S N [v]. A vertex set D ⊆ V is

called a dominating set of G if N [D] = V . The smallest cardinality of a dominating set
is the domination number γ(G) of G.

The domination game, introduced by Brešar, Klavžar, and Rall [4], is played on a
simple undirected graph G = (V,E) by two players, named Dominator and Staller, re-
spectively. They take turns choosing a vertex from V such that a vertex v can be chosen
only if it dominates at least one new vertex – that is, if we have a u ∈ N [v] for which
no vertex from N [u] was selected up to this turn of the game. The game is over when
no more legal moves can be made; equivalently, when the set D of vertices chosen by
the two players becomes a dominating set of G. The aim of Dominator is to finish the
game as soon as possible, while that of Staller is to delay the end of the game. The
game domination number γg(G) is the number of turns in the game when the first turn is
Dominator’s move and both players play optimally. Analogously, the Staller-start game
domination number γ′g(G) is the length of the game when Staller begins and the players
play optimally.

1.2 Results

Although the subject is quite new, lots of interesting results have been obtained on the
domination game (see [2, 3, 4, 5, 6, 7, 9, 13, 14]). Note that also the total version of the
domination game was introduced [11] and studied [12] recently.

Concerning our present work, the bounds proved for the game domination number
γg(G) are the most important preliminaries. The following fact was verified in [4] and
[13] as well.

γ(G) 6 γg(G) 6 2γ(G)− 1 (1)

Upper bounds in terms of the order were inspired by the following “3/5-conjecture” raised
by Kinnersley, West, and Zamani [13].

Conjecture 1. If G is an isolate-free graph of order n, then γg(G) 6 3n/5 holds.

Conjecture 1 has been proved for the following graph classes:
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• for trees of order n 6 20 (Brešar, Klavžar, Košmrlj and Rall [3]);

• for caterpillars – that is, for trees in which the non-leaf vertices induce a path
(Kinnersley, West, and Zamani [13]);

• for trees in which no two leaves are at distance four apart (Bujtás [6, 7]).

Moreover, in a manuscript in preparation, Henning and Kinnersley prove Conjecture 1
for graphs of minimum degree at least 2 [10].

On the other hand, upper bounds weaker than 3n/5 were obtained for some wider
graph classes. For trees, the inequality γg(G) 6 7n/11 was established by Kinnersley,
West, and Zamani in [13] and it was recently improved to γg(G) 6 5n/8 by the present
author in [7]. For the most general case, Kinnersley, West, and Zamani proved [13] that the
game domination number of any isolate-free graph G of order n satisfies γg(G) 6 d7n/10e.
In Section 2 we improve this upper bound by establishing the following claim.

Proposition 2. For any isolate-free graph G of order n,

γg(G) 6
2n

3
and γ′g(G) 6

2n

3
.

In fact, in a manuscript under preparation [8] we will prove the stronger inequality
γg(G) 6 0.64n, but the proof of Proposition 2 may be of interest because of its simplicity
and gives illustration for the proof technique applied in the later sections.

One of our main results gives an upper bound smaller than 0.5574n on the game
domination number of graphs with minimum degree 3.

Theorem 3. For any graph G of order n and with minimum degree 3,

γg(G) 6
34n

61
and γ′g(G) 6

34n− 27

61
.

For graphs all of whose vertices are of degree greater than 3, we prove an upper bound
in terms of the order and the minimum degree.

Theorem 4. If G is a graph on n vertices and its minimum degree is δ(G) > d > 4, then

γg(G) 6
15d4 − 28d3 − 129d2 + 354d− 216

45d4 − 195d3 + 174d2 + 174d− 216
n.

As the coefficient in this upper bound equals 37/72 < 0.5139 for d = 4, and equals
2102/4377 < 0.4803 for d = 5, the following immediate consequences are obtained.

Corollary 5. (i) For any graph G of order n and with minimum degree δ(G) = 4, the
inequality γg(G) 6 37n/72 holds.

(ii) For any graph G of order n and with minimum degree δ(G) > 5, the inequality
γg(G) 6 2102n/4377 holds.
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Particularly, these statements show that the coefficient 3/5 in Conjecture 1 can be
significantly improved if only those graphs with δ(G) > 4 are considered.

On the other hand, note that Theorem 3 and Theorem 4 establish new results only
for 3 6 δ(G) 6 21. Although it was not mentioned in the earlier papers, the upper bound
in (1) together with the well-known theorem (see e.g., [1])

γ(G) 6
1 + ln(δ + 1)

δ + 1
n

clearly yields

γg(G) < 2 · 1 + ln(δ + 1)

δ + 1
n (2)

for each δ > 2. For integers 3 6 δ(G) = d 6 21, it is easy to check that our bound is
better than the above one in (2).

