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Grupo de Teoŕıas de Campos y F́ısica Estad́ıstica

Instituto Gregorio Millán, Universidad Carlos III de Madrid

Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Madrid, Spain

{jsalas,ejsanche}@math.uc3m.es

Submitted: Nov 3, 2014; Accepted: Sep 3, 2015; Published: Sep 11, 2015

Mathematics Subject Classifications: 05A05, 05A15, 05C30

Abstract

We define a new family of generalized Stirling permutations that can be inter-

preted in terms of ordered trees and forests. We prove that the number of gener-

alized Stirling permutations with a fixed number of ascents is given by a natural

three-parameter generalization of the well-known Eulerian numbers. We give the

generating function for this new class of numbers and, in the simplest cases, we

find closed formulas for them and the corresponding row polynomials. By using

a non-trivial involution our generalized Eulerian numbers can be mapped onto a

family of generalized Ward numbers, forming a Riordan inverse pair, for which we

also provide a combinatorial interpretation.

Keywords: generalized Stirling permutations; increasing trees and forests; gener-
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1 Introduction

Stirling permutations of order n are permutations of the multiset {12, 22, . . . , n2} such
that, for each 1 6 r 6 n, the elements appearing between two occurrences of r are at
least r [16]. Given a Stirling permutation ρ = r1r2 . . . r2n , the index i will be called an
ascent of ρ if ri < ri+1. The number of Stirling permutations of order n with exactly
k ascents is given by second-order Eulerian numbers Bn,k [16]. Second order Eulerian
numbers are closely related to Ward numbers Wn,k [30], [22, entry A134991]. They form
an inverse pair in the sense of Riordan [27] (see[28], [22, entry A008517]):

Wn,k =
k∑

j=0

(
n− j

n− k

)
Bn,j , (1a)

Bn,k =
k∑

j=0

(−1)k−j

(
n− j

k − j

)
Wn,j . (1b)

We will use Eq. (1a) to provide a new combinatorial interpretation of Ward numbers in
terms of Stirling permutations.

Stirling permutations and Eulerian numbers have been generalized to multisets of the
form {1ν , 2ν , . . . , nν} with ν ∈ N by Gessel [15] (as cited by Park [23]) and Park [23, 24].
Park [25] related the Stirling permutations of these multisets to some generalized Stirling
numbers. (See also [19, Theorem 1] and [20, Theorem 2.1].) Brenti considered Stirling
permutations of the more general multiset {1ν1, 2ν2, . . . , nνn} with νi ∈ N (1 6 i 6 n) in
the context of Hilbert polynomials [3]; and in relation to increasing trees by Kuba and
Panholzer [20]. The particular case {1ν , 2ν+2, . . . , nν+2} was also studied by Janson et al.
[19]. Stirling permutations also appear in the framework of context-free grammars [7] (see
Ref. [8] for more recent literature).

The purpose of the paper is to introduce and study natural generalizations of the
Stirling permutations considered by Gessel and Stanley, Park and other authors [16, 23].
We will find bijections between these generalized Stirling permutations and ordered trees
[23, 19] and forests, providing a graph-theoretic interpretation of these objects. The
combinatorial numbers that count such Stirling permutations with a fixed number of
ascents are natural generalizations of the Eulerian numbers. Some particular numbers of
this class have been considered in other contexts [4, 12, 5, 20] but, to our knowledge, most
of them have not appeared before in the literature. There are indeed other generalizations
of the Eulerian numbers that do not fall in the above class: e.g., the r–Eulerian numbers
[26, 14, 21, 2], or the numbers A(r, s | α, β) due to Carlitz and Scoville [6].

In all our cases, these Eulerian numbers satisfy two-parameter linear recurrence re-
lations that can be studied in an efficient way by using generating function techniques
[1]. With the help of these methods, we define a family of generalized Ward numbers,
and get closed expressions for them in terms of generalized Eulerian numbers, in the
form of inverse pairs similar to Eqs. (1). These relations provide a simple combinatorial
interpretation for the generalized Ward numbers in the present context.
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2 Generalized Stirling permutations

It is useful for our purposes to introduce several definitions based on the ν–Stirling per-
mutations of order n discussed by Park [23]:

Definition 1. Let ν be a positive integer and X = {x1 < x2 < · · · < xn} be a totally
ordered set of cardinality n. A (ν,X)–Stirling permutation is a permutation of the multiset
{xν

1, x
ν
2 , . . . , x

ν
n} such that, for each 1 6 j 6 n, the elements occurring between two

occurrences of xj are, at least, xj .

Remarks.

1. This definition implies that the elements occurring between two consecutive occur-
rences of xj are greater than xj. As a consequence of this, the ν occurrences of xn

have to go together.

2. If X = [n], then the (ν, [n])–Stirling permutations are equivalent to the canonical ν–
Stirling permutations of order n. In Definition 5, the X will correspond to different
subsets of [n].

3. If X = ∅ the unique (ν,∅)–Stirling permutation is the empty permutation.

Definition 2. Let ν, t be positive integers, X = {x1 < x2 < · · · < xn} be a totally
ordered set of cardinality n, and consider x0 = 0 < x1 < x2 < · · · < xn. A (ν, t, X)–
Stirling permutation is a permutation of the multiset {0t, xν

1 , x
ν
2, . . . , x

ν
n} such that for

each 0 6 j 6 n the elements occurring between two occurrences of xj are at least xj .

