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Abstract

Vizing’s conjecture from 1968 asserts that the domination number of the Carte-
sian product of two graphs is at least as large as the product of their domination
numbers. In this note we use a new, transparent approach to prove Vizing’s conjec-
ture for graphs with domination number 3; that is, we prove that for any graph G
with γ(G) = 3 and an arbitrary graph H, γ(G�H) > 3γ(H).
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1 Introduction

The following long-standing conjecture

Conjecture 1. ([13]) For every pair of finite graphs G and H,

γ(G�H) > γ(G) γ(H), (1)

is arguably the most important open problem in graph domination. (As usually, γ stands
for the domination number, and G�H is the standard notation for the Cartesian product
of graphs G and H.) The first extensive survey on Vizing’s conjecture was published
already in 1998 [9], and for a recent survey see [3]. Although many partial results are
known that prove inequality (1) (or a weaker form of it) for several classes of graphs,
the conjecture remains unsolved. As a side-effect of these approaches some new methods
and concepts in domination theory have been developed. In particular, the conjecture
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motivated the study of different domination parameters in Cartesian products of graphs,
and was one of the main motivations for the introduction of the rainbow domination [4]
and of the domination game [5].

One of the first partial results proving that inequality (1) holds for a very special class
of graphs was obtained by Barcalkin and German [2]. The proof in a clever way uses the
simple idea of projecting the vertices in a dominating set of G�H to γ(G) copies of the
graph H in such a way that to each copy at least γ(H) vertices are projected. A somewhat
more sophisticated idea of the so-called double projection has been used by Clark and
Suen [6] in their proof of the weaker version of (1), where the right side of the inequality
is multiplied by 1/2; cf. [14, 11] for recent improvements of this result, and [7] for another
very recent approach to the conjecture. The best result so far in terms of domination
numbers of factors due to Liang Sun [12] states that the conjectured inequality holds if
one of the factors has domination number (at most) 3 and the other factor is arbitrary. By
saying that a graph G satisfies Vizing’s conjecture we mean that for any other graph H
the conjectured inequality γ(G�H) > γ(G) γ(H) holds; hence in this terminology, Liang
Sun’s result proves that all graph with domination number (at most) 3 satisfy Vizing’s
conjecture. However, the proof in [12] is very technical and a need for a more transparent
proof of this result has been expressed for instance in [8].

In this paper we present a new proof of the result that graphs with domination number
3 satisfy Vizing’s conjecture, see Theorem 2. The proof is based on the simple idea of
projecting a dominating set of the product G�H to three copies of H, so that projected
vertices in each copy induce a dominating set of H (where G is a graph with domination
number 3). The idea works because of a special rule that we impose on the projection
maps. In the proof several cases appear, one of which needs somewhat deeper analysis.
Nevertheless, we believe that the overall approach of the proof is transparent and not
hard to follow, making it convenient for possible further generalizations and extensions.

In the rest of this section we establish the notation, and present some preliminary
observations needed in the proof of the main result, while Section 2 contains its proof.

Let G = (V (G), E(G)) be a finite, simple graph. For subsets A and B of vertices of
G, we say that B dominates A (or A is dominated by B) if A ⊆ N [B]; that is, if each
vertex of A is in B or is adjacent to some vertex of B. The domination number of G is the
smallest cardinality, denoted γ(G), of a set that dominates V (G). If D dominates V (G),
we will also say that D dominates the graph G and that D is a dominating set of G.

The Cartesian product G � H of graphs G and H is the graph whose vertex set is
V (G)× V (H). Two vertices (g1, h1) and (g2, h2) are adjacent in G�H if either g1 = g2
and h1h2 is an edge in H or h1 = h2 and g1g2 is an edge in G. For a vertex g of G, the
subgraph of G�H induced by the set { (g, h) | h ∈ H } is called an H-fiber and is denoted
by gH. Similarly, for h ∈ H, the G-fiber, Gh, is the subgraph induced by { (g, h) | g ∈ G }.
We will make use of projection maps from the Cartesian product G � H to one of the
factors G or H. The projection to H is the map pH : V (G � H) → V (H) defined by
pH(g, h) = h. When D is a dominating set of the product G � H, we will often say
that (g, h) ∈ D is projected to h in Hi, by which we will indicate that h is added to a
dominating set that is being built in the copy Hi of H.
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In this note we prove the following result.

