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Abstract

A partial cube is a graph having an isometric embedding in a hypercube. Par-
tial cubes are characterized by a natural equivalence relation on the edges, whose
classes are called zones. The number of zones determines the minimal dimension
of a hypercube in which the graph can be embedded. We consider the problem of
covering the vertices of a partial cube with the minimum number of zones. The
problem admits several special cases, among which are the following;:

e cover the cells of a line arrangement with a minimum number of lines,

e select a smallest subset of edges in a graph such that for every acyclic ori-
entation, there exists a selected edge that can be flipped without creating a
cycle,

e find a smallest set of incomparable pairs of elements in a poset such that in
every linear extension, at least one such pair is consecutive,

e find a minimum-size fibre in a bipartite poset.

We give upper and lower bounds on the worst-case minimum size of a covering by
zones in several of those cases. We also consider the computational complexity of
those problems, and establish some hardness results.

Keywords: Partial cubes; Set cover; Partial orders; Acyclic orientations.

1 Introduction

As an introduction and motivation to the problems we consider, let us look at two puzzles.

*Supported by ESF EUROCORES programme EuroGIGA—CRP ‘ComPoSe’ and F.R.S.-FNRS Grant
R70.01.11F.
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Figure 1: A partial cube with vertex labels representing an isometric embedding in ()
and a highlighted zone.

Hitting a consecutive pair. Given a set of n elements, how many pairs of them must be
chosen so that every permutation of the n elements has two consecutive elements forming
a chosen pair?

Guarding cells of a line arrangement. Given an arrangement of n straight lines in the
plane, how many lines must be chosen so that every cell of the arrangement is bounded
by at least one of the chosen line?

While different, the two problems can be cast as special cases of a general problem in-
volving partial cubes. The n-dimensional hypercube @, is the graph with the set {0,1}"
of binary words of length n as vertex set, and an edge between every pair of vertices that
differ on exactly one bit. A partial cube G is a subgraph of an n-dimensional hypercube
with the property that the distance between two vertices in G is equal to their Hamming
distance, that is, their distance in ),,. In general, a graph G is said to have an isometric
embedding in another graph H whenever G is a subgraph of H and the distance between
any two vertices in G is equal to their distance in H. Hence partial cubes are the graphs
admitting an isometric embedding in @), for some n. The dimension of the partial cube
is the minimum n for which such an embedding exists. The embedding can then be shown
to be unique (see for instance Hammack et al. [14] for details). The edges of a partial cube
can be partitioned into at most n equivalence classes called zones, each corresponding to
one of the n directions of the edges of @Q,,.
We consider the following

Minimum Zone Cover Problem: Given a partial cube, find a smallest subset S of its
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zones such that every vertex is incident to an edge of one of the zones in S.

In what follows, we use the expression zone cover for any subset of zones covering the
vertices (not necessarily minimum). If we refer to the labeling of the vertices by words
in {0, 1}", the problem amounts to finding a smallest subset I of [n] such that for every
vertex v of the input partial cube, there is at least one ¢ € I such that flipping bit ¢ of
the word of v yields another vertex.

2 Classes of Partial Cubes

The reader is referred to the books of Ovchinnikov [17] and Hammack, Imrich, and
Klavzar [14] for known results on partial cubes. Let us also mention that some other
structures previously defined in the literature are essentially equivalent to partial cubes.
Among them are well-graded families of sets defined by Doignon and Falmagne [7], and
Media, defined by Eppstein, Falmagne, and Ovchinnikov [10].

We are interested in giving bounds on the minimum number of zones required to cover
the vertices of a partial cube, but also in the computational complexity of the problem
of finding such a minimum cover. Regarding bounds, it would have been nice to have a
general nontrivial result holding for every partial cube. Unfortunately, only trivial bounds
hold in general.

In one extreme case, the partial cube G = (V| F) is a star, consisting of one central
vertex connected to |V| — 1 other vertices of degree one. This is indeed a partial cube
in dimension n = |V| — 1, every zone of which consists of a single edge. Since there are
n vertices of degree one, all n zones must be chosen to cover all vertices. In the other
extreme case, the partial cube is such that there exists a single zone covering all vertices.
This lower bound is attained by the hypercube @),.