Remarks.

1. If t = 0, a (ν, 0, X)–Stirling permutation is just a (ν,X)–Stirling permutation.

2. If X = ∅ the unique (ν, t,∅)–Stirling permutation is the permutation 0t.

3. The number of (ν, t, X)–Stirling permutations is
|X|−1∏
k=0

(kν + t + 1).

In order to count generalized Stirling permutations with a fixed number of ascents,
we introduce a three-parameter generalization of the standard Eulerian numbers, that we
will refer to as the ν-order (s, t)-Eulerian numbers :

Definition 3. Let ν, s > 1 and t > 0 be integers. The ν-order (s, t)-Eulerian numbers〈
n

k

〉(ν)
(s,t)

are defined as those satisfying the recurrence

〈
n

k

〉(ν)

(s,t)

= (k + s)

〈
n− 1

k

〉(ν)

(s,t)

+ (νn− k + t+ 1− ν)

〈
n− 1

k − 1

〉(ν)

(s,t)

+ δk0δn0 , (2)

with the additional conditions
〈
n

k

〉(ν)
(s,t)

= 0 if n < 0 or k < 0.
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Remark. The values of ν, s, t do not have to be integers as
〈
n

k

〉(ν)
(s,t)

is obviously a polyno-

mial in these three parameters. However, we have restricted their ranges to make contact
with their combinatorial interpretation.

Proposition 4. The number of (ν, t, [n])–Stirling permutations with k ascents is equal to〈
n

k

〉(ν)
(1,t)

.

Proof. This is just a generalization of the proof of Eq. (6.1) in [12]. Let Jν,t(n, k) be
the number of (ν, t, [n])–Stirling permutations with k ascents. We want to show that

Jν,t(n, k) =
〈
n

k

〉(ν)
(1,t)

by induction on n.

The case n = 0 is trivial: Jν,t(0, k) = δ0,k =
〈
0
k

〉(ν)
(1,t)

, as there is a unique permutation

of this type (the empty permutation).

Let us assume that Jν,t(n− 1, k) =
〈
n−1
k

〉(ν)
(1,t)

for all 0 6 k 6 n− 1. We have to insert

now the block nν . This will leave the number of ascents unchanged, or increase it by one
unit. We have then only two choices: (1) start from a (ν, t, [n− 1])–Stirling permutation
with k ascents, or (2) start from a (ν, t, [n− 1])–Stirling permutation with k − 1 ascents.
In the first case, we can place the block nν at the beginning of the permutation or insert
it at any of the k ascents. In the second case, we can insert the block nν at any of the
ν(n− 1) + t− (k − 1) non-ascent places. Hence

Jν,t(n, k) = (k + 1)Jν,t(n− 1, k) + (νn− k + t+ 1− ν)Jν,t(n− 1, k − 1) .

This equation completes the proof.

Remarks.

1. If (s, t) = (1, 0), these numbers reduce to the ordinary Eulerian numbers for ν = 1,
to the second-order Eulerian numbers for ν = 2 [16], and to the third-order Eulerian
numbers for ν = 3 [22, entry A219512].

2. If ν = 2 and (s, t) = (1, t), these numbers correspond to the generalization by Carlitz
[4, 5] and Dillon and Roselle [12].

Definition 5. Let us fix integers ν > 1 and t > 0, and a generalized ordered partition
t = (t1, . . . , ts) of t with s > 1 parts (and ti > 0). A (ν, t, n)–Stirling permutation is a
sequence ρ = (ρ1, ρ2, . . . , ρs), of length s, such that each entry ρi is a (ν, ti, Xi)–Stirling
permutation for some generalized ordered partition (X1, X2, . . . , Xs) of [n] (where we allow
that some of the Xi are the empty set).

Remarks.

1. If t = (t) (i.e., s = 1), the (ν, t, n)–Stirling permutations reduce to the (ν, t, n)–
Stirling permutations.

2. If n = 0, there is a single (ν, t, 0)–Stirling permutation: (0t1 , 0t2 , . . . , 0ts), where in
the cases with ti = 0 we have an empty entry.
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Theorem 6. The number of (ν, t, n)–Stirling permutations with k ascents is equal to〈
n

k

〉(ν)
(s,t)

.

Proof. Let Jν,t(n, k) be the number of (ν, t, n)–Stirling permutations with k ascents. We

want to show that Jν,t(n, k) =
〈
n

k

〉(ν)
(s,t)

by induction on n.

The case n = 0 is trivial: Jν,t(0, k) = δ0,k =
〈
0
k

〉(ν)
(s,t)

, as there is a unique permutation

of this type: (0t1 , 0t2, . . . , 0ts).