Theorem 2. Let G and H be finite graphs, γ(G) = 3, and H is an arbitrary graph. Then

γ(G�H) > 3 γ(H). (2)

We will use the following well-known observation.

Observation 3. Let G be a graph that satisfies Vizing’s conjecture, and let G′ be a
spanning subgraph of G such that γ(G′) = γ(G). Then G′ also satisfies Vizing’s conjecture.

Indeed, if H is any graph, then

γ(G′)γ(H) = γ(G)γ(H) 6 γ(G�H) 6 γ(G′ �H) .

The last inequality holds since G′ � H is a spanning subgraph of G � H. Hence, to
prove that Vizing’s conjecture is satisfied by graphs G with domination number 3 we may
restrict in the proof only to graphs G that are edge-maximal with respect to domination
number (edge-maximal means that by adding any edge between two non-adjacent vertices
in G the domination number drops).

Observation 4. Let G be a graph with γ(G) = 3, which is edge-maximal with respect
to domination number. Then there exists a dominating set D = {a, b, c} of G such that
N [a] ∪N [b] = V (G) \ {c}.

To see that Observation 4 is correct, note that by adding an edge between two non-
adjacent vertices a and c in G, the domination number of the resulting graph G + ac is
2, and either a or c must be in a minimum dominating set of G + ac. Let {a, b} be a
dominating set of G+ ac. But then in G vertices a and b dominate every vertex except c.

In the proof we will also use the following classical theorem from set theory (known
as Hall’s marriage theorem). Recall that a family of (nonempty) finite sets {S1, . . . , Sn}
has a system of distinct representatives, if there exists a set of their elements {x1, . . . , xn}
such that xi ∈ Si for all i ∈ [n] (as usually, [n] denotes the set {1, . . . , n}).

Theorem 5. Let S = {S1, . . . , Sn} be a family of (nonempty) finite sets. There exists
a system of distinct representatives of the sets from S if and only if for each subfamily
Si1 , . . . , Sik of S the following (Hall’s condition) holds:

|Si1 ∪ · · · ∪ Sik | > k.

2 Proof of Theorem 2

Let G be a (connected) graph with γ(G) = 3, and let I = {v1, v2, v3} be a dominating
set of G. By Observations 3 and 4 we may assume that G is edge-maximal and that
N [v1] ∪N [v2] = V (G) \ {v3}.
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For any i ∈ [3] = {1, 2, 3}, let Pi denote the set of external private neighbors of vi in
G with respect to I, that is

Pi = {x ∈ V (G) \ I : N(x) ∩ I = vi}.

Note that P3 = ∅ and set P = P1 ∪P2. Let Qi = Pi ∪{vi}, and Q = Q1 ∪Q2 ∪Q3. Next,
for any S ⊆ [3], |S| > 2,

PS = {x ∈ V (G) \Q : N(x) ∩ I = {vi | i ∈ S}}.

For instance, P{1,3} is the set of vertices that are adjacent to v1 and v3 and are not adjacent
to v2.

Let D be a dominating set of G � H. We will project vertices of D to three copies
of H, denoted by H1, H2, H3. Each vertex of D is allowed to project to only one vertex
in only one copy of H; the set of projected vertices in the copy Hi is denoted by Di. We
will prove that projections can be performed in such a way that each Di is a dominating
set in Hi. If this is done, it clearly implies that |D| > 3γ(H). The projections will be
done in three steps (the third step is optional, depending on the structure of G and of
the dominating set of G�H, and makes some corrections to projections made in the first
step).

In the first step we project the vertices (x, h) ∈ D, where x ∈ Q in the following
natural way: if x ∈ Qi then we project (x, h) to h in the copy Hi (Note that by projecting
(x, h) to h in Hi we mean that we put h to the set Di of Hi.)

After the first step, we examine each fiber Gh for h ∈ V (H), and consider the copies
of h in all Hi that are not yet dominated by the set Di, constructed so far. We say that
the pair {i, h} is vertically undominated if (Qi×NH [h])∩D = ∅. Obviously in each fiber
Gh there are between zero and three such vertically undominated pairs {i, h}.

In the second step we project the vertices (x, h) ∈ D, where x ∈ V (G) \Q, in such
a way that the following rule is obeyed:

(R) if x ∈ PS, where S ⊆ [3], then there exists an i ∈ S and a vertex (y, h) from
D ∩Gh, such that (y, h) is projected to h in the copy Hi.

