
The Covering Problem in

Rosenbloom-Tsfasman Spaces
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Abstract

We investigate the covering problem in RT spaces induced by the Rosenbloom-
Tsfasman metric, extending the classical covering problem in Hamming spaces.
Some connections between coverings in RT spaces and coverings in Hamming spaces
are derived. Several lower and upper bounds are established for the smallest car-
dinality of a covering code in an RT space, generalizing results by Carnielli, Chen
and Honkala, Brualdi et al., Yildiz et al. A new construction of MDS codes in RT
spaces is obtained. Upper bounds are given on the basis of MDS codes, generalizing
well-known results due to Stanton et al., Blokhuis and Lam, and Carnielli. Tables
of lower and upper bounds are presented too.
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1 Introduction

Rosenbloom and Tsfasman [22] introduced a new metric on linear spaces over finite fields,
motivated by possible applications to interference in parallel channels of communication
systems (see also [24]). Nowadays this metric is known as Rosenbloom-Tsfasman (RT)
metric (or ρ metric). A concept similar to RT metric was implicity posed by Niederreiter
[16], and later Brualdi et al. [4] generalized it by introducing a new family of metrics
called poset metrics.

These seminal papers have shed new light on the subject. Since RT metric generalizes
Hamming metric, central concepts on codes in Hamming spaces have been investigated in
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RT environmental: perfect code, MDS code, linear code, distribution, according to [4, 11,
17, 13, 20, 22, 24] for instance. In particular, Quistorff [17] presented the combinatorial
foundations of the packing problem for RT spaces in a more general setting, extending
the famous packing problem in Hamming spaces.

Both packing and covering problems play a central role in combinatorial coding theory
due to many reasons. One remarkable feature is the wide use of links and tools from many
fields of mathematics, computer science, information theory. Several applications have
motivated the research, for instance: compression with distortion, decoding of errors and
erasures, cellular telecommunication. See [8] for an overview on covering codes.

Since packing problem in RT spaces has been studied [17, 22, 24], it seems interesting
to investigate the covering problem in RT space. However the literature on this subject
has remained rather poor: the only result deals with the computation of a particular class
of RT spaces (when the poset is a chain), according to [4, 27].

In this paper we explore this gap, by studying the covering problem for an arbitrary
RT space. We focus on the minimal cardinality of covering codes in RT spaces, mainly
upper bounds on such covering codes. Sharp bounds are given in Theorems 8 and 13, and
Corollaries 19 and 22.

This paper is organized as follows. We review some concepts on posets and poset metric
in Section 2. In Section 3 we introduce covering in RT spaces and present preliminary
results which are needed in our investigation, including a sharp bound in [4, 27]. A
connection between covering codes in Hamming and RT spaces is established in Section
4. Inductive relations are discussed in Section 5, generalizing several known bounds.
Such relationships combined with well-known results on covering codes yield some optimal
classes. In Section 6 we show a new method to construct MDS codes in RT spaces. In
Section 7 bounds arising from MDS codes are obtained, extending constructions due to
Stanton et al. [25], Blokhuis and Lam [3], and Carnielli [5]. We conclude this work with
some tables of lower and upper bounds for small instances.

2 Preliminaries

2.1 Poset

Our results are based on the perspective given by Brualdi et al. [4], where a codeword is
viewed as a vector and the RT metric is associated to a suitable poset metric. To present
this approach, we briefly describe a few concepts and properties on partially ordered set,
henceforth abbreviated poset. We refer to [9] for an overview on poset.

Let P be a finite poset whose partial order relation is denoted by �. A poset is a chain
when any two elements are comparable; a poset is an anti-chain when no two distinct
elements are comparable.

A subset I of P is an ideal of P when the following property holds: if b ∈ I and a � b,
then a ∈ I. The ideal generated by a subset A of P is the ideal of smaller cardinality
which contain A, denoted by 〈A〉. An element a ∈ I is maximal in I if a � b implies that
b = a. Analogously, an element a ∈ I is minimal in I if b � a implies that b = a. The
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complement of a subset I of P is denoted by Ic.
Let m and s be positive integers. Consider the set [m× s] := {1, . . . ,ms} partitioned

into m pairwise disjoint subsets {(i− 1)s+ 1, . . . , is} of size s, for i = 1, . . . ,m. Each one
of these parts is a chain whose the elements are ordered as (i− 1)s+ 1 � · · · � is. Hence
the set [m × s] has the structure of a poset: it is the union of m disjoint chains with s
elements each. We call this poset as Rosembloom-Tsfasman poset [m× s], and briefly by
RT poset [m× s].

Let Ik(RT ) be the set of all ideals with cardinality k of the RT poset [m× s]. A basic
property on Ik(RT ) is presented in the next result.

Proposition 1. [13, Proposition 1.1] Given I ∈ Ik(RT ), for each k 6 r 6 ms there
exists J ∈ Ir(RT ) such that I ⊆ J .

Denote by Ωj(i) the number of ideals of the RT poset [m × s] whose cardinality is i
and with exactly j maximal elements.