Let us assume that Jν,t(n− 1, k) =
〈
n−1
k

〉(ν)
(s,t)

for all 0 6 k 6 n− 1. Then, as explained

in the proof of Proposition 4, we have two choices to insert the block nν in a (ν, t, n− 1)–
Stirling permutation with k ascents: (1) start from a (ν, t, n − 1)–Stirling permutation
with k ascents and insert the block at the beginning of the s entries or at any of the k

ascents; or (2) start from a (ν, t, n−1)–Stirling permutation with k−1 ascents, and insert
the block at any of the ν(n− 1) + t− (k − 1) non-ascent places. Then,

Jν,t(n, k) = (k + s)Jν,t(n− 1, k) + (νn− k + t+ 1− ν)Jν,t(n− 1, k − 1) .

This completes the proof.

Remark. The number of (ν, t, n)–Stirling permutations with k ascents does depend on t

but only through t and s. This is also true for the number of (ν, t, n)–Stirling permutations
that is given by

n−1∏

k=0

(kν + t+ s) . (3)

3 Increasing trees and forests

Gessel [15], Park [23], and Janson, Kuba and Panholzer [19] discussed the bijection be-
tween ν–Stirling permutations and the class of increasing trees. In this section we discuss
generalizations of these results to the class of (ν, t, [n])–Stirling permutations introduced
above. These latter ones are a particular case of the Stirling permutations of the mul-
tiset {1ν1, 2ν2, . . . , nνn} discussed by Kuba and Panholzer [20]. For the (ν, t, n)–Stirling
permutations, we introduce a similar construction in terms of forests.

Definition 7. Let X = {x1 < · · · < xn} be a totally ordered set. An increasing X–tree
is a rooted tree with the internal vertices labelled by the elements of X in such a way
that the node labelled x1 is distinguished as the root and such that, for each 2 6 i 6 n,
the labels of the nodes in the unique path from the root to the node labelled xi form an
increasing sequence. A generalized increasing X–tree is an increasing X0–tree with |X|+1
internal vertices labelled by the elements of the set X0 = {x0 = 0 < x1 < x2 < · · · < xn}.

Remark. The family of generalized increasing X–trees is bijective with the family of
increasing [|X|+ 1]–trees.
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Definition 8. For an integer d > 2, d-ary increasing X–trees are increasing X–trees
where each internal node has d labelled positions for children. Equivalently, for integers
d > 2, d0 > 1, (d, d0)-ary increasing X–trees are generalized increasing X–trees where
the root x0 = 0 has d0 labelled positions for children, and any non-root internal node xi

(1 6 i 6 n) has d labelled positions for children.

Remarks.

1. A d-ary increasing X–tree has d|X| edges, |X| internal nodes with outdegree equal
to d, and (d− 1)|X|+ 1 external nodes.

2. A (d, d0)-ary increasing X–tree has d|X|+ d0 edges, a root with outdegree equal to
d0, |X| internal nodes with outdegree equal to d, and (d−1)|X|+d0 external nodes.

3. The family of (d, 1)-ary increasing X–trees is bijective with the d-ary increasing
[|X|]–trees. The family of (d, d)-ary increasing X–trees is bijective with the d-ary
increasing [|X|+ 1]–trees.

The following theorem relates the family of (ν + 1, t+ 1)–ary increasing [n]–trees and
the (ν, t, [n])–Stirling permutations. The authors independently derived this result, and
later discovered that this result was already proved in Ref. [20, Theorem 2.1]. See also
[19, Theorem 1] for a detailed proof of a related statement.

Theorem 9. Let ν > 1, t > 0 be integers. The family of (ν + 1, t + 1)–ary increasing
[n]–trees is in natural bijection with (ν, t, [n])–Stirling permutations.

Proof. Our proof is a generalization of Gessel’s theorem (see [23]) that relies on the
argument presented in [29] for ordinary permutations. Let ρ be any word on the alphabet
{x0 < x1 < · · · < xn} with possible repeated letters. Let us define a planar tree T (ρ) as
follows: If ρ = ∅, then T (ρ) = ∅; if ρ 6= ∅, then ρ can be factorized uniquely in the form
ρ = ρ1iρ2i · · · iρνi+1 where i is the least element (letter) of ρ and νi its multiplicity. Let i be
the root of T (ρ) and T (ρ1), T (ρ2),. . . , T (ρνi+1) the subtrees (from left to right) obtained
by removing i. This yields an inductive definition of T (ρ). Notice that the outdegree of
an internal vertex i is νi+1. Notice also that when ρ corresponds to a generalized Stirling
permutation, if j is a letter of ρk, then j does not belong to any ρl for l 6= k.

Remark. See Figure 1 for some simple examples of the Stirling permutations and their
associated trees.

Definition 10. Let n > 0, s > 1 be integers. An (s, [n])–forest is an ordered forest
F = (T1, . . . , Ts) composed by s labelled generalized increasing Xi–trees Ti, for some
generalized ordered partition (X1, . . . , Xn) of [n] (where we allow Xi = ∅). Given u =
(u1, . . . , us) with ui > 1 integers, a (d,u)–ary increasing (s, [n])–forest F = (T1, . . . , Ts)
is an (s, [n])–forest such each Ti is a (d, ui)-ary increasing Xi-tree, for some generalized
partition (X1, . . . , Xs) of [n].
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1

2

3

∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅ ∅

0

∅ ∅ 1

∅ ∅ 2

∅ ∅ ∅ ∅

∅

(a) (b)

Figure 1: (a) The (3, [3])–Stirling permutation 333222111 and its corresponding 4–ary
increasing [3]–tree. (b) The (3, 2, [2])–Stirling permutation 00112221 and its corresponding
(4, 3)–ary increasing [2]–tree. This permutation has two ascents at indices 2 and 4. These
ascents are underlined in the permutation for clarity.