We will say a vertex (x, h) from D∩Gh is free if there exists another vertex (y, h) ∈ D,
which is projected to h in Hi, and i ∈ S, where x ∈ PS.

We distinguish 7 cases with respect to the following properties of the fibers Gh, for
which not all copies of h in Hi are dominated by Di. By Case k/m, where 1 6 m 6 k 6 3
we mean that in Gh there are k pairs {i, h} that are vertically undominated, and that
there are m vertices in ((V (G) \ Q) × {h}) ∩ D. As it turns out, it can also happen
that there is one pair {i, h} that is vertically undominated, yet there are no vertices in
((V (G) \ Q) × {h}) ∩ D. This case will be denoted by Case 1/0. It will also become
clear that the cases when m > k can be easily translated to the case when m = k.

In each of the cases we argue how the projection of the vertices from Gh ∩ D is
performed in the second step, so that for each vertically undominated pair {i, h}, the
vertex h becomes dominated in Hi, and at the same time the rule (R) is obeyed for the
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projected vertices. The only exception, where the projections fail to achieve the desired
goal, may appear in Case 2/1. This case is dealt with at the end, after all the projections
of the second step are done in all the G-fibers, which fall under other cases. If such a
problem in Case 2/1 appears, it leads to the third step in which some modifications of
projections from the first step are perfomed.

Case 1/0. As there are no vertices in ((V (G) \Q)× {h}) ∩D, it is clear that {3, h}
cannot be vertically undominated, because no vertex from (P1 ∪ P2)× {h} is adjacent to
(v3, h). (Note that from the same reason, cases 3/0 and 2/0 are not possible.) Hence we
may assume without loss of generality that {1, h} is vertically undominated. Then (v1, h)
and all (u, h) for u ∈ P1 must be dominated from Gh ∩D. In particular, the only way to
dominate (v1, h) is from I × {h}; more precisely, we infer that (v2, h) ∈ D. In addition,
to dominate a vertex (u, h) for u ∈ P1 there must exist a vertex (v, h) ∈ D where v ∈ P2.
Now, as both vertices (v2, h) and (v, h) are projected in the first step to the same vertex
h in H2, we find that one of them is a free vertex. We project it to h in H1, and so h is
dominated in each of the three copies Hi.

Case 1/1. In this case exactly one {i, h}, i ∈ [3] is vertically undominated, and there
is one vertex from (x, h) ∈ D with x 6∈ Q. If x is adjacent to vi, then we can project (x, h)
to h in Hi by which the rule (R) is obeyed, and the proof in this case is done. On the
other hand, if x is not adjacent to vi, then i ∈ {1, 2} because (vi, h) must be dominated
within Gh and v3 is not adjacent to any vertex from Q. We may assume without loss
of generality that (v1, h) is vertically undominated. This implies that (v2, h) ∈ D, v2 is
adjacent to v1, and x ∈ P{2,3}. Hence the rule (R) is already obeyed for (x, h) (with the
vertex (v2, h) projected to h in H2) and so (x, h) is free. We project it to h in H1, and so
h becomes dominated in H1.

Case 2/2. Let {i, h} and {j, h} be vertically undominated, let k be the unique index
in [3] \ {i, j}, and let (x, h), (y, h) ∈ D such that x, y 6∈ Q. If none of (vi, h) and (vj, h) is
dominated by (vk, h), then it is easy to see, that we can project (x, h) and (y, h) to the
copies of h in Hi and Hj in such a way that (R) is obeyed. Now, assume that at least one
of (vi, h), (vj, h) is dominated by (vk, h), which is thus in D. Then each of the vertices
(x, h) and (y, h) is either free (when it is adjacent to (vk, h)), or it is in P{i,j}. In either
case we can project them to the copies of h in Hi and Hj, by which the proof of this case
if complete.