Example 2. The RT poset [2× 3] is represented in Figure 1.
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Figure 1: RT poset [2× 3]

Figure 2 presents all ideals of cardinality 4 of the RT poset [2× 3].
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Figure 2: Set I4(RT )

Table 1 below displays all the parameters Ωj(i) of the RT poset [2× 3].

j\i 1 2 3 4 5 6
1 2 2 2 0 0 0
2 0 1 2 3 2 1

Table 1: Parameters Ωj(i)
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2.2 RT metric

We review now the RT metric as a poset metric, according to [4]. Assume that the n
positions of the coordinates of a vector in Znq are in standard bijection with the elements
of the set [n]. A vector z = (z1, . . . , zn) ∈ Znq can be represented briefly by z = (z1 . . . zn).
As usual, the support of a vector z is denoted by supp(z) = {i : zi 6= 0}.

Given x, y ∈ Zmsq and the RT poset [m× s], the RT distance between x and y is

dRT (x, y) = |〈supp(x− y)〉|.

The set Zmsq endowed with the RT distance is a Rosenbloom-Tsfasman space, or simply,
RT space.

The additive group Zq can be replaced by an additive group G with |G| = q in the
definition of RT distance above. The RT distance can also be defined over an arbitrary
set Q with |Q| = q without a structure of an additive group, see for instance [11, 13, 22].

Example 3. Consider the RT poset [2× 3] presented in Example 2. Given x = (010100)
and y = (100110) in Z6

2, the RT distance between x and y is

dRT (x, y) = |〈{1, 2, 5}〉| = |{1, 2, 4, 5}| = 4.

In the RT space Zmsq , the RT ball centered at x of radius R is the set

BRT (x,R) = {y ∈ Zmsq : dRT (x, y) 6 R},

with cardinality

V RT
q (m, s,R) = 1 +

R∑
i=1

min{m,i}∑
j=1

qi−j(q − 1)jΩj(i), (1)

according to [4]. Since any RT ball of radius ms is the set Zmsq , Eq (1) yields

1 +
ms∑
i=1

min{m,i}∑
j=1

qi−j(q − 1)j = qms.

Thus one can determinate V RT
q (m, s,R) by making the difference between the number of

vectors in Zmsq and the number of vectors in the complementary set of a ball BRT (x,R),
that is,

V RT
q (m, s,R) = qms −

ms∑
i=R+1

min{m,i}∑
j=1

qi−j(q − 1)jΩj(i). (2)
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3 Covering codes in RT space

Covering codes in Hamming spaces are extended naturally to an arbitrary RT space, as
described below.

Definition 4. Given an RT poset [m × s], let C be a subset of Zmsq . The code C is an
R-covering of the RT space Zmsq when satisfies the property: for every x ∈ Zmsq , there is
a codeword c ∈ C such that dRT (x, c) 6 R, that is,⋃

c∈C

BRT (c, R) = Zmsq .

The number KRT
q (m, s,R) denotes the smallest cardinality of an R-covering of the RT

space Zmsq .

It is worth mentioning that an RT metric associated to an anti-chain (s = 1) of
length m is equivalent to the well-known Hamming distance. Therefore, the number
KRT
q (m, s,R) generalizes the classical number Kq(m,R) = KRT

q (m, 1, R).

Remark 5. Trivial values are easily computed for both extremal radius. The set C = Zmsq
is the only 0-covering of the RT space Zmsq , thus KRT

q (m, s, 0) = qms. Given an arbitrary
vector c ∈ Zmsq , the code C = {c} is an ms-covering of the RT space Zmsq . Therefore
KRT
q (m, s,ms) = 1.

We begin our results with a general upper bound.

Proposition 6. (Trivial upper bound) For everym, s, q > 2 and R such that 0 6 R 6 ms,

KRT
q (m, s,R) 6 qms−R.

Proof. Proposition 1 implies that there is an ideal I of the RT poset [m × s] with R
elements. The bound follows from the fact that the code

C = {(c1, . . . , cms) ∈ Zmsq : ci = 0 for all i ∈ I}

is an R-covering of the RT space Zmsq .

A closer look on the proof above reveals that every subset I with size R ensures an
R-covering C of the Hamming space Zmq . In contrast, the restriction of I being an ideal
is essential in RT spaces. We go back to Example 2 to illustrate this fact. The set
I = {2, 3, 5, 6} (which is not an ideal of the RT poset [2× 3]) induces the subspace

C = {000000, 000100, 100000, 100100},

which is not a 4-covering of the RT space Z6
2, because dRT (c, 111111) = 6 for all c ∈ C.

A simple but important lower bound on covering codes in RT spaces is stated below,
extending the classical ball covering code.
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Proposition 7. (Ball covering bound) For every m, s, q > 2 and R such that 0 6 R 6
ms,

KRT
q (m, s,R) >

qms

V RT
q (m, s,R)

.

Proof. The proof is straightforward.

Let C a subset of Zmsq . The code C is perfect (with respect to the RT poset [m× s])
provided that there exists an integer R such that the balls of radius R with centers at the
codewords of C are pairwise disjoint and their union is the space Zmsq .

Let C be an R-covering of the RT space Zmsq . The code C is perfect if and only if the
equality holds in Proposition 7.

The codes mentioned in Remark 5 are trivial perfect codes. Particularly interesting, a
classification of linear perfect codes with respect to a chain is established in [4, Theorem
2.1], whose proof yields implicitly the next result (see also [27, Theorem 2.3]). Charac-
terizations of such codes in more general setting are presented in [1, Proposition 3.1] and
[19, Theorem 7].

Theorem 8. [4, 27] For any positive integer s,

KRT
q (1, s, R) = qs−R.