Our proof technique is based on a value assignment to the vertices where the value of
a vertex depends on its current status in the game. We will consider a greedy strategy
of Dominator, where the greediness is meant concerning the decrease in the values. Our
main goal is to estimate the average decrease in a turn achieved under this assumption.
We introduced this type of approach in the conference paper [6] and in the paper [7].
The frame of this technique and the basic observations are contained here in Section 2.
Then, in Section 3 and Section 4 we specify the details and prove our Theorem 3 and
Theorem 4 respectively. In the last section we make some additional notes concerning the
Staller-start version of the game.

2 Preliminaries

Here we introduce the notion of the residual graph, define the color assignment to the
vertices and give a general determination for the phases of the game. Then, we make
some simple observations which will be used in the later sections.

Colors Consider any moment of the process of a domination game on the graph G∗ =
(V,E), and denote by D the set of vertices chosen up to this point of the game. As it was
introduced in [6] and [7], we distinguish between the following three types of vertices.

• A vertex v ∈ V is white if v /∈ N [D].

• A vertex v ∈ V is blue if v ∈ N [D] but N [v] * N [D].

• A vertex v ∈ V is red if N [v] ⊆ N [D].

Residual graph Clearly, a red vertex v and all its neighbors are already dominated in
the game. Hence the choice of v would not be a legal move in the later turns and further,
the status of v remains red. So, red vertices do not influence the continuation of the game
and they can be deleted. Similarly, edges connecting two blue vertices can be omitted
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too. This graph, obtained after the deletion of red vertices and edges between two blue
vertices, is called the residual graph, as it was introduced in [13]. At any point of the
game, the set of vertices chosen up to this point is denoted by D and the residual graph
is denoted by G. When it is needed, we use the more precise notations Di and Gi for the
current D and G just before the ith turn.

Phases of the game The phases will be defined for the Dominator-start game that is,
for each odd integer j the jth turn belongs to Dominator. The Staller-start version will
be treated later by introducing a Phase 0 for the starting turn.

In our proofs, nonnegative values p(v) are assigned to the vertices, and the value p(G)
of the residual graph is just the sum of the values of the vertices. Also, we assume that
Dominator always chooses greedily. More precisely, for each odd j, in the jth turn he
plays a vertex which results the possible maximum p(Gj) − p(Gj+1). This difference is
called the decrease in the value of p(G) and also referred to as the gain of the player.

Definition 6. Let (C1), . . . (C`) be conditions all of which relate to the jth turn of the
game where j is odd. Then, for each i = 1, . . . `, Phase i of the game is defined as follows.

(i) Phase 1 begins with the first turn of the game.

(ii) If Phase i begins with the bith turn, it is continued as long as (Ci) is satisfied in
each turn of Dominator. That is, Phase i ends right after the eith turn where ei is
the smallest even integer with bi < ei for which (Ci) is not satisfied in the (ei + 1)st
turn.

(iii) If Phase i ends after the eith turn but the game is not over yet, then the (ei + 1)st
turn is the beginning of Phase i′, where i′ is the smallest integer with i < i′ such
that (Ci′) is fulfilled in the (ei + 1)st turn.

(iv) If Phase i is followed by Phase i′ and i+2 6 i′ holds, we say that Phases i+1, . . . i′−1
are skipped; moreover, their starting and end points are interpreted to be the same
as the end of Phase i.

Further notations The colors white, blue and red will be often abbreviated to W,
B and R, respectively. For example, a B-neighbor is a blue neighbor, and the notation
v: W→B/R means that vertex v changed from white to either blue or red in the turn
considered. Moreover, dW (v) and dB(v) stand for the number of W-neighbors and B-
neighbors of v, respectively.

We cite the following observations (in a slightly modified form) from [7]:

Lemma 7. The following statements are true for every residual graph G in a domination
game started on G∗.

(i) If v is a white vertex in G, then v has the same neighborhood in G as it had in G∗.
Thus, dG(v) = dG∗(v) holds for every W-vertex of G and moreover, dWG (v)+dBG(v) =
dG∗(v).
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(ii) If v is a blue vertex in G, then v has only white neighbors and definitely has at least
one. That is, dWG (v) = dG(v) > 1 and dBG(v) = 0 if v is a B-vertex in G.

At the end of this section, we provide a simple example for applying the tools intro-
duced above. We prove Proposition 2, which states that for any isolate-free graph G of
order n,

γg(G) 6
2n

3
and γ′g(G) 6

2n

3

hold.

Proof of Proposition 2. First, we consider the Dominator-start game on G∗ = (V,E),
which is a simple graph without isolated vertices. In every residual graph G, let the value
p(v) of a vertex v be equal to 2, 1 and 0, when v is white, blue and red, respectively.
Hence, we start with p(G∗) = 2n and assume that Dominator always selects a vertex
which results in a maximum decrease in p(G). The game is divided into two phases,
which are determined due to Definition 6 with the following conditions:

(C1) Dominator gets at least 4 points.

(C2) Dominator gets at least 1 point.