Theorem 11. Let ν, s > 1, t > 0 be integers, t = (t1, . . . , ts) a generalized ordered
partition of t (ti > 0), and 1 = (1, . . . , 1). The family of (ν + 1, t + 1)–ary increasing
(s, [n])–forests is in natural bijection with the class of (ν, t, n)–Stirling permutations.

Proof. This is a straightforward generalization of Theorem 9. See Figure 2 for a concrete
example of this class of forests.

Remarks.

1. It is important to stress that k ascents in a Stirling permutation correspond to k

“non-leftmost” internal nodes in the corresponding tree/forest representation. See
Figures 1 and 2. Hereafter we will say that a tree/forest has an ascent if the
corresponding generalized Stirling permutation has an ascent.

2. Park [23] gives two bijections for the class of (ν, [n])–Stirling permutations: one in
terms of (ν + 1)-ary increasing trees, and another one in terms of (ordered) forests
of increasing trees. We have adapted the former for the class of (ν, t, [n])–Stirling
permutations, but we will not use the latter in the present paper.

4 The ν-order (s, t)-Eulerian numbers

We study in detail some properties of the ν-order (s, t)-Eulerian numbers introduced in
Definition 3, and whose combinatorial interpretations have been discussed in Theorems 6
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0

2

∅ 3

∅ ∅ ∅ ∅

∅ ∅

∅ ∅

1

5

∅ ∅ ∅ ∅

∅ ∅ ∅

0

∅ 4

∅ ∅ ∅ ∅

∅

Figure 2: The (3, t, 5)–Stirling permutation (23332200, 555111, 0444,∅) corresponding
to t = (2, 0, 1, 0) and the generalized partition ({2, 3}, {1, 5}, {4},∅) of [5]. We show the
corresponding (4, t+ 1)–ary (4, [5])–forest F = (T1, T2, T3, T4).

and 11 (see Remark 1 after Theorem 11). In this section, s, t will be considered in-
determinate parameters. These numbers satisfy the recurrence relation (2) which is a
particular case of the one analyzed in [1]. By using a generating-function approach, that
yields a first-order linear partial differential equation which is solved with the method of
characteristics [1], we obtain the exponential generating function (EGF)

F (ν)(x, y; s, t) =
∑

n,k>0

〈
n

k

〉(ν)

(s,t)

xk y
n

n!
(4)

for the ν-order (s, t)-Eulerian numbers is given by [1, Section A.1.5]:

F (ν)(x, y; s, t) =

(
Tν

(
ey(1−x)ν T−1

ν (x)
)

x

)s (
1− x

1− Tν (ey(1−x)νT−1
ν (x))

)s+t

, (5)

where Tν (ν ∈ N) is a one-parameter family of functions given by

T−1
ν (z) = z eQν(z) , where Qν(z) =

ν−1∑

k=1

(
ν − 1

k

)
(−z)k

k
. (6)

For ν = 1, T1 = 1 is the identity function, and for ν = 2, T2 is the tree function T2 = T

[10, 11].
The ν-order (s, t)-Eulerian polynomials are defined as:

P (ν)
n (x; s, t) =

n∑

k=0

〈
n

k

〉(ν)

(s,t)

xk (7)

the electronic journal of combinatorics 22(3) (2015), #P3.37 8



and satisfy that P
(ν)
n (1; s, t) is given by the number of (ν, t, n)-Stirling permutations stated

in (3). They can be computed by using Theorem 4.1 and Eq. (4.4) of Ref. [1]:

P (ν)
n (x; s, t) =

(1− x)s+t+νn

xs

n!

2πi

∫

C

zs−1

(1− z)s+t+1−ν

[
log

zeQν(z)

xeQν(x)

]−n−1

dz (8a)

=
(1− x)s+t+νn

xs
lim
z→x

∂n

∂zn

(
zs−1(z − x)n+1

(1− z)s+t+1−ν

[
log

zeQν(z)

xeQν(x)

]−n−1
)

, (8b)

where C is a closed simple curve of index +1 surrounding only the singularity at z = x

in the complex z-plane.
A Rodrigues-like formula for the ν-order (s, t)-Eulerian polynomials can also be ob-

tained from the integral (8a) by performing the change of variables zeQν(z) = eu and
xeQν(x) = ev. Therefore, z = Tν(e

u) and x = Tν(e
v). We immediately obtain from (8a):

P (ν)
n (Tν(e

v); s, t) =
(1− Tν(e

v))s+t+νn

Tν(ev)s
dn

dvn
Tν(e

v)s

(1− Tν(ev))s+t
, (9)

where actual computations are facilitated by the fact that the derivative of Tν(x) is given
in closed form by the expression

T ′
ν(x) =

Tν(x)

x (1− Tν(x))ν−1
. (10)

An equivalent representation of P
(ν)
n (x; s, t) can be obtained directly from the EGF (5)

after performing the change of variables y 7→ u = (1− x)νy:

P (ν)
n (x; s, t) = n!

