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Abstract

We investigate the apparent difficulty of finding domatic partitions in graphs us-
ing tools from computability theory. We consider nicely presented (i.e., computable)
infinite graphs and show that even if the domatic number is known, there might not
be any algorithm for producing a domatic partition of optimal size. However, we
prove that smaller domatic partitions can be constructed if we restrict to regular
graphs. Additionally, we establish similar results for total domatic partitions.

Keywords: domatic partitions; graph algorithms; infinite regular graphs; com-
putability theory

1 Introduction

A set D of vertices in a graph G is called dominating if every vertex of G not in D is
adjacent to a vertex in D. A partition of the vertices into n dominating sets is called a
domatic n-partition, and the largest such n is called the domatic number of the graph. Not
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surprisingly, finding the domatic number of a graph is non-tractable—deciding whether
a graph has domatic number 3 is NP-complete [4]. Thus actually producing a domatic
partition of optimal size is computationally hard. The goal of this paper is to better
understand domatic partitions by investigating why domatic partitions are so difficult to
produce.

The complexity of the domatic number and related problems have been widely studied.
For example, Riege and Rothe proved that the exact versions of the domatic number
problem are complete for levels of the boolean hierarchy over NP [8]. Approximations to
the domatic number have been studied: it is possible to find domatic partitions of non-
optimal size (determined by the size and minimal degree of the graph) in polynomial time
[3]. Another approach is to restrict to specific classes of graphs. The domatic number
problem remains NP-complete even when restricting to special classes of graphs such as
chordal or bipartite [7]. However, there is a polynomial time algorithm to find the domatic
number and the desired partition of a given interval graph [2]. For more classical results,
see [5].

In this paper, we consider infinite graphs, and ask whether it is possible to find domatic
partitions of various sizes. To do this, the graphs will need to be nicely presented; our
approach will be to use tools from computability theory. By “nicely presented” graphs we
will mean computable graphs and we will ask whether there exists a computable domatic
partition. The relevant definitions and background in computability theory will be given
in Section 2, but essentially computable means “there is an algorithm which gives. . . ” For
more of a complete background on computability theory, please see [11] or [9]. Since the
finite version of this question is NP-hard, it is not surprising that, in general, computable
graphs with domatic number n > 3 might not even have a computable domatic 3-partition
(every such graph does have a computable domatic 2-partition—these results can be found
in [6]). The general case though allows for graphs in which we might not know how many
neighbors a particular vertex has. In this investigation we will thus restrict our focus to
regular graphs (graphs in which every vertex has the same degree). This restriction would
appear to make it easier to find domatic partitions—not just because we are restricting the
class of graphs we consider, but also because, in attempting to build a domatic partition,
we have fewer places where we can make a mistake. However, we will show in Theorem
3.1 that there are computable regular graphs with domatic number n but no computable
domatic n-partition.

Computability theory has proved useful in understanding the complexity of a large
number of other graph invariants. A set of vertices is independent if no vertices in the set
are adjacent, and an independent n-partition (or proper vertex coloring) is a partition of
the vertices into n independent sets. The smallest n for which there is an independent
n-partition is the chromatic number of the graph. For finite graphs, deciding the chro-
matic number is NP-complete, and producing an independent partition of optimal size
is computationally difficult. Bean [1] established that there are computable graphs with
chromatic number as small as 2 which contain no computable proper vertex coloring of
any finite size. However, if one requires that the degree of each vertex is also computable,
then it is possible to find computable independent partition, albeit not of optimal size
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(the computable chromatic number can be as much as one less than twice the classical
chromatic number), a result of Schmerl [10]. Both of these results pertain directly to
infinite graphs, but still tell us something about why coloring graphs in general is diffi-
cult. The first result (and in particular its proof) shows that, in a strong sense, we must
consider the entire graph before being confident that we have not made a mistake. The
mistakes we might make can be arbitrarily bad, requiring us to use more and more colors.
However, knowing how many neighbors a vertex has is indeed useful information, even if
it is not enough to give an independent partition of smallest possible size.

Mirroring the research for chromatic number, we ask whether there might be com-
putable domatic partitions of size smaller than the domatic number (but larger than the
trivial 2-partition). In Theorem 4.6 we give a procedure for producing a (computable)
domatic n-partition in any computable k-regular graph with domatic number k + 1 > n2.
Whether this gap is the best-possible is not known. Indeed, for n 6 4 we can do slightly
better.