Case 3/1. In this case {1, h}, {2, h} and {3, h} are vertically undominated, and let
(x, h) be the unique vertex in Gh ∩ D (clearly x 6∈ Q). We claim that in each of P{1,2},
P{1,3}, and P{2,3} there exists a vertex that is not adjacent to x. Indeed, if every vertex
in, say P{1,2}, were adjacent to x, then {x, v3} would be a dominating set of G, which
is a contradiction with γ(G) = 3. Let u ∈ P{1,2}, v ∈ P{1,3}, and w ∈ P{2,3} be vertices
not adjacent to x. Hence (u, h), (v, h), (w, h) are (vertically) dominated by some vertices
(u, h′), (v, h′′), (w, h′′′) ∈ D, where h′, h′′, h′′′ ∈ NH(h). By (R) these vertices are projected
to h′, h′′, h′′′, respectively, in one of the copies H1, H2 or H3 (more precisely, (u, h′) in H1

or H2, (v, h′′) in H1 or H3 and (w, h′′′) in H2 or H3). It is easy to see that in at most
one of the copies H1, H2, H3 the vertex h is not vertically dominated after these three
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projections are performed. If Hi, i ∈ {1, 2, 3}, is such a copy, we let (x, h) project to h in
Hi, otherwise (x, h) is projected in an arbitrary copy of H.

Case 3/2. Again assume without loss of generality that {1, h}, {2, h} and {3, h} are
vertically undominated, and let (x, h), (y, h) ∈ D. Since {x, y} is not a dominating set of
G, there exists a vertex (z, h) ∈ Gh that is not adjacent to these two vertices. Moreover,
z 6∈ Q, and (z, h) is vertically dominated by some vertex (z, h′) ∈ D, where h′ ∈ NH(h).
The projection of (z, h′) to the copy of h′ in some Hi, dominates the copy of h in Hi. For
the other two copies of h we use projection of (x, h), (y, h) to h in these copies. Note that
such projections can be done, by obeying rule (R), because each of the vertices x and y
is adjacent to at least two vertices from I and {x, y} dominates I.

Case 3/3. Let {1, h}, {2, h} and {3, h} be vertically undominated, and let (x1, h), (x2, h)
and (x3, h) be the vertices from D. For i = 1, 2, 3, let PSi

be the set in which xi lies. Note
that the sets S1, S2, S3 enjoy Hall’s condition, and so there exists a system of distinct
representatives of these sets. That is, each set has a unique representative from {1, 2, 3},
say Si is represented by π(i), where π is the corresponding permutation. By projecting
(xi, h) to h in Hπ(i), the rule (R) is obeyed and for each i ∈ [3] the copy of h in Hi is
dominated by h itself.

Case 2/1. Let {i, h} and {j, h} be vertically undominated, let k be the unique index
in [3] \ {i, j}, and let (x, h) be the unique vertex in ((V (G) \Q)× {h}) ∩D.

First assume that |Gh ∩D| = 1. Clearly, the vertex (x, h) then dominates (Qi ∪Qj)×
{h}. Since {x, vk} is not a dominating set of G (as γ(G) = 3), there exists a vertex
(z, h) ∈ P{i,j}, which is not adjacent to (x, h). Thus (z, h) must be vertically dominated,
i.e. there exists h′ ∈ NH(h) such that (z, h′) ∈ D. By the rule (R), (z, h′) is projected to
h′ in Hi or in Hj, and so the copy of the vertex h is dominated by h′ either in Hi or in
Hj; we may assume without loss of generality that the copy of h in Hi is dominated by
h′ ∈ Di. Since x is adjacent to vj, we can project (x, h) to the copy of h in Hj, by which
(R) is obeyed, and so all three copies of h are dominated.

Next, if |Gh ∩ D| > 3, this readily implies that |(Qk × {h}) ∩ D| > 2. Since in the
first step the (at least two) vertices from Qk ×{h} project to the same vertex h in Hk, at
least one of these vertices is free. We project it to h in Hi, and project (x, h) to h in Hj,
making all three copies of h dominated.

In the remainder of this case, we can assume that |Gh ∩D| = 2. Now, suppose that
(vk, h) ∈ D. Since x ∈ V (G) \ Q, it is either in Pi,j or (x, h) is a free vertex, but in
any case, (x, h) can be projected to any copy of h, without violating (R). We proceed
analogously as in the case |Gh ∩D| = 1. Notably, since {x, vk} is not a dominating set of
G, there exists a vertex (z, h) ∈ P{i,j}, which is not adjacent to (x, h). Thus there exists
h′ ∈ NH(h) such that (z, h′) ∈ D. By (R), (z, h′) is projected to h′ in Hi or in Hj, and
so the copy of the vertex h is dominated by h′ either in Hi or in Hj; we project (x, h) to
the other copy of h, and so all three copies of h are dominated.