Table 1 gives a summary of our results for the various families of partial cubes that we
considered. For each family, we consider upper and lower bounds and complexity results.
We now briefly describe the various families we studied. The proofs of the new results
are in the following sections.

2.1 Hyperplane Arrangements

The dual graph of a simple' arrangement of n hyperplanes in R is a partial cube of
dimension n. The zone cover problem becomes the following: given a simple hyperplane
arrangement, find a smallest subset S of the hyperplanes such that every cell of the
arrangement is bounded by at least one hyperplane in S.

The case of line arrangements was first considered in [3]. In fact it was this problem
that motivated us to investigate the generalization to partial cubes. The best known
lower and upper bounds for line arrangements on |S| are of order n/6 and n—O(y/nlogn)
(see [1]). The complexity status of the optimization problem is unknown.

L An arrangement is called simple if any d + 1 hyperplanes have empty intersection.
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Figure 2: An arrangement of 4 lines superimposed with its dual.

Instead of lines and hyperplanes it is also possible to consider Euclidean or spherical
arrangements of pseudo-lines and pseudo-hyperplanes, their duals are still partial cubes.
Actually, all the cited results apply to the case of arrangements of pseudo-lines.

Spherical arrangements of pseudo-hyperplanes are equivalent to oriented matroids,
this is the Topological Representation Theorem of Folkman and Lawrence. The pseudo-
hyperplanes correspond to the elements of the oriented matroid and the cells of the ar-
rangement correspond to the topes of the oriented matroid. Hence the zone cover problem
asks for a minimum size set C' of elements such that for every tope T there is an element
¢ € C such that T' @ ¢ is another tope. For more on oriented matroids we refer to [2].

2.2 Acyclic Orientations

From a graph G = (V| E), we can define a partial cube H in which every vertex is an
acyclic orientation of G, and two orientations are adjacent whenever they differ by a single
edge reversal (flip). This partial cube has dimension equal to the number of edges of G.
It is also the dual graph of the arrangement of the |E| hyperplanes of equation z; = x;
for ij € F in RV. Every cell of this arrangement corresponds to an acyclic orientation,
and adjacent cells are exactly those that differ by a single edge. This observation, in
particular, shows that H is connected. The graph H and the notion of edge flippability
have been studied by Fukuda et al. [11] and more recently by Cordovil and Forge [6].

The zone cover problem now becomes the following: given a graph G = (V, E), find
a smallest subset S C F such that for every acyclic orientation of GG, there exists e € S
such that flipping the orientation of e does not create a cycle.

Note that if G is the complete graph, H is the skeleton of the permutohedron. We
can show that even in that case, deciding whether a given subset of edges is a feasible
solution to the zone cover problem is NP-complete.

2.3 Linear Extension Graphs

The next class of partial cubes we consider are subgraphs of the permutohedron. Given
a poset P, we define a partial cube, every vertex of which is a linear extension of P.
Two such vertices are adjacent whenever the two corresponding linear extensions can be
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Figure 3: Flip graph of acyclic orientations of the 4-cycle.

obtained from one another by swapping two consecutive elements. The linear extension
graph is therefore the subgraph of the permutohedron induced by the linear extensions of
P. An example is shown on Figure 4. It has been the subject of thorough investigations,
in particular by Reuter [18], and Massow [16].

The zone cover problem can now be stated as follows: given a poset P, find the
minimum number of incomparable pairs of elements such that in every linear extension
of P, at least one such pair is consecutive.

In the special case where the order on P is empty (no pair is comparable), we indeed
obtain the partial cube of acyclic orientations of the complete graph.

2.4 Median Graphs

A median graph is an undirected graph in which every three vertices x, y, and z have a
unique median, that is, a vertex p(z,y,z) that belongs to shortest paths between each
pair of z, y, and z. Median graphs form structured subclass of partial cubes that has been
studied extensively, see [5] and references therein. Since the star and the hypercube are
median graph there are no non-trivial upper or lower bounds for the zone cover problem
on this class. We use a construction of median graphs to prove hardness of the zone cover
problem.
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Figure 4: A poset (left) and its linear extension graph (right).

2.5 Distributive Lattices
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Figure 5: A poset (left) and the cover graph of its lattice of downsets (right).