Phase 1. If Staller selects a W-vertex, then it becomes red and causes at least 2-point
decrease in the value of the residual graph. In the other case, Staller selects a B-vertex v
which has a W-neighbor u. Then, the changes v: B→R and u: W→B/R together result
in a decrease of at least 1+1 = 2. Hence, in each of his turns Staller gets at least 2 points.
By condition (C1), Dominator always gets at least 4 points. As Dominator begins the
phase, the average decrease in p(G) must be at least 3 in a turn.

Phase 2. When Phase 2 starts, Dominator cannot seize 4 or more points by playing
any vertex of Gj. This implies the following properties of the residual graph:

• For every W-vertex v, dW (v) 6 1.
Indeed, if v had two W-neighbors u1 and u2, then Dominator could choose v and
the changes v: W→R and u1, u2: W→B/R would give a gain of at least 2 +2 ·1 = 4
points, which is a contradiction.

• For every W-vertex v, dW (v) = 0.
We have seen that dW (v) 6 1. Now, assuming two W-neighbors v and u, the choice
of v would result in the changes v, u: W→R, which give a gain of at least 4 points
to the player. This is a contradiction again.

• For every B-vertex v, d(v) = 1.
By Lemma 7(ii), d(v) > 1. Now, assume that v has two different W-neighbors u1
and u2. As we have shown, dW (u1) = dW (u2) = 0 must hold and consequently, if
Dominator plays v, then both u1 and u2 turn to red. This gives a gain of at least
1 + 2 · 2 = 5 points, which cannot be the case at the endpoint of Phase 1.
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• Each component of Gj is a P2 and contains exactly one white and one blue vertex.
By the claims above, each component is a star with a white center and blue leaves.
If it contained at least two leaves then Dominator could play the center and get at
least 4 points.

Therefore, at the beginning of Phase 2, the residual graph consists of components of
order 2. As follows, in each turn an entire component becomes red and p(G) decreases by
exactly 3 points.

In the game, the value of the residual graph decreased from 2n to zero, and the average
decrease in a turn was proved to be at least 3. Consequently, the number of turns required
is no greater than 2n/3, which proves γg(G

∗) 6 2n/3.

If Staller starts the game, his first move definitely decreases p(G) by at least 3 points
as there are no isolated vertices. Then, the game is continued as in the Dominator-start
game, and the average decrease remains at least 3 points. Thus, γ′g(G

∗) 6 2n/3 holds.

3 Graphs of minimum degree 3

In this section we prove the upper bound stated on the game domination number of graphs
with minimum degree 3. Also, this proof serves as an introduction to the details of the
idea applied in the next section to prove our main theorem.

Proof of Theorem 3. We consider a graph G = (V,E) of minimum degree 3 and define
the value assignments of types A1.1, A1.2 and A1.3 as they are given in Table 1.

Table 1: Value assignments used in the proof of Theorem 3

Abbrev. Type of the vertex Value in A1.1 Value in A1.2 Value in A1.3

W white vertex 34 34 34
B3 blue vertex of degree > 3 16 16 —
B2 blue vertex of degree 2 16 13 13
B1 blue vertex of degree 1 16 10 9
R red vertex 0 0 0

Hence, the game starts with p(G∗) = 34n. First, assume that Dominator begins the game
and determine Phases 1-4 due to Definition 6 with the following specified conditions:

(C1) Dominator gets at least 88 points due to the assignment A1.1.

(C2) Dominator gets at least 91 points due to the assignment A1.2.

(C3) Dominator gets at least 84 points due to the assignment A1.3.

(C4) Dominator gets at least 1 point due to the assignment A1.3.
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Phase 1. Here, we apply the value assignment A1.1. In each of his turns, Staller either
selects a white vertex and gets at least 34 points; or he plays a blue vertex v which has
a white neighbor u and then the color changes v: B→R and u: W→B/R give at least
16+18=34 points. By condition (C1), each move of Dominator yields a gain of at least 88
points. As Dominator begins the game, we have the following estimation on the average
decrease of p(G) in a turn.

Lemma 8. In Phase 1, the average decrease of p(G) in a turn is at least 61 points.

At the end of Phase 1 we have some structural properties which remain valid in the
continuation of the game.

Lemma 9. After the end of Phase 1, throughout the game, each white vertex has at most
2 white neighbors, and each blue vertex has at most 3 white neighbors.

Proof. By definition, at the end of the first phase Dominator has no possibility to seize 88
or more points by playing a vertex of the residual graph G. Now, assume that there exists
a W-vertex v with three W-neighbors u1, u2 and u3 in G. Then, Dominator could choose
v and the color changes v: W→R and u1, u2, u3: W→B/R would decrease p(G) by at
least 34 + 3 · 18 = 88 points, which is a contradiction. Similarly, if there exists a B-vertex
v with at least four W-neighbors, then Dominator could get at least 16+4 ·18 = 88 points
by playing v, which is a contradiction again.

In the continuation of the game, new white vertices cannot arise, moreover a new blue
vertex may arise only by the color change W→B. This implies that the stated properties
remain valid throughout all the later phases.