Finally, let (v, h) ∈ D, where v ∈ Pk, be the only vertex in D∩Gv beside (x, h). At this
point we assume that the first and the second step of projections to the copies of H have
already been performed for all vertices of D in all G-fibers in which this was possible. That
is, for all Gh, which fall under any of the above cases (including the preceding subcases of
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Case 2/1), the projections of the second step were also performed. The projections can
be done in any order; by starting in an arbitrary G-fiber Gh and project its vertices of
((V (G)\Q)×{h})∩D according to the rule (R), which in turn determines the projections
of the neighboring G-fibers, and so on. The only eventual remaining G-fibers are the ones
that fall under the subcase of Case 2/1, in which we are now, and which will be described
in what follows.

Suppose that there is a neighboring G-fiber Gh′ of Gh, in which the projections of the
second step have also not been performed yet. This means that Gh′ , where h′ ∈ NH(h),
also falls under the last subcase of Case 2/1. This implies that there exists a vertex
(x′, h′), which is unique in ((V (G) \Q)× {h}) ∩D, and there is only one other vertex of
D ∩ Gh′ . Now, since {i, h} and {j, h} are vertically undominated, this implies that the
remaining vertex of D∩Gh′ lies in Qk×{h′}. Hence, we find that (x′, h′) can be projected
to h′ in any copy of H (in the same way, as we deduced it for (x, h)). We project (x, h)
to h in Hi and (x′, h′) to h′ in Hj, by which each of h and h′ are dominated in all three
copies of H. More generally, we can clearly resolve the projections in the second step for
any nontrivial connected subgraph H̃ of H, where Gh falls under this subcase of Case 2/1
for all h ∈ H̃. The final remaining case is that the mentioned subgraph is trivial, i.e. for
all the neighboring G-fibers of Gh the projections fall under previous cases of the second
step (which have already been performed).

Suppose that there is a G-fiber Gh′ , where h′ ∈ NH(h), such that a vertex (u, h′) ∈ D
is projected in the second step to h in Hi (or Hj resp.). Then we can clearly conclude
the proof of this case, by projecting (x, h) to h in Hj (or Hi resp.), and so all copies of
h are dominated. Hence, we may assume that for each h′ ∈ NH(h), the vertices from
((V (G) \ Q) × {h}) ∩ D are projected to h′ in Hk. If this is the case, then we arrive at
the third step.

In the third step we make a nonstandard re-projection, by declaring that (v, h) is
projected to one of Hi or Hj instead of Hk (that is, we delete h from Dk and put it
in Di or Dj). At the same time we project (x, h) to h in Hj (or Hi resp., taking care
that (R) is obeyed), by which h is dominated in the copies Hi and Hj. We claim that
by this re-projection h remains dominated also in the copy Hk, and that all neighbors
h′ ∈ NHk

(h) remain dominated. That is, we claim that h ∈ Dk is not needed in the
constructed dominating set of Hk; i.e. it remains a dominating set of Hk also after we
remove h from it.

Since {x, v} is not a dominating set of G, there exists a vertex y ∈ V (G), which is not
dominated by these two vertices. Note that y ∈ Pk ∪ (V (G) \Q). Now, this implies that
(y, h) must be vertically dominated, i.e. there exists (y, h) ∈ D, where h ∈ NH(h). In
any case (y being either in Pk or in V (G) \Q), the vertex (y, h) is projected to h in Hk.
Thus h is dominated by h ∈ Dk.

Suppose that there is a vertex h′ ∈ NH(h) such that h′ ∈ V (Hk) was dominated
only by h before the third step. In particular, this implies that (vk, h

′) is not vertically
dominated. Since (vj, h

′) and (vi, h
′) are not in D (because {i, h} and {j, h} are vertically

undominated), we infer that (vk, h
′) is dominated by a vertex (y, h′) ∈ D, where y is in

V (G)\Q. Since (y, h′) is projected in the second step to h′ in Hk we derive a contradiction
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with the assumption that h′ ∈ V (Hk) was not dominated by Dk \ {h} after the first two
steps. This contradiction implies that after the re-projection of h from Dk to Di or Dj,
the set Dk \ {h} remains a dominating set of Hk, and so the proof is complete.
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