Cover graphs of distributive lattices? are partial cubes. From Birkhoff’s representation
theorem (a.k.a. Fundamental Theorem of Finite Distributive Lattices) we know that there
is a poset P such that the vertices of the partial cube are the downsets of P, and the
zones of the partial cube in turn correspond to the elements of P.

The problem becomes: given a poset P, find a smallest subset S of its elements such
that for every downset D of P, there exists v € S such that either D U {v} or D\ {v} is
a downset, distinct from D.

2For a very good introduction to terminology related to partial orders and lattices we refer to Chapter
3 of Stanley, Enumerative Combinatorics Vol. I [19].
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Partial Cubes | Lower bound | Upper bound | Complexity

Arrangements of n lines n — o(n) n — Q(vnlogn) B
in R? (Thm. 1) 1]
Arrangements of n B 1/d B
hyperplanes in R? n(;éln(ln 2))
Acyclic orientations Minimum Recognition is
B edge cut coNP-complete, even for
(Thm. 6) complete graphs (Thm. 3)
Linear Extension Graphs 2n (Cor.13) Recognition is
coNP-complete, even for
empty orders (Cor. 9)
Median graphs n NP-complete (Cor. 15),
APX-hard (Cor. 16)
Distributive lattices with 2n/3 Recognition is
representative poset of n - (Cor. 18) coNP-complete (Cor. 20)
elements ' »P-complete (Cor. 21)
Trees with n edges n—1 P (min edge cover)

Table 1: Worst-case bounds and complexities for the special cases of the zone cover
problem. When used, n denotes the dimension of the partial cube.

2.6 Trees

Trees with n edges are partial cubes of dimension exactly n. Since every zone contains
exactly one edge, the zone cover problem on trees boils down to the edge cover problem
on trees. There are instances attaining the upper bound of n — 1, and there is a simple
dynamic programming algorithm that computes an optimal cover in linear time.

3 Hyperplane Arrangements

We first consider the case of hyperplanes in R?, that is, line arrangements. Recall that
we have defined a zone cover for an arrangement of lines as a subset of the lines so that
every cell of the arrangement is bounded by at least one of the chosen lines. We first give
a lower bound on the size of a zone cover for an arrangement of lines.

Theorem 1. The minimum number of lines needed to cover the cells of any arrangement
of n lines is n — o(n).

Proof. The proof is a direct consequence of known results on the following problem from
Erdés: given a set of points in the plane with no four points on a line, find the largest
subset in general position, that is, with no three points on a line. Let a(n) be the minimum
size of such a set over all arrangements of n points. Fiiredi observed [12] that a(n) = o(n)
follows from the density version of the Hales-Jewett theorem [13]. But this directly proves
that we need at least n — o(n) lines to cover all cells of an arrangement. The reduction

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.31 7



is the one observed by Ackerman et al. [1]: consider the line arrangement that is dual to
the point set, and slightly perturb it so that each triple of concurrent lines forms a cell
of size three. Now the complement of any zone cover is in general position in the primal
point set. O

We now show that for arrangements of hyperplanes in R?, with d = O(1), there always
exists a zone cover of size at most n — Q(n'/). The proof is along the lines of the proof
given in [3] for the d = 2 case.

Theorem 2. In every arrangement of n hyperplanes in general position in RY (with
d = O(1)), there exists a subset of the hyperplanes of size at most n — Q(n'/?) such that
every cell is bounded by at least one hyperplane in the subset.

Proof. We will prove that every such arrangement has an independent set of size Q(nl/ d),
where an independent set is defined as the complement of a zone cover, that is, a subset
of the hyperplanes such that no cell is bounded by hyperplanes of the subset only.

Let H be a set of n hyperplanes, and consider an arbitrary, inclusionwise maximal
independent set I. For each hyperplane h € H \ I, there must be a cell ¢, of the
arrangement that is bounded by a set of hyperplanes C U{h} with C' C I, since otherwise
we could add A to I, and I would not be maximal. If ¢, is bounded by at least d + 1
hyperplanes, then there must be a vertex of the arrangement induced by I that is also
a vertex of c,. We charge h to this vertex. Note that each vertex can only be charged
2¢ = O(1) times. If ¢;, is bounded by d hyperplanes, then we charge h to the remaining
(d — 1)-subset of hyperplanes of I bounding ¢;,. This subset can also be charged at most
O(1) times. The total charge is therefore at most O((‘fil)) + O((dlﬂl)) = O(|1]%), and this
must be an upper bound on |H \ I|. Hence

[H\I|=n—|I] < O(I|
1] = Q).