Phase 2. At the beginning of this phase we change to assignment A1.2. Clearly, the
values of the vertices do not increase. As no blue vertex has a degree greater then 3,
we observe that each B-vertex v has value p(v) = 7 + 3d(v). Further, assignment A1.2
ensures that when a vertex v is played, the value of every blue vertex from N [N [v]] is
decreased.

Lemma 10. The following statements are true in Phase 2.

(i) If a W-vertex v with W-degree dW (v) is played, then p(G) decreases by at least
43 + 24dW (v) points.

(ii) If a B-vertex v with degree d(v) is played, then p(G) decreases by at least 7+24d(v)
points.

(iii) In each turn p(G) decreases by at least 31 points

Proof. When the degree of a B-vertex is decreased by x, its value decreases by at least
3x, no matter whether the change is of type Bi →Bi−x or Bx →R. Thus, if a vertex v
is played and NW [v] denotes the set of white vertices in N [v], the sum of the values of
B-vertices contained in N [N [v]] \ {v} is decreased by at least

3
∑

u∈N [v]

dB(u) > 3
∑

u∈NW [v]

(3− dW (u))

the electronic journal of combinatorics 22(3) (2015), #P3.29 8



if v is white, and by at least

3
∑

u∈N [v]

(dB(u)− 1) > 3
∑

u∈NW [v]

(2− dW (u))

if v is blue.

First, assume that the played vertex v is white, dW (v) = k and the W-neighbors of v
are u1, . . . uk. For each 1 6 i 6 k, the W-vertex ui becomes either a B-vertex of degree
at most dW (ui) − 1 or an R-vertex. As 1 6 dW (ui) 6 2, p(ui) decreases by at least
34− (7 + 3dW (ui)− 3) = 30− 3dW (ui) in either case. Then, the decrease in p(G) is not
smaller than

34+
k∑

i=1

(30−3dW (ui))+3(3−k)+3
k∑

i=1

(3−dW (ui)) = 43+36k−6
k∑

i=1

dW (ui) > 43+24k,

where 0 6 k 6 2 must hold. This establishes statement (i).

In the other case, v is blue with d(v) = k and its W-neighbors are u1, . . . uk. As v has
only white neighbors and definitely has at least one and no more than 3, 1 6 k 6 3 holds;
moreover, 0 6 dW (ui) 6 2 is true for all 1 6 i 6 k. When v is played, ui becomes red if
dW (ui) = 0, otherwise it will be a blue vertex of degree at most dW (ui). Therefore, the
decrease in p(ui) is at least 34− (7 + 3dW (ui)) = 27− 3dW (ui) and that in p(v) is exactly
7 + 3k. Then, the sum of the decreases cannot be smaller than

7 + 3k +
k∑

i=1

(27− 3dW (ui)) + 3
k∑

i=1

(2− dW (ui)) = 7 + 36k − 6
k∑

i=1

dW (ui) > 7 + 24k

as stated in (ii).

To prove (iii), it suffices to consider the minimum of 43 + 24k in case (i), which is 43;
and that of 7 + 24k in case (ii), which is 31 because of the condition k > 1.

By Lemma 10(iii), Staller gets at least 31 points, and by Condition (C2), Dominator
gets at least 91 points in each of their turns. Hence, we have the following estimation.

Lemma 11. In Phase 2, the average decrease of p(G) in a turn is at least 61 points.

As shown by the next lemma, the W-degrees are more strictly bounded from the end
of Phase 2 than earlier.

Lemma 12. After the end of Phase 2, throughout the game, each white vertex has at
most 1 white neighbors, and each blue vertex has at most 2 white neighbors.

Proof. By condition (C2), at the end of Phase 2 Dominator can seize only less than 91
points by choosing any vertex of G. By Lemma 10(i), the selection of a W-vertex v with
dW (v) = 2 causes a decrease of at least 43 + 24 · 2 = 91 points in p(G). Hence, each
W-vertex has either zero or exactly one W-neighbor.
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Now, assume that v is a B-vertex with three W-neighbors, say u1, u2 and u3. We have
already seen that the inequalities 0 6 dW (ui) 6 1 hold for i = 1, 2, 3. Then, as it was
shown in the proof of Lemma 10(ii), the choice of v would decrease p(G) by at least

7 + 36 · 3− 6
3∑

i=1

dW (ui) > 97,

which is a contradiction.

Phase 3. The phase starts with changing the value assignment A1.2 to A1.3. By
Lemma 12, there are no B-vertices of degree 3 or higher, moreover we observe that the
change to A1.3 cannot cause increase in the value of G. Also, one can easily check that
the value of a B-vertex decreases by at least 4x points, if it loses x W-neighbors in a turn.

Lemma 13. The following statements are true in Phase 3.

(i) If a W-vertex v is played, then p(G) decreases by at least 84 points if dW (v) = 1,
and p(G) decreases by at least 46 points if dW (v) = 0.