Proof. An alternative proof is presented here. An RT ball of radius R in the RT space
Zsq has cardinality qR. Indeed, a look on the chain [1 × s] reveals that Ω1(i) = 1 and
Ωj(i) = 0 for every 1 < i 6 s. Eq. (1) produces

V RT
q (1, s, R) = 1 +

R∑
i=1

qi−1(q − 1) = 1 + (q − 1)
R∑
i=1

qi−1 = qR.

Hence the ball covering bound yields KRT
q (1, s, R) > qs−R. On the other hand, a simple

application of the trivial upper bound concludes the argument.

Both Propositions 6 and 7 are sharp at least for R = 0, R = ms and for a chain (when
m = 1). Nevertheless, it is expected that these bounds can be far from the exact value for
most instances, like in the classical covering codes. A careful analysis on the coordinates
can be a tool to find improvements.

Let I = {i1, . . . , ik} be a subset of [n] = {1, . . . , n}. Given a vector x = (x1, . . . , xn) ∈
Znq , the projection of x with respect to I is the vector πI(x) = (xi1 , . . . , xik) ∈ Zkq . More
generally, for a non-empty subset A of Znq , the projection of A with respect to I is the set
πI(A) = {πI(a) : a ∈ A}.

Example 9. We claim KRT
2 (4, 2, 5) 6 3, which improves significantly the trivial upper

bound 8. For this purpose, choose the subset C = {c1, c2, c3} of Z8
2, where

c1 = (00000000), c2 = (01010101), c3 = (11111111).
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The set C is a 5-covering of the RT space Z8
2. Indeed, let I be the set formed by all

maximal elements of the RT poset [4× 2] (so I = {2, 4, 6, 8}). Given an arbitrary vector
x ∈ Z8

2, we analyze a few cases:
Case 1: If πI(x) ∈ {(0000), (0001), (0010), (0100), (1000)}, then a simple inspection

reveals that x is covered by c1.
Case 2: If πI(x) ∈ {(1111), (1110), (1101), (1011), (0111)}, then x is covered by c3.
Case 3: Otherwise, πI(x) ∈ {(1100), (0011), (1001), (0110), (1010), (0101)}. The anal-

ysis is divided into the following subcases:

(a) If πJ(x) = (000) for some J = {i− 1, i, j} with i, j ∈ I. Note that c1 covers x.

(b) If πJ(x) = (111) for some J = {i− 1, i, j} with i, j ∈ I. Here the word c3 covers x.

(c) Otherwise, if the subcases above do not hold for any i ∈ I, then π{i−1}(x) 6= π{i}(x).
A closer look shows us that x is covered by c2.

Example 10. The optimal bound KRT
2 (2, 2, 2) = 3 holds. For the upper bound, choose

C = {(0000), (0101), (1111)}. A similar argument used in Example 9 yields that C is a
2-covering of the RT space Z4

2, by using the ideals I = {1, 2} and J = {3, 4} of the RT
poset [2 × 2]. On the other hand, suppose by a contradiction that there is a 2-covering
C ′ with |C ′| = 2. Since V RT

2 (2, 2, 2) = 8, the set C ′ is a perfect code. Given distinct
x, y ∈ Z4

2, let w = (πI(x), πJ(y)). Since dRT (x,w) 6 2 and dRT (y, w) 6 2, we obtain
BRT (x, 2) ∩ BRT (y, 2) 6= ∅. This statement is a contradiction with the fact that C ′ is a
perfect 2-covering.

4 A Relationship between coverings in Hamming and RT spaces

A connection between the Hamming and RT metrics is established in this section, and
produces a systematic way for finding new lower bounds on KRT

q (m, s,R) from known
values of the classical covering codes.

Proposition 11. For every q > 2,

Kq(ms,R) 6 KRT
q (m, s,R) 6 KRT

q (1,ms,R).

Proof. Let C be an R-covering of the RT space Zmsq with |C| = KRT
q (m, s,R). Given

x ∈ Zmsq , there is c ∈ C such that dRT (x, c) 6 R. Since supp(x − c) is a subset of
〈supp(x− c)〉, it follows that

dH(x, c) = |supp(x− c)| 6 |〈supp(x− c)〉| = dRT (x, c) 6 R.

Hence C is also anR-covering of the Hamming space Zmsq , and this proves thatKq(ms,R) 6
KRT
q (m, s,R).

The upper bound on KRT
q (m, s,R) is straightforward from Proposition 6 and Theorem

8.
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Rodemich [21, Theorem 2] proved the classical bound Kq(n, n− 2) > q2/(n− 1). Hass
et al. [12, Theorem 8] reached Kq(n, n− 2) > 3q− 2n+ 2, improving the previous bound
when 5 6 n < q 6 2n− 4. These facts and Proposition 11 yield immediately:

Corollary 12. The following bounds hold:

1. If q > 10, then KRT
q (3, 2, 4) > q2/5.

2. If q ∈ {7, 8}, then KRT
q (3, 2, 4) > 3q − 10.

Both lower bounds in Corollary 12 improve those from the ball covering bound.

Theorem 13. For every m > (t − 1)q + 1, KRT
q (m, s,ms − t) = q holds. In particular,

KRT
q (m, s,ms− 1) = q.