(1− x)s+t+νn

xs
[un]

(Tν (e
u T−1

ν (x)))
s

(1− Tν (eu T−1
ν (x)))s+t . (11)

We now illustrate the use of the previous results to derive explicit expressions for the
(s, t)-Eulerian numbers and the second order (s, t)-Eulerian numbers. In fact, one can use
similar techniques to obtain formulas for higher-order (s, t)-Eulerian numbers, although
these computations are more involved.

5 The (s, t)-Eulerian numbers

When ν = 1, we will employ the traditional notation A
(s,t)
n (x) = P

(1)
n (x; s, t). By using

(11), we immediately get

A(s,t)
n (x) = (1− x)s+t+n n! [un]

es u

(1− x eu)s+t
. (12)
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This formula allows us to obtain the following closed expressions for A
(s,t)
n :

A(s,t)
n (x) = (1− x)s+t+n

∑

j>0

(s+ t)j

j!
(s+ j)n xj (13)

=
∑

k>0

xk

k∑

j=0

(−1)k−j (n + s+ t)k−j

j! (k − j)!
(s+ t)j (s+ j)n , (14)

where xj = x(x + 1) · · · (x + j − 1) and xj = x(x − 1) · · · (x − j + 1) are the raising and
falling factorials, respectively. From (13), we easily obtain

Proposition 12. The (s, t)-Eulerian polynomials A
(s,t)
n satisfy the relation

xA
(s,t)
n (x)

(1− x)n+s+t
=
∑

k>1

(s+ t)k−1

(k − 1)!
(k + s− 1)n xk , (15)

for any n > 0 and arbitrary parameters s, t.

This proposition generalizes the well-known formulas for the ordinary Eulerian poly-
nomials An = A

(1,0)
n :

xAn(x)

(1− x)n+1
=
∑

k>1

kn xk , (16)

and for the Eulerian polynomials with the traditional indexing A
(0,1)
n [2, Theorem 1.21]:

A
(0,1)
n (x)

(1− x)n+1
=
∑

k>0

kn xk . (17)

A closed expression for
〈
n

k

〉
(s,t)

can be obtained from (14) to conclude that

Theorem 13. The generalized (s, t)-Eulerian numbers are equal to

〈
n

k

〉

(s,t)

=

〈
n

k

〉(1)

(s,t)

=
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(n + s+ t)k−j (s+ t)j (s+ j)n (18)

for n > 0 and 0 6 k 6 n.

Remarks.

1. It is obvious in Eq. (18) that the numbers
〈
n

k

〉
(s,t)

are polynomials in both parameters
s, t.
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2. The ordinary Eulerian numbers with the standard [17, Eq. (6.38)] and the traditional
[9] ordering are respectively given by

〈
n

k

〉
=

〈
n

k

〉

(1,0)

=

k∑

j=0

(−1)j
(
n+ 1

j

)
(k − j + 1)n , (19a)

A(n, k) =

〈
n

k

〉

(0,1)

=

k∑

j=0

(−1)j
(
n+ 1

j

)
(k − j)n =

〈
n

k − 1

〉
. (19b)

3. The shifted r-Eulerian numbers corresponding to (s, t) = (r, 0) are a natural gen-
eralization of the r-Eulerian numbers [26, p. 215], [14, Chapter II, p. 17], [21], [2,
Problems 17 and 18, p. 38] that fit in the framework of the problem discussed in
Ref. [1].

4. Notice that the (s,−s)-Eulerian numbers take the simple form (cf. (5)):
〈
n

k

〉

(s,−s)

= (−1)k
(
n

k

)
sn . (20)

6 The second order (s, t)-Eulerian numbers

When ν = 2, it is customary to write B
(s,t)
n (x) = P

(2)
n (x; s, t). By using (11) we immedi-

ately get

B(s,t)
n (x) = n!

(1− x)s+t+2n

xs
[un]

(T (T−1(x) eu))
s

(1− T (T−1(x) eu))s+t , (21)

where T is the tree function [10, 11]. For |z| < e−1, this function is given by the power
series:

T (z) =

∞∑

n=1

nn−1

n!
zn . (22)

It satisfies that T (z) exp(−T (z)) = z (or equivalently, T−1(z) = ze−z), and it is closely
related to the Lambert W function [10, 11]: T (z) = −W (−z).

Using (21), it is not very difficult to obtain an explicit closed form for both the
second-order (s, t)-Eulerian polynomials and the second-order (s, t)-Eulerian numbers.
By expanding (1− T (ξ))−(s+t) in powers of T (ξ), where ξ = T−1(x) eu = x e−x+u, we get:

B(s,t)
n (x) = n!