(ii) If a B-vertex v is played, then p(G) decreases by at least 67 points if d(v) = 2, and
p(G) decreases by at least 38 points if d(v) = 1.

(iii) In each turn p(G) decreases by at least 38 points

Proof. (i) Consider a W-vertex v whose only W-neighbor is u. By Lemma 12, all the
further neighbors of v and u are blue. This implies dB(u) + dB(v) > 4. Hence, when v is
played, the color changes v, u: W→R decrease p(G) by 68 points, while the sum of the
values of B-vertices contained in N [{v, u}] decreases by at least 4 · 4 = 16. Hence, the
gain of the player is at least 84 points. In the other case, when v has no W-neighbors, it
has at least three B-neighbors. Then, the change v: W→R gives at least 34 points and
additionally, the decrease in the degrees of the B-neighbors means at least 12 points. This
proves that p(G) decreases by at least 46 points.

(ii) If the played vertex v is blue and has exactly one white neighbor u, then the
changes v: B1 →R and u: W→B1/R cause a decrease of at least 9 + 25 = 34 points
in p(G). Additionally, u has at least one B-neighbor different from v, whose value is
decreased by at least 4 points. Consequently, the total decrease is at least 38 points.
Similarly, if v is blue and has two W-neighbors u1 and u2, then the total decrease in p(G)
is at least 13 + 2 · 25 + 2 · 4 = 71 points.

(iii) As the four cases above cover all possible moves which can be made in Phase 3,
p(G) is decreased by at least 38 points in each turn.

As consequences of Condition (C3) and Lemma 13(iii), Dominator gets at least 84
points and Staller gets at least 38 points in each of his turns. Hence, we have the desired
average.

Lemma 14. In Phase 3, the average decrease of p(G) in a turn is at least 61 points.
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When Dominator cannot get at least 84 points in a turn, the structure of the residual
graph must be very simple.

Lemma 15. At the end of Phase 3, each component of the residual graph is a star of
order k > 4 with a white center and k − 1 blue leaves.

Proof. Let Gi be the residual graph obtained at the end of Phase 3. Due to Lemma 13(i),
the presence of a W-vertex v with dW (v) = 1 provides an opportunity for Dominator to get
at least 84 points. Then, the ith turn would belong to Phase 3, which is a contradiction.
Consequently, in Gi each W-vertex has only B-neighbors.

Next, assume that we have a B-vertex v which has two W-neighbors u1 and u2 in Gi.
As we have seen, in Gi d

W (u1) = dW (u2) = 0 must hold and moreover, both u1 and u2
have at least two B-neighbors. Therefore, if v is selected by Dominator, the changes v:
B2 →R and u1, u2: W→R with the change in the values of B-neighbors, all together yield
at least 13 + 2 · 34 + 4 · 4 = 97 point decrease in p(Gi), which is a contradiction again.
Hence, each B-vertex has at most one W-neighbor.

Since each W-vertex v has the same degree in the residual graph Gi as it had in G∗,
it has at least three B-neighbors in Gi. In addition, each B-vertex is a leaf in Gi. This
implies that at the end of Phase 3 every component is a star with the structure stated.

Phase 4. By Lemma 15, Phase 4 begins with star-components containing a white center
and at least three blue leaves. Then, in each turn a component becomes completely red,
no matter whether a white or a blue vertex is played. Thus, each move decreases the
value of G by at least 34 + 3 · 9 = 61 points.

Lemma 16. In Phase 4, the average decrease of p(G) in a turn is at least 61 points.

By Lemmas 8, 11, 14 and 16, if Dominator starts the game and he plays the prescribed
greedy strategy, then for the number t∗ of turns

γg(G
∗) 6 t∗ 6

34

61
n

holds.

Finally, for the Staller-start version of the game we define Phase 0, which contains
only the first turn and the values are counted due to A1.1. Observe that Staller’s any
choice results in at least 34 + 3 · 18 = 88 point decrease in p(G∗). Then, Phase 1 might be
skipped if (C1) is not true for G1, but otherwise the game continues as in the Dominator-
start version and our lemmas remain valid. Therefore, by the 27-point overplus arising in
Phase 0, for γ′g(G

∗) we obtain a slightly better bound,

γ′g(G
∗) 6

34n− 27

61
.

This completes the proof of Theorem 3.
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4 Graphs with minimum degree greater than 3

Here we prove Theorem 4 and Corollary 5.

Proof of Theorem 4. First, we consider the Dominator-start game on a graph G∗ =
(V,E) of order n, whose minimum degree is δ(G∗) > d > 4.

The proof and the game starts with the value assignment A2.1 to the vertices as shown
in Table 2. Later, we use a more subtle distinction between the types of blue vertices due
to assignments A2.2, A2.3 and A2.4 (see Table 2). We will see that the value p(G) of the
residual graph cannot increase when we change to an assignment with a higher index.