Proof. The repetition code

C = {(0, . . . , 0), (1, . . . , 1), . . . , (q − 1, . . . , q − 1)}

is an (ms− t)-covering of the RT space Zmsq . Given an arbitrary vector x ∈ Zmsq , choose
(t−1)q+1 coordinates that are maximal elements of the RT poset [m×s]. The pigeonhole
principle states that there is a symbol, say y, that appears at least t times in these
coordinates. Take c = (y, . . . , y) ∈ C, and notice that dRT (x, c) = |〈supp(x−c)〉| 6 ms−t.
Hence KRT

q (m, s,ms− t) 6 |C| = q.
For the lower bound, suppose by contradiction that C is an (ms− t)-covering of Zmsq

whose cardinality is less than q. For each i ∈ [m × s], choose xi ∈ Zq such that ci 6= xi
for all c ∈ C. The vector x = (x1, . . . , xms) satisfies

dRT (x, c) = |〈supp(x− c)〉| = |{1, . . . ,ms}| = ms

for any c ∈ C, that is, the vector x is not covered by C. Hence KRT
q (m, s,ms− t) > q.

Theorem 13 generalizes the results:

• Kq(2, 1) = q, due to Kalbfleisch and Stanton [14];

• Kq(m, 1,m − t) = q for m > (t − 1)q + 1, by Carnielli [5, Theorem 9], Chen and
Honkala [7, Theorem 6].

The numbers KRT
q (m, s,ms− 1) = Kq(ms,ms− 1) = q reveal that Proposition 11 is

optimal at least for a class of parameters.

5 Inductive Relations

Inductive relations between parameters play a central role in the literature on covering
codes. In this section we focus on the behavior of inductive relations in RT spaces. All
the results in the present section deal with upper bounds for covering codes in RT spaces.
Sharp bounds are given in Corollaries 19 and 22.
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Proposition 14. (Trivial relations) For every m, s, and R such that 0 6 R 6 ms, the
following bounds hold:

1. KRT
q (m, s,R + 1) 6 KRT

q (m, s,R).

2. KRT
q (m, s,R) 6 KRT

q+1(m, s,R).

The result below extends the very useful relation Kq(n1 + n2, R1 + R2) 6 Kq(n1, R1)
Kq(n2, R2), see [8] for instance.

Theorem 15. (Directed sum) For R1 6 m1s and R2 6 m2s,

KRT
q (m1 +m2, s, R1 +R2) 6 KRT

q (m1, s, R1)K
RT
q (m2, s, R2).

Proof. The RT poset [(m1 + m2) × s] can be viewed as a disjoint union of the RT poset
[m1 × s] and the RT poset [m2 × s]. This simple remark is the key of the proof. For
i = 1, 2, let Ci be an optimal Ri-covering of the RT space Zmis

q . The set

C1 ⊕ C2 = {(c1, c2) ∈ Z(m1+m2)s
q : c1 ∈ C1 and c2 ∈ C2}

is an (R1+R2)-covering of the RT space Z(m1+m2)s
q . For a vector (x, y) ∈ Z(m1+m2)s

q , notice
that dRT ((x, y), C1 ⊕ C2) = dRT (x,C1) + dRT (y, C2) and the result follows.

Corollary 16. If n 6 m and R 6 ns, then

KRT
q (m, s,R) 6 q(m−n)sKRT

q (n, s, R).

Proof. Apply Theorem 15 with m1 = m− n, m2 = n, R1 = 0, R2 = R and use the trivial
number KRT

q (m− n, s, 0) = q(m−n)s.

In a similar spirit, known results on covering codes can be adapted to RT spaces.

Proposition 17. For n 6 m and ns 6 R,

KRT
q (m, s,R) 6 KRT

q (m− n, s, R− ns).

Proof. Let C ′ be an (R − ns)-covering of the RT space Z(m−n)s
q . Consider the ideal

I = {1, . . . , ns} of the RT poset [m× s]. Take the set

C = {c ∈ Zmsq : πI(c) = 0 ∈ Znsq and πIc(c) ∈ C ′}.

Note that |C| = |C ′|. It remains to prove that C is an R-covering of the RT space Zmsq .
Given an arbitrary x ∈ Zmsq , there is c′ ∈ C ′ such that dRT (πIc(x), c′) 6 R − ns. Choose
c ∈ C such that πIc(c) = c′. Thus

dRT (x, c) 6 ns+ dRT (πIc(x), c′) 6 ns+R− ns = R,

concluding the proof.
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Given an RT poset [m × s] and a positive integer r < s, the notation below denotes
the ideal

I(r) = 〈{r, s+ r, . . . , (m− 2)s+ r, (m− 1)s+ r}〉. (3)

Proposition 18. For every r < s and R 6 mr,

KRT
q (m, s,R) 6 qm(s−r)KRT

q (m, r,R).

Proof. Let C ′ be an optimal R-covering of the RT space Zmrq and let I = I(r) denote the
ideal in Eq. (3). Consider the following subset of Zmsq

C = {c ∈ Zmsq : πI(c) ∈ C ′}.

We claim that C is an R-covering of the RT space Zmsq . Indeed, given x ∈ Zmsq , note that
πI(x) ∈ Zmrq , hence there is a codeword c′ ∈ C ′ such that dRT (πI(x), c′) 6 R. Take now
c ∈ C with πI(c) = c′ and πIc(c) = πIc(x). It is clear that dRT (x, c) = dRT (πI(x), πI(c)) 6
R. Since |C| = qm(s−r)KRT

q (m, r,R), the statement is proved.