(1− x)s+t+2n

xs

∞∑

j=0

(s+ t)j

j!
[un]T (ξ)s+j . (23)

One important property of the tree function (22) is that the Taylor expansion at z = 0
of its powers can be computed in closed form [11, Eq. (10)]:

T (z)s =
∞∑

k=0

s (k + s)k−1

k!
zs+k . (24)
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Using this expression in (23) we obtain

B(s,t)
n (x) = (1− x)s+t+2n

∞∑

p=0

xp

p!
e−x(p+s)

×

p∑

j=0

(
p

j

)
(s+ t)j (s+ j) (p+ s)n+p−j−1 . (25)

From this equation we easily obtain the following proposition, which resembles Propo-
sition 12 for the (s, t)-Eulerian polynomials A

(s,t)
n :

Proposition 14. The second-order (s, t)-Eulerian polynomials B
(s,t)
n satisfy for any n > 0

and arbitrary parameters s, t the relation

xex(s−1) B
(s,t)
n (x)

(1− x)2n+s+t
=
∑

k>1

(xe−x)
k

(k − 1)!

×
k−1∑

j=0

(
k − 1

j

)
(s+ t)j (s+ j) (k + s− 1)n+k−j−2 . (26)

When (s, t) = (1, 0), we get the following relation for the ordinary second-order Eule-

rian polynomials Bn(x) = B
(1,0)
n (x):

xBn(x)

(1− x)2n+1
=
∑

k>1

kn+k−1

(k − 1)!

(
xe−x

)k
, (27)

that resembles Eq. (16) for the ordinary Eulerian polynomials An(x). The proof of these
results makes use of the following combinatorial identities:

1 =

n∑

j=0

(
n

j

)
j! j

1

nj+1
=

n∑

j=0

(
n

j

)
(j + 1)!

1

(n+ 1)j+1
. (28)

A closed expression for the second-order generalized (s, t)-Eulerian numbers can be
obtained by writing (25) in the form

B(s,t)
n (x) =

∑

k>0

xk

k!

k∑

r=0

(
k

r

)
(s+ t+ 2n)k−r

r∑

p=0

(
r

p

)
(−1)k−p

×

p∑

j=0

(
p

j

)
(s + t)j (s+ j) (p+ s)n+r−j−1 , (29)

to conclude
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Theorem 15. The second-order generalized (s, t)-Eulerian numbers are equal to

〈〈
n

k

〉〉

(s,t)

=

〈
n

k

〉(2)

(s,t)

=
1

k!

k∑

r=0

(
k

r

)
(s+ t+ 2n)k−r

r∑

p=0

(
r

p

)
(−1)k−p

×

p∑

j=0

(
p

j

)
(s+ t)j (s+ j) (p+ s)n+r−j−1 (30)

for n > 0 and 0 6 k 6 n.

Remarks.

1. Again, from Eq. (30) we see that the numbers
〈〈
n

k

〉〉
(s,t)

are polynomials in both
parameters s, t.

2. The ordinary second-order Eulerian numbers with the standard [17, Eq. (6.38)] and
the traditional [9] ordering are respectively given by

〈〈
n

k

〉〉
=

〈〈
n

k

〉〉

(1,0)

=

k∑

r=0

(−1)k−r

(
1 + 2n

k − r

){
n + r + 1

r + 1

}
, (31a)

Bn,k =

〈〈
n

k

〉〉

(0,1)

=
k∑

r=0

(−1)k−r

(
1 + 2n

k − r

){
n + r

r

}
=

〈〈
n

k − 1

〉〉
, (31b)

where the numbers
{
n

k

}
are the standard Stirling subset numbers [17]. The inverse

relation of Eq. (31a) is given in [17, Eq. (6.43)].

3. The second-order (s,−s)-Eulerian numbers take the form

〈〈
n

k

〉〉

(s,−s)

= s

k∑

r=0

1

r!

(
2n

k − r

) r∑

p=0

(
r

p

)
(−1)k−p (p+ s)n+r−1 . (32)

7 The ν-order generalized (s, t)-Ward numbers

The standard Ward numbers and the second-order Eulerian numbers form an inverse
Riordan pair (1b). A natural question is how to generalize these Ward numbers such that
they form a Riordan inverse pair with the ν-order (s, t)-Eulerian numbers. To achieve
this goal, we start by defining:

Definition 16. Let ν, s > 1 and t > 0 be integers. The ν-order generalized (s, t)-Ward
numbers W (ν)(n, k; s, t) are defined as those satisfying the recurrence

W (ν)(n, k; s, t) = (k + s)W (ν)(n− 1, k; s, t)

+ (νn + k + s+ t− 1− ν)W (ν)(n− 1, k − 1; s, t) + δk0δn0 , (33)

with the additional conditions W (ν)(n, k; s, t) = 0 if n < 0 or k < 0.
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The family of ν-order generalized (s, t)-Ward numbers is related to the ν-order (s, t)-

Eulerian numbers by a non-trivial involution F → F̂ that can be derived from the fol-
lowing:

Proposition 17. Let F (x, y) = F (x, y;µ) be the solution of

− (β + β ′ x) x
∂F

∂x
+ (1− α y − α′ x y)

∂F

∂y
= (α+ γ + (α′ + β ′ + γ′) x)F , (34)

with parameters µ = (α, β, γ;α′, β ′, γ′), β 6= 0, and initial condition F (x, 0) = F (x, 0;µ)
= 1. Then,

F̂ (x, y) = F̂ (x, y; µ̂) = F

(
β x

β − β ′ x
, y

β − β ′ x

β
;µ

)
, (35)

is a solution of Eq. (34) with parameters

µ̂ =

(
α, β, γ;α′ + β ′ −

αβ ′

β
,−β ′, γ′ + β ′ −

γ β ′

β

)
, (36)

and initial condition F̂ (x, 0) = F̂ (x, 0; µ̂) = 1.