Table 2: Value assignments used in the proof of Theorem 4

Abbrev. Type of the vertex A2.1 A2.2 A2.3 A2.4

W white vertex a a a a
B4 blue vertex of degree > 4 b b — —
B3 blue vertex of degree 3 b b− x1 b− x1 —
B2 blue vertex of degree 2 b b− 2x1 b− x1 − x2 b− x1 − x2
B1 blue vertex of degree 1 b b− 3x1 b− x1 − 2x2 b− x1 − x2 − x3
R red vertex 0 0 0 0

The values of a, b, x1, x2, x3 and s are defined in terms of the parameter d. We aim to
prove that s is a lower bound on the average decrease of p(G) in a turn, if Dominator
follows the prescribed greedy strategy.

a = 30d4 − 56d3 − 258d2 + 708d− 432

b = 111d3 − 561d2 + 888d− 432

x1 = 6d3 − 19d2 + 15d

x2 = 15d3 − 64d2 + 65d

x3 = 30d3 − 144d2 + 202d− 72

s = 90d4 − 390d3 + 348d2 + 348d− 432

Concerning the values above and the change between assignments, we take the following
observations.

Lemma 17. For every fixed integer d > 4:

(i) 0 < x1 < x2 < x3 < b− x1 − x2 − x3 < b < a and x3 < a− b.

(ii) For every 1 6 i < j 6 4 and every residual graph G, p(G) does not increase if the
value assignment A2.i is changed to A2.j (assuming that A2.j is defined for G).
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Table 3: Values of the differences for the proof of Lemma 17

d = 4 d = 5 d = 6

x1 6d3 − 19d2 + 15d 140 350 702
x2 − x1 9d3 − 45d2 + 50d− 72 56 250 624
x3 − x2 15d3 − 80d2 + 137d− 288 156 488 1110
b− x1 − x2 − 2x3 30d3 − 190d2 + 404d 208 732 1776
a− b 30d4 − 167d3 + 303d2 − 180d 1120 4550 12636
a− b− x3 30d4 − 197d3 + 447d2 − 382d+ 72 768 3462 10200

Proof. The proof of (i) is based on a simple counting and estimation. Table 3 shows the
differences and their exact values for d = 4, 5, 6. The comparison of coefficients verifies
our statements for d > 7.

Once (i) is proved, Table 2 shows that no vertex has greater value by A2.j than by
A2.i, whenever j > i holds.

Note that later we will use further relations between a, b, x1, x2, x3 and s but these
are equations, which can be verified by simple counting, so the details will be omitted.

The game is divided into five phases due to Definition 6 with the following five condi-
tions:

(C1) Dominator gets at least 5a− 4b points due to the assignment A2.1.

(C2) Dominator gets at least 4a− 3b+ (4d− 6)x1 points due to the assignment A2.2.

(C3) Dominator gets at least 3a − 2b + 2x1 + (3d − 2)x2 points due to the assignment
A2.3.

(C4) Dominator gets at least 2a+ (2d− 2)x3 points due to the assignment A2.4.

(C5) Dominator gets at least 1 point due to the assignment A2.4.

Thus, the game starts on G∗ = G1 with p(G1) = a · n, and ends with a residual graph
whose value equals 0. Recall that Dominator plays a purely greedy strategy. Our goal is
to prove that the average decrease in p(G) is at least s points in a turn.

Phase 1. In each turn, the player either selects a W-vertex which turns red and hence
p(G) decreases by at least a points; or he selects a B-vertex v which has a W-neighbor u.
In the latter case the changes v: B→R and u: W→B/R together yield a decrease of at
least b + (a− b) = a points. Therefore, Staller gets at least a points in each of his turns
in Phase 1. By condition (C1), Dominator seizes at least 5a− 4b points and therefore, in
any two consecutive turns p(G) decreases by at least 6a− 4b = 2s points. As Dominator
starts, the following statement follows.

Lemma 18. In Phase 1, the average decrease of p(G) in a turn is at least s points.
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Concerning the structure of the residual graph obtained at the end of this phase, we
prove the following properties.

Lemma 19. At the end of Phase 1,

(i) If v is a W-vertex, then dW (v) 6 3.

(ii) If v is a B-vertex, then d(v) 6 4.

Proof. At the end of the phase, we have a residual graph Gi in which Dominator cannot
get 5a − 4b or more points. Assuming a W-vertex v with W-neighbors u1, u2, u3 and
u4, Dominator could play v and the changes v: W→R and u1, u2, u3, u4: W→B/R would
result in a decrease of at least a+ 4(a− b) = 5a− 4b points, which is a contradiction. In
the other case, the choice of a B-vertex which has five W-neighbors would yield a gain of
at least b+ 5(a− b) = 5a− 4b points, which is a contradiction again.

Phase 2. In this phase we apply the value assignment A2.2. By Lemma 19(ii), each
B-vertex has degree smaller than or equal to 4. Moreover by the definition of A2.2 and
by Lemma 17, in the jth turn the value of a B-vertex u decreases by at least (dGj

(u) −
dGj+1

(u))x1 points.