Corollary 19. For any s > 2, KRT
2 (3, s, 1) = 23s−2.

Proof. The lower bound is derived from the ball covering bound. A combination of Propo-
sition 18 (r = 1) with K2(3, 1) = 2 implies the upper bound.

A simple analysis on the construction in Proposition 18 reveals that the code C is
linear if and only if C ′ is linear. By beginning with the code C ′ = {001, 110}, Corollary
19 produces a class of nonlinear perfect codes.

Example 20. We discuss a comparative analysis between Corollary 16 and Proposition
17. For this purpose, we need the bounds: KRT

2 (3, 2, 3) 6 8 (trivial upper bound),
KRT

2 (4, 2, 5) 6 3 (Example 9), and KRT
2 (3, 2, 1) = 16 (Corollary 19).

1. Corollary 16 produces KRT
2 (4, 2, 3) 6 22KRT

2 (3, 2, 3) 6 32. However, an application
of Proposition 17 when n = 1 shows us KRT

2 (4, 2, 3) 6 KRT
2 (3, 2, 1) = 16, which

improves significantly the previous bound 32.

2. In contrast, KRT
2 (5, 2, 5) 6 KRT

2 (3, 2, 1) = 16 follows from Proposition 17 when
n = 2. But Corollary 16 implies KRT

2 (5, 2, 5) 6 22KRT
2 (4, 2, 5) 6 12, which is better

than the previous bound 16.

Proposition 21. For every r < s and mr 6 R,

KRT
q (m, s,R) 6 KRT

q (m, s− r, R−mr).

Proof. Let C ′ be an optimal (R−mr)-covering of the RT space Zm(s−r)
q . Again I = I(r)

denotes the ideal from Eq. (3). The subset

C = {c ∈ Zmsq : πI(c) = 0 ∈ Zmrq and πIc(c) ∈ C ′}

of Zmsq is an R-covering of the RT space Zmsq . The proof of this statement resembles
strongly that presented in Proposition 18.
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The result above is imperceptible in Hamming spaces, because Proposition 21 applied
to the case r = 0 is collapsed into the innocuous bound KRT

q (m, s,R) 6 KRT
q (m, s,R).

An exact class is derived from the previous proposition, more specifically:

Corollary 22. For any s > 2, KRT
2 (2, s, 2s− 2) = 3.

Proof. We firstly show that V RT
2 (2, s, 2s− 2) = 22s−1. Indeed, Eq. (2) implies

V RT
2 (2, s, 2s− 2) = 22s −

2s∑
i=2s−1

2∑
j=1

2i−jΩj(i).

If i > s, then Ω1(i) = 0 in the RT poset [2× s]. It is easy to see that Ω2(2s− 1) = 2 and
Ω2(2s) = 1. Hence V RT

2 (2, s, 2s− 2) = 22s−1.
Suppose by a contradiction that there is a (2s − 2)-covering C of the RT space

Z2s
2 with |C| = 2. The ball covering bound implies KRT

2 (2, s, 2s − 2) > 2. Since
V RT
2 (2, s, 2s − 2) = 22s−1, the covering C is perfect. However, given distinct x, y ∈ Z2s

2 ,
note that BRT (x, 2s−2)∩BRT (y, 2s−2) 6= ∅. Indeed, write x = (x1, . . . , xs, xs+1, . . . , x2s)
and y = (y1, . . . , ys, ys+1, . . . , y2s). Take z = (x1, . . . , xs, ys+1, . . . , y2s). A simple inspec-
tion shows that dRT (x, z) 6 s 6 2s − 2 and dRT (y, z) 6 s 6 2s − 2, which implies
z ∈ BRT (x, 2s−2)∩BRT (y, 2s−2). This contradicts the fact that C is a perfect (2s−2)-
covering.

On the other hand, note that KRT
2 (2, 2, 2) = 3 from Example 10. By applying Propo-

sition 21 when r = s − 2, we have KRT
2 (2, s, 2s − 2) 6 KRT

2 (2, 2, 2) = 3. Therefore the
optimal value is proved.

Covering codes in Hamming spaces can be very useful to improve certain upper bounds
on covering codes in RT spaces, as described in the next result.

Theorem 23. Let m, s, q > 1 and p, k, n, r integers such that 0 < p 6 s, 0 < k 6 m and
m = nr. Then the following inequality holds:

KRT
q (m, s, ks+ (m− k)p) 6 KRT

a (n, r, k),

where a = KRT
q (1, s, p) = qs−p (see Theorem 8).

Proof. Let H1 be an optimal p-covering of the RT space Zsq. Then |H1| = KRT
q (1, s, p) = a,

and a bijection identify the sets H1 and Za. Consider H2 an optimal k-covering of the RT
space Zma , where the symbols are viewed as elements in H1.