4 Acyclic Orientations

Given a graph G = (V, E) we wish to find a subset S C FE such that for every acyclic
orientation of GG, there exists a flippable edge e € S, that is, an edge e € S such that
changing the orientation of e does not create any cycle. Let us call such a set an AO-zone
cover for G. Note that an oriented edge e = uv in an acyclic orientation is flippable if and
only if it is not transitive, that is, if and only if uv is the only oriented path from u to v.

4.1 Complexity

Theorem 3. Given a graph G = (V, E) and a subset S C E of its edges, the problem of
deciding whether S is an AO-zone cover is coNP-complete, even if G is a complete graph.
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Proof. The set S is not an AO-zone cover if and only if there exists an acyclic orientation
of G in which all edges e € S are transitive.

Consider a simple graph H on the vertex set V', and define G as the complete graph
on V, and S as the set of non-edges of H. We claim that S is an AO-zone cover for G
if and only if H does not have a Hamiltonian path. Since deciding the existence of a
Hamiltonian path is NP-complete, this proves the result.

To prove the claim, first suppose that H has a Hamiltonian path, and consider the
acyclic orientation of GG that corresponds to the order of the vertices in the path. Then
by definition, no edge of S is in the path, hence all of them are transitive, and S is not an
AO-zone cover. Conversely, suppose that S is not an AO-zone cover. Then there exists an
acyclic orientation of GG in which all edges of S are transitive. The corresponding ordering
of the vertices in V' yields a Hamiltonian path in H. O

4.2 Special cases and an upper bound

Lemma 4. The minimum size of an AO-zone cover in a complete graph on n vertices is
n—1.

Proof. First note that there always exists an AO-zone cover of size n — 1 that consists of
all edges incident to one vertex.

Now we need to show that any other edge subset of smaller size is not an AO-zone
cover. This amounts to stating that every graph with at least (}) — (n — 2) edges has a
Hamiltonian path. To see this, proceed by induction on n. Suppose this holds for graphs
with strictly less than n vertices. Consider a set S of at most n — 2 edges of the complete
graph. Let u,v be two vertices with uv € S. One of the two vertices, say v, is incident
to at most 1 4+ [(n — 3)/2] = |[(n — 1)/2] edges of S. Hence v is incident to at least
[(n —1)/2] edges that are not in S.

Consider a Hamiltonian path on the n — 1 vertices other than v, which exists by
induction. If v is adjacent to the first or last vertex in this path, and the corresponding
edge is not in S, then we can extend this path to a Hamiltonian path containing v.
Otherwise, since v is incident to at least [(n — 1)/2] edges that are not in S, there must
be two consecutive vertices of the path that are adjacent to v, and again we can include
v in the path. |

Since acyclic orientations of the complete graph K, correspond to the permutations of
Sy, this is in fact the solution to the puzzle “hitting a consecutive pair” in the introduction.
The dual graph of the arrangements of hyperplanes corresponding to the complete graph
(graphic hyperplane arrangement of K,,) is the skeleton graph of the permutohedron.
Hence the above result can also be stated in the following form.

Corollary 5. The minimum size of a zone cover of the n-dimensional permutohedron is
n—1.

We now give a simple, polynomial-time computable upper bound on the size of an AO-
zone cover. A set C' C FE is an edge cut whenever the graph (V, £\ C) is not connected.
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Theorem 6. Every edge cut of G is an AO-zone cover of G.

Proof. Consider an edge cut ¢' C F and an acyclic orientation Ag of G. This acyclic
orientation can be used to define a partial order on V. Let us consider a total ordering
of V that extends this partial order, and pick an edge e = uv € C that minimizes the
rank difference between u and v. We claim that e is flippable. Suppose for the sake of
contradiction that e is not flippable. Then e must be transitive and there exists a directed
path P in Ag between u and v that does not use e. Since C'is a cut, u and v belong to
distinct connected components of (V, £\ C), and P must use another edge ¢ € C. By
definition, the endpoints of ¢’ have a rank difference that is smaller than that of u and v,
contradicting the choice of e. O

An even shorter proof of the above can be obtained by reusing the following observation
from Cordovil and Forge [6]: for every acyclic orientation of G, the set of flippable edges
is a spanning set of edges. Therefore, every such set must intersect every edge cut.