The straightforward proof relies on making the appropriate change of variables in
Eq. (34), and then regrouping the resulting terms. Proposition 17 implies

Corollary 18. If
∣∣n
k

∣∣ (resp.
∣̂∣n
k

∣∣) is the solution of

∣∣∣∣
n

k

∣∣∣∣ = (αn+ βk + γ)

∣∣∣∣
n− 1

k

∣∣∣∣+ (α′n+ β ′k + γ′)

∣∣∣∣
n− 1

k − 1

∣∣∣∣ + δn0δk0 (37)

with parameters µ (resp. µ̂), then

∣∣∣∣
n

k

∣∣∣∣ =
k∑

j=0

∣̂∣∣∣
n

j

∣∣∣∣
(
n− j

n− k

) (
β ′

β

)k−j

, (38a)

∣̂∣∣∣
n

k

∣∣∣∣ =
k∑

j=0

∣∣∣∣
n

j

∣∣∣∣
(
n− j

n− k

) (
−
β ′

β

)k−j

. (38b)

Remark. Notice that when ββ ′ 6= 0 the pair

ak =
k∑

j=0

âj

(
n− j

n− k

) (
β ′

β

)k−j

, (39a)

âk =
k∑

j=0

aj

(
n− j

n− k

) (
−
β ′

β

)k−j

, (39b)
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is an inverse pair in the sense of Riordan [27] (see also [18]), and it generates the combi-
natorial identity

k∑

i=j

(−1)i+j

(
n− i

n− k

)(
n− j

n− i

)
= δkj . (40)

According to the results presented in Sections A.15 and A.1.6 of Ref. [1], the EGF
for the ν-order (s, t)-Ward numbers FW (x, y; µ̂) with µ̂ = (0, 1, s; ν, 1, t+ s− ν − 1) and
the EGF for the (ν + 1)-order (s, t)-Eulerian numbers FE(x, y;µ) with µ = (0, 1, s; ν +
1,−1, t− ν) are related by (cf. (35)):

FW (x, y; µ̂) = FE

(
x

1 + x
, y (1 + x);µ

)
, (41a)

FE(x, y;µ) = FW

(
x

1− x
, y (1− x); µ̂

)
. (41b)

If we use (5), we obtain from (41a) the EGF for the ν-order (s, t)-Ward numbers [1,
Section A.1.6]:

FW (x, y) =
Tν+1

(
ey (1+x)−ν

T−1
ν+1

(
x

1+x

))s

[
1− Tν+1

(
ey (1+x)−ν

T−1
ν+1

(
x

1+x

))]s+t

1

xs (1 + x)t
. (42)

Finally, using (38) we obtain the following

Corollary 19. The numbers
〈
n

k

〉(ν)
(s,t)

and W (ν)(n, k; s, t) are related by the equations

W (ν)(n, k; s, t) =
k∑

j=0

〈
n

j

〉(ν+1)

(s,t)

(
n− j

n− k

)
, (43a)

〈
n

k

〉(ν+1)

(s,t)

=
k∑

j=0

(−1)k−j W (ν)(n, j; s, t)

(
n− j

n− k

)
. (43b)

Notice that when (ν, s, t) = (1, 0, 1) we recover the Ward numbers [22, entry A134991]
W (1)(n, k; 0, 1) = W (n, k) =

{{
n+k

k

}}
, corresponding to µ = (0, 1, 0; 1, 1,−1). The num-

bers
{{

n

k

}}
are the associated Stirling subset numbers [13], [22, entry A008299]. Eq. (43)

relates these numbers with the second-order (0, 1)-Eulerian numbers (i.e., the second-order
Eulerian numbers with the traditional indexing

〈〈
n

k

〉〉
(0,1)

= Bn,k) in the form mentioned in

Eq. (1):

{{
n+ k

k

}}
=

k∑

j=0

Bn,j

(
n− j

n− k

)
, (44a)

Bn,k =

k∑

j=0

(−1)k−j

{{
n + j

j

}} (
n− j

k − j

)
. (44b)
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As Bn,k =
〈〈

n

k−1

〉〉
for n > 1 and 1 6 k 6 n, we can substitute this expression into

(44) and, after some algebraic manipulations, we arrive at the formulas [28, Corollaries 5
and 4]:

〈〈
n

k

〉〉
=

k∑

j=0

(−1)k−j

{{
n+ j + 1

j + 1

}} (
n− j − 1

k − j

)
, (45a)

{{
n+ k

k

}}
=

k∑

j=0

〈〈
n

j

〉〉 (
n− j − 1

k − j − 1

)
. (45b)

8 Combinatorial interpretation of the generalized

Ward numbers

In this section, we will give a combinatorial interpretation of the ν-order generalized
(s, t)–Ward numbers (cf. (33)) based on the identity (43a).