The set H2 yields a (ks+ (m− k)p)-covering of the RT space Zmsq . Indeed, given x ∈
Zmsq , write x = (y0, . . . , ym−1), where yi = (xis+1, . . . , x(i+1)s) ∈ Zmq for i = 0, 1, . . . ,m− 1.
For each yi ∈ Zsq, there exists zi ∈ H1 such that dRT (yi, zi) 6 p (in respect to RT poset
[1×s]). Define z = (z0, . . . , zm−1) ∈ Zma . Then there exists a vector w = (w0, . . . , wm−1) ∈
H2 such that dRT (z, w) 6 k (in respect to RT poset [n × r]). Thus dRT (z, w) 6 ks (in
respect to RT poset [m× s]). We claim that the vector w ∈ H2 covers x in the RT space
Zmsq . In the coordinates where w and z differs, dRT (x,w) is at most ks. Moreover, in
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the m − k coordinates where w and z coincide, dRT (yi, zi) 6 p holds, then dRT (x,w) is
at most (m − k)p. Hence, dRT (x,w) 6 ks + (m − k)p, that is, we prove that H2 is a
(ks + (m − k)p)-covering of the RT space Zmsq with |H2| = KRT

a (n, r, k). The proof is
complete.

Theorem 23 above generalizes a bound by Carnielli [5, Theorem 5].

Remark 24. Proposition 11 provides Ka(nr, k) 6 KRT
a (n, r, k). Since m = nr in Theorem

23, a closer look reveals that the best choice to reduce the upper bound is n = m and
r = 1. Therefore Theorem 23 can be rewritten as KRT

q (m, s, ks+ (m− k)p) 6 Ka(m, k).

Appropriate parameters m, s, q, k and p sometimes provide more than one bound on
KRT
q (m, s,R). As an illustration, take the parameters m = 4, s = 4, q = 2, k = 1 and

p = 2 in Theorem 23. Then KRT
2 (4, 4, 10) 6 K4(4, 1) = 24. On the other hand, take k = 2

and p = 1. Theorem 23 states that KRT
2 (4, 4, 10) 6 K8(4, 2) 6 23, which is better than

24.

Example 25. Let us now compare Theorem 23 and the inductive relations presented in
this section. Take m = 3, s = 4, q = 2, k = 1 and p = 1. Let a = KRT

2 (1, 4, 1) = 8
(Theorem 8) and K8(3, 1) = 32 ([15]). Theorem 23 produces KRT

2 (3, 4, 6) 6 K8(3, 1) = 32,
which improves the bound 48 from Corollary 16.

On the other hand, the sharp bound a = KRT
2 (1, 4, 2) = 4 holds from Theorem 8. In

view of K4(3, 1) = 8 ([15]), Theorem 23 yields KRT
2 (3, 4, 8) 6 K4(3, 1) = 8. This bound is

better than 12, according to Proposition 17.

6 A new class of MDS codes in RT spaces

The famous Singleton bound was extended to an RT linear space over a finite field in [22].
The papers [11, 13, 17] consider this bound in a slightly more general setting, as follows.
Let C be a code in the RT space Zmsq with cardinality qk, length ms, and minimum
distance d = dRT (C). The parameters of C with respect to RT metric are denoted by
[m, s, k, d]q. The Singleton bound states that

dRT (C) 6 ms+ 1− k. (4)

A code C meeting the Singleton bound (Eq. 4) is an MDS (maximum distance separable)
code. A research problem arises naturally: the existence of such MDS codes. In this
direction, Quistorff [17] presented a classification for the binary alphabet, and two classes
of MDS codes in RT spaces are built in [22] (constructions using hyperderivative of a
polynomial over a finite field are showed by Skriganov [24]).

Theorem 26. [22] Given a prime power q, for any s and a such that s 6 q and
0 6 a 6 qs, there exist MDS linear codes with parameters [q, s, a + 1, qs − a]q and
[q + 1, s, a+ 1, (q + 1)s− a]q.

In this section we aim to establish a new class of MDS codes in RT spaces. Under
some conditions we construct an MDS code with parameters [t, n, 2, tn− 1]q.
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Theorem 27. Suppose that there is an MDS code C in the Hamming space Znq with
dH(C) = n − 1. For each t ∈ {2, . . . , n} there is an MDS code Ct in the RT space Ztnq
(RT poset [t× n]) with dRT (Ct) = tn− 1.

Proof. Let σ be the cyclic permutation σ = (1 2 . . . n). Given t ∈ {2, . . . , n}, define the
code Ct according to the rule: each c = (c1, . . . , cn) in C is associated to the vector

φ(c) = (c1, . . . , cn, cσ(1), . . . , cσ(n), . . . , cσt−1(1), . . . , cσt−1(n))

in Ztnq . Let Ct = φ(C). Since |Ct| = |C| = q2, Singleton bound implies dRT (Ct) 6 tn− 1.
It remains to prove that dRT (Ct) > tn−1. For this purpose, we describe properties related
to codewords in Ct as follows. Given a = (a1, . . . , an) ∈ C and b = (b1, . . . , bn) ∈ C, note
that a and b coincide at most in one coordinate, since dH(C) = n − 1. Therefore, for
every i ∈ {1, . . . , n− 1} the vectors (aσi(1), . . . , aσi(n)) and (bσi(1), . . . , bσi(n)) also coincide
at most in one coordinate. Moreover, the statements hold:

(1) If an = bn, then aσi(n) 6= bσi(n) for every i ∈ {1, . . . , n− 1}.
(2) If an 6= bn, then there is at most one index i ∈ {1, . . . , n−1} such that aσi(n) = bσi(n)

and aσi(n−1) 6= bσi(n−1).
Given distinct codewords φ(a) and φ(b) in Ct, we have

φ(a) = (a1, . . . , an, aσ(1), . . . , aσ(n), . . . , aσt−1(1), . . . , aσt−1(n))
φ(b) = (b1, . . . , bn, bσ(1), . . . , bσ(n), . . . , bσt−1(1), . . . , bσt−1(n)).