While AO-zone covers are hard to recognize, even for complete graphs, we show that a
minimum-size AO-zone cover can be found in polynomial time whenever the input graph
is chordal, i.e., if every cycle of length at least 4 has a chord. In that case, the upper
bound given by the minimum edge cut is tight, and the result generalizes Lemma 4.

Theorem 7. The minimum size of an AO-zone cover in a chordal graph is the size of a
minimum edge cut.

Proof. We need to show that whenever a set S of edges of a chordal graph G has size
strictly less than the edge connectivity of G, there exists an acyclic orientation of G in
which all edges of S are transitive. Let us denote by k the edge connectivity of G, and n
its number of vertices.

We proceed by induction on n. For the base case we consider complete graphs. From
Lemma 4, the minimum size of an AO-zone cover in Kj,, is k. Now suppose the statement
holds for every chordal graph with n — 1 vertices, and that there exists a k edge connected
chordal graph G on n vertices with an AO-zone cover S of size k— 1. Since G is chordal, it
has at least two nonadjacent simplicial vertices u and v, i.e., vertices whose neighborhood
induces a clique. The degree of both u and v is at least k. Hence one of them, say v, is
incident to at most |(k—1)/2] < [(d(v) —1)/2] edges of S. Now remove v and consider,
using the induction hypothesis, a suitable acyclic orientation of the remaining graph. This
orientation induces a total order, i.e., a path p with d(v) vertices, on the neighbors N(v)
of v. Then vertex v must have one or two incident edges that do not belong to S and
connect v to the first, or the last, or two consecutive vertices of path p. Hence we can
integrate v in the path such that all the edges of S that are incident to v are transitive.
This yields a suitable acyclic orientation for G and completes the induction step. O

When the graph is not chordal, it may happen that the minimum size of an AO-zone
cover is arbitrarily small compared to the edge connectivity. We can in fact construct a
large family of such examples.
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Theorem 8. For every natural number t and odd natural number g such that 3 < g < t,
there exists a graph G with edge connectivity t and an AO-zone cover of size g.

Proof. The graph G is constructed by considering a wheel with g + 1 vertices and center
¢, and replacing every edge incident to the center ¢ by a copy of the complete graph
K;_1 such that each vertex of the complete graph is connected to both endpoints of the
original wheel edge. Figure 6 shows an example. Let us call C, the cycle induced by the
non-center vertices.

&
g B

Figure 6: A graph G with edge connectivity 6 and an AO-zone cover of size 3.

Let us first look at the edge connectivity of G. Vertices belonging to one of the K;_;
have degree t. On the other hand we easily construct ¢ edge-disjoint paths between every
pair of vertices. Hence, the edge connectivity of G equals t.

We now show that the set of edges of Cj is an AO-zone cover. Suppose the opposite:
there exists an acyclic orientation for which no edge of the cycle is flippable, hence all of
them are transitive. Since Cy is odd, there must exist two consecutive edges of C, with
the same orientation, say uv and vw, with uv oriented from u to v, and vw from v to w.

The only way to make vw transitive is to construct an oriented path from v to w going
through the center ¢. Hence there must exist an oriented path of the form vPc, where
P is a path in the complete graph K; ; attached to v. To make uv transitive we need
a directed path c¢P'v. The oriented cycle vPcP'v is in contradiction to the acyclicity.
Therefore, some edge of Cy is always flippable. n

5 Linear Extension Graphs

We now turn to the class of linear extension graphs, which are restriction of the permuto-
hedron to linear extensions of a partially ordered set. A zone cover of a linear extension
graph is a set of incomparable pairs of the poset such that in any linear extension, there
is at least one such pair that is consecutive. In this section, we give a tight worst-case
bound on the minimum size of such a zone cover.