For fixed values of n, k, s, t, and a given generalized partition t of t with s parts, the
interpretation relies on the fact that, to obtain W (ν)(n, k; s, t), we sum over the number
of (ν + 2, t + 1)–ary increasing (s, [n])–forests F with j ascents times

(
n−j

n−k

)
. (Recall

Remark 1 after Theorem 11.) In this latter factor, n − j admits a simple interpretation
in terms of the set E(F ) of internal nodes of F that are the first (leftmost) children of
their respective parents. For a tree T with n internal nodes, the cardinality of this set is
denoted by Dn,1 = |E(T )| by Janson et al. [19]. We will see that

(
n−j

n−k

)
is closely related

to the number of ways of marking n− k nodes of the set E(F ).
Let us start with the simplest case s = 1 by considering the class of (ν + 2, t+ 1)–ary

increasing [n]–trees. Then, for any tree T of this class with j ascents, it is easy to prove
that (see [19, Theorem 2]):

n− j = |E(T )|+ δt,0 . (46)

When t > 0, we can choose the n − k distinguished nodes from the set Dt(T ) = E(T );
when t = 0, we make the choice from the set D0(T ) which is now the union of the root
node and the set E(T ). (Notice that our definition of ascent slightly differs from that of
Ref. [19].) See Figure 3 for two examples with t = 0 (a) and t > 0 (b). In this figure,
distinguished nodes are depicted in gray. Putting all together, we can conclude that:

Theorem 20. Let us fix integers n, t > 0, ν > 1, and 0 6 k 6 n. Then, W (ν)(n, k; 1, t)
counts the number of (ν + 2, t+ 1)–ary increasing [n]–trees T with at most k ascents and
n− k distinguished nodes from the set Dt(T ).

Let us now consider the extension of Theorem 20 for s > 2. In this case, our basic
objects are indeed the (ν +2, t+ 1)–ary increasing (s, [n])-forests F with j ascents. Each
connected component Ti of the forest F = (T1, . . . , Ts) is a (ν + 2, ti + 1)–ary increasing
Xi–tree, where (X1, X2, . . . , Xs) is a generalized partition of [n]. Let the ji be the number
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1

∅ 2

3

∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅

0

1

∅ ∅ 2

∅ ∅ ∅ ∅

∅

∅ ∅

(a) (b)

Figure 3: (a) A 4–ary increasing [3]–tree Ta, which is equivalent to the (3, [3])-Stirling
permutation 133322211 with one ascent at index 1 (which is underlined) and two distin-
guished nodes (in boldface): the root and the one labelled 3. These nodes are depicted in
gray. Note that D0(Ta) = {①,③} and |D0(Ta)| = D3,1+1 = 2 for this tree. (b) A (4, 3)–ary
increasing [2]–tree Tb equivalent to the (3, 2, [2])–Stirling permutation 11222100 with one
ascent at index 2, and one distinguished node (labelled 1). In this case, D1(Tb) = {①}
and |D1(Tb)| = D2,1 = 1. In both examples, all possible distinguishable nodes are actually
chosen.

of ascents of Ti, then |Xi| − ji = |Dti(Ti)|. If we define the set

Dt(F ) =
s⋃

i=1

Dti(Ti) , (47)

we get that, irrespectively of the partition (X1, X2, . . . , Xs), for any (ν + 2, t + 1)–ary
increasing (s, [n])-forest F with j ascents

|Dt(F )| =
s∑

i=1

(|Xi| − ji) = n− j . (48)

This fact allows us to generalize Theorem 20 when s > 2:

Theorem 21. Let us fix integers n, t > 0, ν, s > 1, and 0 6 k 6 n. Given any generalized
ordered partition t = (t1, . . . , ts) of t, W

(ν)(n, k; s, t) counts the number of (ν+2, t+1)–ary
increasing (s, [n])–forests F with at most k ascents and n − k distinguished nodes from
the set Dt(F ) defined in (47).

This theorem completes the combinatorial interpretation of the ν–order generalized (s, t)–
Ward numbers for ν, s > 1 and t > 0. Figure 4 shows an example of a (4, t + 1)–ary
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0

2

∅ 3

∅ ∅ ∅ ∅

∅ ∅

∅ ∅

1

5

∅ ∅ ∅ ∅

∅ ∅ ∅

0

∅ 4

∅ ∅ ∅ ∅

∅

Figure 4: A (4, t+1)–ary increasing (4, [5])–forest F = (T1, T2, T3, T4) with t = (2, 0, 1, 0)
and the generalized partition ({2, 3}, {1, 5}, {4},∅) of [5]. It corresponds to the (3, t, 5)–
Stirling permutation (23332200, 555111, 0444,∅) with 2 ascents and two distinguished
nodes (labelled 1 and 2) out of the three possible ones. From left to right, the first tree
T1 has one ascent at index 1 and one distinguished node out of |D2(T1)| = 1; the second
tree has no ascents and one distinguished node out of |D0(T2)| = 2; the third tree has one
ascent at index 1 and no distinguished nodes (D1(T3) = ∅); and the last one, T4, is the
trivial empty tree.

increasing (4, [5])–forest F = (T1, T2, T3, T4) with t = (2, 0, 1, 0), and the generalized
partition ({2, 3}, {1, 5}, {4},∅) of [5]. This forest has two ascents and two distinguished
nodes out of the three possible ones Dt(F ) = {①,②,⑤}.
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