The statements (1) and (2) imply that dRT (φ(a), φ(b)) > tn − 1. Therefore, the code Ct
meets the Singleton bound.

Given a positive integer q, N(q) denotes the maximum cardinality of a set of mutually
orthogonal Latin squares of order q. An MDS code (in a Hamming space) with cardinality
q2, length n, and minimum distance n−1 is equivalent to a set of n−2 mutually orthogonal
Latin squares of order q (n − 2 6 N(q)), according to [23, Theorem 3]. The following
result is an immediate consequence of Theorem 27.

Corollary 28. Given positive integers q, t and n such that 3 6 n 6 N(q) + 2 and
2 6 t 6 n, there exists an MDS code with parameters [t, n, 2, tn− 1]q.

Since N(q) = q − 1 for a prime power q, the class of MDS codes with parameters
[q+1, 1, 2, q]q is also derived from Theorem 26. While Theorem 26 produces always linear
codes, Theorem 27 generates nonlinear codes over an arbitrary alphabet. For instance,
because N(12) > 5 there is an MDS code of type [t, 7, 2, 7t − 1]12 for any 2 6 t 6 7 by
the previous corollary.

Example 29. The nonlinear code C = {(100), (111), (001), (010)} is an MDS in the
Hamming space Z3

2 with minimum distance 2. Let σ be the cyclic permutation σ = (1 2 3).
Each c = (c1, c2, c3) ∈ C is associated to

φ(c) = (c1, c2, c3, cσ(1), cσ(2), cσ(3), cσ2(1), cσ2(2), cσ2(3))

= (c1, c2, c3, c2, c3, c1, c3, c1, c2)
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The construction above produces

C3 = φ(C) = {(100001010), (111111111), (001010100), (010100001)}.

Theorem 27 states that C3 is an MDS code in the RT space Z9
2 with minimum distance

8 (with respect to the RT poset [3 × 3]). In contrast, C3 is not an MDS code in the
Hamming space Z9

2.

7 Upper bounds from MDS codes

MDS codes have been a tool to construct covering codes in Hamming spaces. Such codes
have been applied to covering codes in [3, 5, 6, 18, 25] as well as to closely related concepts
[10]. We refer to [8] for additional contributions on this topic.

In this section we explore several upper bounds for covering codes in RT spaces arising
from MDS codes, extending a well-known result in the literature.

Theorem 30. Suppose that there is an MDS code in the RT space Zmsq with minimum
distance d+ 1. For every r > 2,

KRT
qr (m, s, d) 6 qms−dKRT

r (m, s, d).

Proof. Throughout this proof, the set Zqr is regarded as the set Zqr = Zq × Zr by the
bijection x+ry → (x, y). This strategy allows us to analyze information on the coordinates
x and y separately.

Let H be an optimal d-covering of the RT space Zmsr , and let C be an MDS code with
dRT (C) = d+ 1 in the RT space Zmsq . The set

G = {((c1, h1), . . . , (cms, hms)) ∈ Zmsqr : (c1, . . . , cms) ∈ C, (h1, . . . , hms) ∈ H}

is a d-covering of the RT space Zmsqr .
Indeed, given an arbitrary z = ((x1, y1), . . . , (xms, yms)) ∈ Zmsqr , take x = (x1, . . . , xms)

and y = (y1, . . . , yms). Clearly, x ∈ Zmsq and y ∈ Zmsr .
Since H is a d-covering of the RT space Zmsr , for y ∈ Zmsr there is h = (h1, . . . , hms) ∈ H

such that dRT (y, h) 6 d. Consider the ideal J = 〈supp(y− h)〉. By Proposition 1, there is
an ideal I ∈ Id(RT ) of the RT poset [m× s] such that J ⊆ I. Because I ∈ Id(RT ) and
C is an MDS code with dRT (C) = d + 1, there is a codeword c = (c1, . . . , cms) in C such
that x and c coincide in all coordinates of Ic. Thus supp(x− c) ⊆ I.

Choose now g = ((c1, h1), . . . , (cms, hms)) ∈ G. By construction, z and g coincide in
all coordinates of Ic. Hence dRT (z, g) = |〈supp(z − g)〉| 6 |I| = d, and this completes the
argument. Therefore KRT

qr (m, s, d) 6 |G| = |C||H| = qms−dKRT
r (m, s, d).

An MDS code with minimum distance d+1 is also known as a d+1-Latin code, because
its connection with Latin squares. Therefore Theorem 30 generalizes [5, Theorem 6]. See
also [8, Theorem 3.7.10].

The impact of Theorem 30 is discussed now. Classical MDS codes in Hamming spaces
(see [23]) can be applied in our investigation.
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Corollary 31. The following statements hold:

1. KRT
qr (m, s, 1) 6 qms−1KRT

r (m, s, 1).

2. For q a prime power and ms = q + 1,
KRT
qr (m, s, 2) 6 qq−1KRT

r (m, s, 2).