Lemma 20. In Phase 2, the average decrease of p(G) in a turn is at least s points.

Proof. If a W-vertex v is played, each of its neighbors has a decrease of at least x1 points
in its value, no matter whether this change on the neighbor is Bi →Bi−1 or B1 →R or
W→Bi/R. Then, playing a W-vertex results in at least a+ d · x1 point decrease in p(G).

In the other case, when the played vertex v is blue, the decrease in its value is at least
b− 3x1. As v has a W-neighbor u, whose W-degree is at most 3, the change u: W→Bi/R
(i 6 3) yields further at least a − (b − x1) points gain; and since u has at least d − 4
B-neighbors different from v, the total decrease in p(G) is at least (b − 3x1) + a − (b −
x1) + (d− 4)x1 = a+ (d− 6)x1. This yields that Staller gets at least a+ (d− 6)x1 points
whenever a white or a blue vertex is played by him.

Complying with (C2), each move of Dominator results in a gain of at least 4a− 3b+
(4d− 6)x1 and consequently, in any two consecutive turns of Phase 2, p(G) decreases by
at least 5a− 3b+ (5d− 12)x1 = 2s points. This proves the lemma.

Lemma 21. At the end of Phase 2,

(i) If v is a W-vertex, then dW (v) 6 2.

(ii) If v is a B-vertex, then d(v) 6 3.

Proof. To prove (i), assume that Dominator selects a W-vertex v with W-neighbors u1,
u2 and u3. Remark that each u` may have at most two W-neighbors different from
v. Therefore, the changes v: W→R and u1, u2, u3: W→Bi/R (i 6 2) give at least
a+ 3(a− b+ 2x1) points to Dominator. In addition, each of v, u1, u2 and u3 has at least
d−3 B-neighbors. Hence the total decrease in p(G) is at least a+3(a−b+2x1)+4(d−3)x1 =
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4a−3b+(4d−6)x1 points. In this case, Dominator’s turn would belong to Phase 2. Hence
for every W-vertex v, dW (v) 6 2 must hold at the end of Phase 2.

Part (ii) can be shown in a similar way but here we can refer to the property (i) proved
above. The selection of a B-vertex v which has four W-neighbors, say u1, u2, u3 and u4,
would cause the color changes v: B4 →R and u1, u2, u3, u4: W→Bi/R (where i 6 2, due
to part (i)). Moreover each uj has at least d − 3 B-neighbors different from v. These
would give a gain of at least

b+ 4(a− b+ 2x1) + 4(d− 3)x1 = 4a− 3b+ (4d− 4)x1 > 4a− 3b+ (4d− 6)x1

points to Dominator, which is impossible at the end of Phase 2. This verifies part (ii).

Phase 3. Here we apply the value assignment A2.3. By Lemma 21(ii), each B-vertex v
has degree d(v) 6 3 and hence, A2.3 is defined for all vertices of the residual graph. We
observe concerning this phase that whenever the degree of a B-vertex v is reduced by y,
its value decreases by at least yx2 points.

Lemma 22. In Phase 3, the average decrease of p(G) in a turn is at least s points.

Proof. If Staller plays a W-vertex, he gets at least a + dx2 points. In the other case, he
plays a B-vertex v which has a W-neighbor u. By Lemma 21, dW (u) 6 2 and hence, u
has at least d− 3 B-neighbors different from v. The changes v: Bi →R and u: W→Bi/R
(where i 6 2), together with the changes on the further B-neighbors of u, yields a decrease
of at least

(b− x1 − 2x2) + a− (b− x1 − x2) + (d− 3)x2 = a+ (d− 4)x2

in p(G). Therefore, Staller gets at least a + (d − 4)x2 points in each of his turns. By
condition (C3), we have a lower bound on the gain of Dominator as well. These yield the
sum

4a− 2b+ 2x1 + (4d− 6)x2 = 2s

for any two consecutive turns of Phase 3, and we can conclude that the average is at least
s indeed.

Lemma 23. At the end of Phase 3,

(i) If v is a W-vertex, then dW (v) 6 1.

(ii) If v is a B-vertex, then d(v) 6 2.

Proof. At the end of Phase 3 we have a residual graph Gi, in which the choice of any
vertex decreases p(Gi) by strictly less than 3a− 2b+ 2x1 + (3d− 2)x2 points.
(i) Playing a W-vertex v, which has two W-neighbors say u1 and u2, results in the changes
v: W→R and u1, u2: W→B1/R; additionally dB(v) + dB(u1) + dB(u2) > 3(d − 2). This
means a decrease of at least

a+ 2(a− b+ x1 + 2x2) + 3(d− 2)x2 = 3a− 2b+ 2x1 + (3d− 2)x2
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in p(Gi). This cannot be the case; so each W-vertex has either zero or exactly one W-
neighbor in Gi.
(ii) Now suppose that a B-vertex v with W-neighbors u1, u2 and u3 is played in Gi. We
have already seen that dW (uj) 6 1 holds for every W-vertex uj in Gi. Then, we have the
changes v: B3 →R and u1, u2, u3: W→B1/R. Further, each vertex from {u1, u2, u3} has
at least d− 2 B-neighbors different from v. Hence, the total gain of the player would be
at least

b− x1 + 3(a− b+ x1 + 2x2) + 3(d− 2)x2 > 3a− 2b+ 2x1 + (3d− 2)x2.