The special case of the empty order (no two elements are comparable) is tackled in
Theorem 3. We therefore inherit the following complexity result from the previous section.
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Corollary 9. Given a partially ordered set and a subset S of its incomparable pairs,
the problem of deciding whether S is a zone cover of the linear extension graph of P is
coNP-complete.

In order to prove a tight worst-case bound on the size of a minimum zone cover, we
need the following technical lemma. This can be seen as a directed version of Lemma 4.

Lemma 10. Consider the complete directed graph on k > 2 wvertices having two directed
edges between every pair of vertices. Every subgraph obtained by deleting at most 2k — 3
edges contains a directed Hamiltonian path.

Proof. We prove this by induction on k. The base case k = 2 is easy. Suppose the results
holds for £ — 1 and let us prove it for k. Let us delete a set S of at most 2k — 3 edges.

First suppose there exist two vertices v and v such that both edges uv and vu belong to
S. One of the two vertices, say v, must be incident to at most 2+ | (2k—5)/2| = k—1 edges
of S. Hence v has at least 2(k — 1) — (k — 1) = k — 1 incident edges that are not deleted.
The graph on n — 1 vertices obtained by removing v has at most 2k —3 -2 =2(k—1)—3
deleted edges and therefore, by induction, contains a Hamiltonian path.

Then we can insert v in the path and obtain a directed Hamiltonian path for the whole
graph. Suppose by contradiction that it is impossible. Then for each pair of successive
vertices in the path, say xy, one of the edge xv or vy must be missing, for otherwise we
have a path including v. Also, if the path starts at a and ends at b, we cannot have edges
va nor bv. Hence at least (k — 2) + 2 = k edges must be missing, among all possible
2(k—1) edges incident to v. But then only at most 2(k—1) —k = k— 2 edges can remain,
and we know we have k& — 1, a contradiction.

Now suppose there does not exist two vertices v and v such that both edges uv and
vu belong to S. Then, since S has size greater than & — 1, the graph induced by S must
contain an undirected cycle. Hence there exists two consecutive vertices v and v on this
cycle, both of which are incident to at least two deleted edges. Letting v be the one
incident with the smallest number of edges of S, we can apply the same reasoning as
above. O

Cs Cy Cs Cy

=~

Figure 7: A nested linear extension of a poset consisting of k& = 4 chains of length ¢ = 5.

We now prove a lower bound for a special family of posets. The case of the permuto-
hedron is that of the empty order, for which £ =n, ¢ = 1.

Lemma 11. Consider a disjoint union of k chains of length ¢, for k,¢ > 1. FEvery zone
cover of the linear extension graph of such an order must be of size at least (2k—2)0—k+1.
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Proof. We consider a specific family of linear extensions of such a partial order, each of
which is defined by two parameters:

e a linear order on the k chains,
e an index j, € [{] for each chain C,.

The corresponding linear extension is composed of blocks of the first j, minimum elements
of each chain C, with the chains taken in the prescribed linear order, followed by the
¢ —j, remaining elements of each chain C,, where the chains are now taken in the reversed
linear order. We call this family of linear extensions nested linear extensions. An example
is given in Figure 7. We give a lower bound on the number of zones required to cover all
nested linear extensions.

Consider such a nested linear extension. Some incomparable pairs that are consecutive
in this extension are of the type (z;,, min), for two chains C, and C, a # b € [k], where
zj, € C,, and min, is the minimum of chain (. Another type of consecutive pairs ar
those of the form (maxy, xj,4+1), where max; is the maximum in Cj,.

We now construct a complete directed graph with k vertices, where every vertex
corresponds to one of the k chains. Every set of incomparable pairs of the form (x;,, miny)
will be associated with the directed edge ab in this graph. We now say that such an edge
is covered when all the zones of the form (x;,, miny), for j, € [¢] and z;, € C,, are taken in
a zone cover. Note that a zone of the form (max,, z;,+1) can be traded for one of the form
(xj,, miny). The linear order on the k chains defining a nested linear extension induces a
directed Hamiltonian path in the graph. In order to find a set of zones covering all such
linear extensions, we have to make sure that for each directed Hamiltonian path, at least
one of the used edges is covered. From Lemma 10, we know that at least 2k — 2 edges of
the graph must be chosen.