Proof. Let C be a subset of Zmsq . If C is an MDS code in the Hamming space Zmsq , then
C is also an MDS code in the RT space Zmsq , according to [17, Theorem 12] (or [13,
Corollary 4.2]). This simple but import fact allows us to apply Theorem 30 combined
with the well-known classes of MDS codes below:

1. For n > 3, the set C = {(c1, . . . , cn) ∈ Znq : c1 + . . . + cn ≡ 0 (mod q)} is an MDS
code in the Hamming space Znq with minimum distance 2.

2. Let C be a Hamming code with length q+1, dimension q−1, and minimum distance
3. We refer to [23] for the construction of this code.

For s = 1, Theorem 30 yields the classical relationKqr(m, 1) 6 qm−1Kr(m, 1), obtained
initially by Stanton et al. [25] and rediscovered by Blokhuis and Lam [3, Theorem 3.1].

Rosenbloom and Tsfasman [22] built the first classes of MDS codes in RT spaces which
are not MDS in Hamming spaces. These codes are known as Reed-Solomon m-codes, since
the construction is fully inspired by classical Reed-Solomon codes. Theorems 26 and 30
imply the following bounds.

Corollary 32. Given q a prime power and positive integer such that s 6 q, and a 6 qs,

1. KRT
qr (q, s, qs− (a+ 1)) 6 qa+1KRT

r (q, s, qs− (a+ 1)).

2. KRT
qr (q + 1, s, (q + 1)s− (a+ 1)) 6 qa+1KRT

r (q + 1, s, (q + 1)s− (a+ 1)).

Example 33. Given q = 3, r = 2, and a = 2, Corollary 32.2 and Example 9 produce
KRT

6 (4, 2, 5) 6 27KRT
2 (4, 2, 5) 6 81, improving significantly the trivial upper bound 216.

We conclude our results with an immediate application of Theorem 30 and Theorem
27.

Corollary 34. Suppose that there exists an MDS code C in the Hamming space Zsq with
dH(C) = s− 1. For any 2 6 m 6 s,

KRT
qr (m, s,ms− 2) 6 q2KRT

r (m, s,ms− 2).

Example 35. Let us illustrate this bound:

1. Example 29 states that there exists an MDS code in the RT space Z9
2 with min-

imum distance 8. Theorem 13 implies KRT
2 (3, 3, 7) = 2, therefore KRT

4 (3, 3, 7) 6
29−7KRT

2 (3, 3, 7) = 8, which is better than the trivial upper bound 16.
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2. There exists an MDS code C in the Hamming space Z3
6 with minimum distance

dH(C) = 2, according to [23, Theorem 3]. Corollary 34 implies KRT
12 (3, 3, 7) 6

69−7KRT
2 (3, 3, 7) = 72, since KRT

2 (3, 3, 7) = 2 by Theorem 13. This bound improves
the trivial upper bound 144.

As mentioned in this section, MDS codes may give good bounds for covering codes in
RT spaces. Some classes of codes with distance properties close to MDS codes have been
studied, see near MDS code in [2] for instance. It would be interesting to investigate how
these classes can be applied to covering codes in RT spaces.

8 Tables

We finally present tables of lower and upper bounds on KRT
2 (m, s,R) for “small” values

of m, s and R. We do not take account the case s = 1 because this class corresponds
to the classical numbers Kq(m,R). The case m = 1 is omitted too, since its numbers
are completely determined in Theorem 8. Updated tables by Kéri [15] are very useful for
constructing some columns of our tables.

A few conventions are adopted. In the tables, the unmarked lower and upper bounds
are derived from Proposition 7 or Proposition 6, respectively. When the bound is sharp,
a capital letter at the right side explains the reason. When an upper bound is improved,
we use a lower case letter at the right side of the upper bound, according to the keys in
Table 2.

Table 2: Keys
a Example 9 f Theorem 23
b Corollary 16 A Example 10
c Proposition 17 B Theorem 13
d Proposition 18 C Corollary 19
e Proposition 21 D Corollary 22

Table 3: KRT
2 (2, s, R)

s\R 1 2 3 4 5 6 7 8

2 6-8 3 A 2 1
3 22-32 8-12 d 4-8 3 D 2 1
4 86-128 32-48 d 13-32 6-12 d 4-8 3 D 2 1
5 342-512 128-192 d 52-128 22-48 d 10-32 6-12 d 4-8 3 D
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Table 4: KRT
2 (3, s, R)

s\R 1 2 3 4 5 6 7

2 16 C 5-12 b 3-8 2 B 2 1
3 128 C 40-96 b 14-64 7-16 d 4-8 f 2-8 2 B
4 1024 C 316-768 b 108-512 40-128 d 19-96 d 10-32 f 5-16 d

Table 5: KRT
2 (4, s, R) for R = 1, . . . , 5

s\R 1 2 3 4 5

2 52-64 b 14-32 d 6-16 c 3-8 b 2-3 a
3 820-1024 b 216-512 d 66-256 d 26-128 b 12-48 d
4 13108-16384 b 3450-8192 d 1041-4096 d 342-2048 b 135-768 d

Table 6: KRT
2 (4, s, R) for R = 6, . . . , 13

s\R 6 7 8 9 10 11 12 13

2 2 B 2 1
3 6-24 f 4-16 b 3-7 f 2-3 e 2 B 2 1
4 58-384 d 27-192 f 14-112 d 8-48 d 5-23 f 3-16 c 2-7 f 2-3 e
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