This contradiction proves (ii).

Phase 4. First, we change to assignment A2.4. By Lemma 23(ii), in any residual
graph of Phase 4, the W-vertices induce a subgraph consisting of isolated vertices and
P2-components; moreover, each blue vertex has at most 2 (white) neighbors. Moreover,
by Table 2 and Lemma 17, if a B-vertex loses y W-neighbors in a turn, its value is reduced
by at least yx3 points.

Lemma 24. In Phase 4, the average decrease of p(G) in a turn is at least s points.

Proof. If Staller selects a W-vertex v, each neighbor u of v has a decrease of at least x3
in its value. Hence, the total decrease in p(G) is not smaller than a+ dx3.

If Staller selects a B-vertex v, the change is either v: B2 →R or v: B1 →R, it means
at least (b−x1−x2−x3)-point gain. As d(v) > 1, we necessarily have a W-neighbor u of
v whose change is u: W→B1/R. Further, u has at least d− 2 B-neighbors different from
v. Therefore, the decrease in p(G) is at least

(b− x1 − x2 − x3) + a− (b− x1 − x2 − x3) + (d− 2)x3 = a+ (d− 2)x3.

Hence, in any case, Staller gets at least a + (d − 2)x3 points in a turn of his own. By
(C4), Dominator gets at least 2a + (2d− 2)x3 points in each of his turns and as follows,
the average gain is at least

1

2
(a+ (d− 2)x3 + 2a+ (2d− 2)x3) = s+ x3 > s

points as stated.

Lemma 25. At the end of Phase 4,

(i) Every W-vertex has only B-neighbors.

(ii) Every B-vertex has exactly one W-neighbor.
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Proof. Consider Gi which is the residual graph obtained at the end of Phase 4. As (C4)
is not true, Dominator cannot get 2a + (2d − 2)x3 or more points in the ith turn. By
Lemma 23, if (i) is not true, we have a “white-pair” (v, u), where u is the only W-neighbor
of v and vice versa. Then, the choice of v would result the changes v, u: W→R. This,
together with the fact dB(v) + dB(u) > 2d − 2, implies that the decrease in p(Gi) is at
least 2a+ (2d− 2)x3, which is a contradiction. Thus, (i) is true.

To prove (ii) we suppose for a contradiction that a B-vertex v has two W-neighbors
u1 and u2. By (i), these neighbors are “single-white” vertices and they turn to red if v is
played; in addition both u1 and u2 has at least d− 1 B-neighbors different from v. Hence,
selecting v Dominator could seize at least

(b− x1 − x2) + 2a+ 2(d− 1)x3 > 2a+ (2d− 2)x3

points, which is a contradiction again.

Phase 5. By Lemma 25(ii), the residual graphs occurring in this phase have simple
structure, each of their components is a star of order at least d+ 1 whose center is white
and the leaves are blue. Then, in each turn of Phase 5 exactly one such star component
becomes completely red, no matter whether a white or a blue vertex is played. Then, the
value of the residual graph is decreased by at least a+ d(b− x1 − x2 − x3) = s points in
each single turn.

Lemma 26. In each turn of Phase 5, the decrease of p(G) is at least s points.

By Lemmas 18, 20, 22, 24 and 26, the average decrease per turn in the residual
graph is at least s for the entire game. As p(G1) = an and the changes between as-
signments nowhere caused increase in p(G), the domination game where Dominator plays
the described greedy strategy yields a game with at most an/s turns. This establishes
Theorem 4.

5 Concluding remarks on the Staller-start game

In our main theorem, we do not give upper bound on γ′g(G) for graphs with δ(G) > d > 4.
It is quite clear from the proof that we can establish the same upper bound on γ′g(G) as
proved for γg(G). Moreover, a slight improvement on it is also possible. We close the
paper with this complicated formula.

If Staller begins the game, we index this starting turn by zero and take it into Phase
0. Then, from the first turn of Dominator, it continues as in the proof of Theorem 4. In
the turn of Phase 0, Staller gets at least

a+ d(a− b) = s+ 30d5 − 227d4 + 637d3 − 786d2 + 360d

points. In later phases, the average decrease remains at least s. This proves that

γ′g(G) 6
(30d4 − 56d3 − 258d2 + 708d− 432)n− 30d5 + 227d4 − 637d3 + 786d2 − 360d

90d4 − 390d3 + 348d2 + 348d− 432

holds for every d > 4 and for every graph G of minimum degree not smaller than d.
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