Covering an edge of the graph requires ¢ zones. However, we may double count the
zones of the form (min,, ming). To prevent double counting, we have to remove at most
k—1 zones from our cover. The total number of zones is therefore at least (2k—2)¢ —k+1,
as claimed. O

Letting n = k{, this bound can be rewritten as Q(kT_Dn — k+ 1. We now prove that it

is tight.

Theorem 12. A minimum zone cover of the linear extension graph of an n-element poset
P with k minimal elements has size at most

2(k—1)

k n—k+1.

Proof. We introduce a few notations. Let MIN be the set of minimal elements of P, and
for z € P, let INC(z) be the set of elements that are incomparable to z, | (z) the set of
elements smaller than =, and PRIV (z) = {y € P — 2 :| (y) " MIN = {z}}. Note that by
definition, the sets PRIV (x) for the different values of x € MIN are pairwise disjoint.
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We now consider one arbitrary element z € MIN, and define the following set of
incomparable pairs:

{(z,y) : y € INC(z)} U{(m,y) : m € MIN Ay € PRIV(z)}.

We claim that this set is a zone cover of P. Indeed, suppose for contradiction that a linear
extension is not covered. Then the first set in the union forces x to be the minimum in
this linear extension, for otherwise x must be preceded by an element that is incomparable
to it. Now in all such extensions, the first occurence of another minimal element of P
must be preceded either by z or by an element that is in PRIV(z). In the first case, the
extension is covered by a pair in the first set in the union, and in the second case, it is
covered by a pair of the second set.

In order to bound the size of such a zone cover, we proceed by computing the average
size of the cover with respect to the choice of x:

% > (INC(x)| + (k — D|PRIV(z)])

zEMIN
1
< g (n(k —D+(k=1) > |PRIV(x)]>
zEMIN
1
< z (n(k—=1)+ (k= 1)(n—k))
2(k — 1
Hence there must exist an « € MIN such that the zone cover has this size at most. O

Corollary 13. The worst-case bound on the size of a minimum zone cover of the linear
extension graph of a poset P on n elements is 2n — o(n). Hence in any poset, there exists
a set of at most 2n incomparable pairs, such that in any linear extension of P, at least
one such pair is consecutive.

6 Median Graphs

A median graph is an undirected graph in which every three vertices x, y, and z have a
unique median, i.e., a vertex u(x,y, z) that belongs to shortest paths between each pair
of z, y, and z. Imrich, Klavzar, and Mulder [15] proposed the following construction of
median graphs: start with any triangle-free graph G = (V, E). First add an apex vertex
x adjacent to all vertices of V', then subdivide every edge of E once, and let G’ be the
resulting graph. Figure 8 illustrates the construction.

We only need that G’ is a partial cube. This can be shown with the explicit construc-
tion of an isometric embedding into @,. Let V' = {v,...,v,} and map these vertices
bijectively to the standard basis, i.e., v; — €;. Apex x is mapped to 0 and the subdivision
vertex w;; of an edge v;v; is mapped to e; + e;. The embedding shows that the zones are
in one-to-one correspondence with the vertices of GG, where the zone of v; consists of the
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X O

Figure 8: A graph G and the G’ obtained by the construction.

edge zv; together with all edges w;;v;. Hence, a zone cover of G’ corresponds to a subset
of V(G). Let us call w, the vertex of G’ subdividing the edge e € F(G). The construction
of the embedding into @,, shows that the transformation G — G’ yields a partial cube
even if G contains triangles, only membership in the smaller class of median graphs is lost
in this case.

Lemma 14. If G has no isolated vertices, then the minimum size of a zone cover of G’
equals the minimum size of a vertex cover of G.

Proof. We first show that a vertex cover S of G corresponds to a zone cover of G’ of the
same size. For a vertex w;; at least one of v; and v; is in S, hence w;; is covered. If
v; belongs to S then it is covered by its own zone. Otherwise there is an edge v;v; and
necessarily v; € S, therefore in this case v; is covered by the zone of v;. The apex x is
covered by every zone.

The other direction is straightforward. A zone cover of G’ must in particular cover
all subdivision vertices w, € V(G’). Hence the zone corresponding to at least one of the
endpoint of e must be selected, yielding a vertex cover in G. O

Given a connected triangle-free graph G, one can construct the median graph G’ in
polynomial time. Since deciding whether G has a vertex cover of size at most k is NP-
complete, even on triangle-free graphs, we obtain:

Corollary 15. Given a median graph G' and a positive integer k, deciding whether there
exists a zone cover of size at most k of G' is NP-complete.

The minimum vertex cover problem is hard to approximate, even on triangle-free
graphs. This directly yields the following corollary.

Corollary 16. Given a median graph G', finding a minimum size zone cover of G' is

APX-hard.
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7 Distributive Lattices

In this special case of the partial cube covering problem, we are given a poset P, and we
wish to find a subset S of its elements such that the following holds: for every downset D
of P, there exists € S such that either DU {z} or D \ {z} is a downset, distinct from
D. Given a poset P, we refer to a suitable set S as a DS-zone cover for P. Figure 5 gives
an example of poset and the corresponding partial cube.

7.1 Relation to poset fibres

We first establish a connection between DS-zone covers and fibres. A fibre of a poset is
a subset of its elements that meets every nontrivial maximal antichain. Let f(P) be the
size of a smallest fibre of P.

Lemma 17. Every fibre is a DS-zone cover. In particular, the minimum size of a DS-zone
cover is at most f(P).

Proof. Consider a poset P = (V,<) and one of its downset D C V. Let F :=V \ D,
A :=max(D), and B := min(F), i.e., A is the antichain of maximal elements in the order
induced by D and B is the antichain of minimal elements in the order induced by F'. By
definition, a DS-zone cover is a hitting set for the collection of subsets AU B constructed
in this way.

Let us now consider the subset A U B" C AU B, where B' := {b € B
b is incomparable to a,Va € A}. This set is easily shown to be a maximal antichain.
Hence, it must be hit by any fibre. n

Duffus, Kierstead, and Trotter [8] have shown that every poset on n elements has a
fibre of size at most 2n/3. This directly yields the following.

Corollary 18. For every n-element poset P, there exists a DS-zone cover of size at most
2n/3.

We now consider a special case for which the notions of DS-zone cover and fibre
coincide. A poset is bipartite if P = min(P) U max(P), i.e., if the height of P is at most
2.

Lemma 19. For a bipartite poset P, a set S is a DS-zone cover for P if and only if it is
a fibre of P.

Proof. We know from Lemma 17 that every fibre is a DS-zone cover. The other direction
is as follows. Consider a DS-zone cover S and let A be any maximal antichain of P. Let
T := ANmax(P), and let D be the downset generated by 7. As a downset D is guarded,
hence either an element of 7" is hit by S, or an element of min(P \ D) is hit, but since A
is maximal A =7 Umin(P \ D), hence A is hit. Therefore, S is a fibre. O
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7.2 Complexity

Lemma 19 yields two interesting corollaries on the complexity of recognizing and finding
DS-zone covers.

Corollary 20. Given a poset P and a subset S of its elements, the problem of deciding
whether S is a DS-zone cover is coNP-complete. This holds even if P is bipartite.

Proof. Recognition of fibres in bipartite posets has been proved coNP-complete by Duffus
et al. [8]. From Lemma 19, this is the same problem as recognizing DS-zone covers. [

Corollary 21. Given a poset P and an integer k, the problem of deciding whether there
exists a DS-zone cover of size at most k is ©¥-complete. This holds even if P is bipartite.

Proof. Again, this is a consequence of Lemma 19 and a recent result of Cardinal and
Joret [4] showing that the corresponding problem for fibres in bipartite posets is X2-
complete. O

Duffus et al. [9] mention that it is possible to construct posets on 15n + 2 elements,
every fibre of which must contain at least 8n+ 1 elements, which gives a lower bound with
a factor 8/15. The DS-zone covers for these examples do not seem to require as many
elements.

Open Problems

We left a number of problems open. For instance, we do not know the complexity of
deciding whether there exists an AO-zone cover of size at most k in a given graph. A
natural candidate class would be X', For the same problem, we do not have any nontrivial
lower bound on the minimum size of an AO-zone cover. It would also be interesting to give
tighter lower and upper bounds on the minimum size of a DS-zone cover in a poset and
of a zone cover in a line arrangement. Finally, questions involving partial cubes induced
by antimatroids, such as elimination orderings in chordal graphs, could be investigated.
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