We will begin in Section 2 by recalling some graph-theoretic definitions and introducing
the relevant concepts from computability theory. Then in Section 3, we will prove that
it is not always possible to compute a domatic n-partition in computable regular graphs
with domatic number n. We will also give an analogous result for total domatic partitions,
a concept that is defined in that section. We will then turn to the question of whether it
is easier to compute smaller domatic partitions for these graphs. In Section 4 we show
how to compute sub-optimal domatic partitions, and consider what these might look like.
In particular, we will prove that they are not divisible, that is, they are not the result of
taking the union of the sets in a full domatic partition. In Section 5 we conclude with
some ideas for future research.

2 Preliminaries

Recall the following definitions from graph theory. A set of vertices D in a graph G is
dominating, if each vertex of G not in D is adjacent to a vertex from D. It is always
possible to partition the vertices of G into (disjoint) dominating sets and such a partition
is called domatic. Since we will consider issues of computability, we give an equivalent
definition. A domatic n-partition of a graph G = (V,E) is a function f : V → {1, 2, . . . , n},
such that each Di = {v ∈ V : f(v) = i} (with 1 6 i 6 n) is a dominating set in G, and
the collection of these Di partitions V . The largest n for which G admits a domatic
n-partition is called the domatic number of G, denoted d(G). As is tradition, we will
usually say that f assigns “colors” to vertices. If a vertex v is either in Di or adjacent to
a vertex in Di, we will say that v is dominated by color i.

When there exists a domatic n-partition, we wish to know if it is a computable func-
tion. Formally, a function ϕ : N → N is computable if there is some Turing machine,
which on input n, outputs ϕ(n). By the Church-Turing thesis, this is equivalent to the
existence of an informal algorithm which outputs ϕ(n) on input n, and this is the notion
of computability that we will generally adopt. Indeed, we identify ϕ with its algorithm.
Notice that our computable functions have no time or space restrictions, except that both
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must be finite for each individual input. Of course, there are algorithms that do not
halt on some inputs. Thus in general we consider partial computable functions. We still
write ϕ : N → N, although the domain need not be all of the natural numbers, and for
those numbers n in the domain, we write ϕ(n)↓ and say that ϕ halts or converges on n.
Otherwise we write ϕ(n)↑ and say that ϕ diverges on n. If a partial computable function
converges on all natural numbers, we say it is total computable or simply computable.

The advantage of considering partial computable functions is that we can effectively
list all of them: {ϕ0, ϕ1, . . .} (there is a universal Turing machine, or alternatively, think of
enumerating all of the countably many algorithms in some fixed programming language).
The existence of this effective list of all partial computable functions will allow us to prove
that a particular graph does not contain a computable domatic k-partition, by showing
that ϕe is not a domatic k-partition for any e ∈ N—either because ϕe(n)↑ for some n, or
because ϕe(n)↓ but is “wrong.” That is, some vertex is not dominated because of the value
of ϕe(n). This process is usually called diagonalizing against all computable functions,
as each partial computable function need only fail on one input (much as happens in
Cantor’s diagonalization proof that the real numbers are uncountable).

Intuitively, a graph should be computable if there is an algorithm which tells us when
two vertices are adjacent. A little more formally, we take V = N (although often still
refer to vertices as v0, v1, . . .) and require that E ⊆ V × V is computable as a set (we say
a set is computable, or decidable, provided its characteristic function is computable).

Note that while this is a natural definition for a graph being computable, many basic
properties of a computable graph might not be computable. In particular, there need not
be an effective procedure for finding all the neighbors of a given vertex; we might have no
way to know when to stop looking for another adjacent vertex. However, all our graphs
will be regular, and for these graphs it is possible to compute all the neighbors of a given
vertex. To find the neighbors of v in a k-regular graph, we simply ask whether (v, vi) ∈ E
for each i ∈ N, one at a time, in order.1 Since the graph is computable, we will get an
answer for each i. Eventually, we will get a positive answer k times, and at this point
we stop and have our list of k neighbors. Regularity is just one way we might happen to
have a procedure for finding all neighbors—in general, graphs in which finding the degree
of vertices is also computable are called highly computable.

In the next section we will build computable graphs in stages, and we will refer to
these as constructions. At each stage we will add some vertices to the graph. As soon as
we do this, we must say exactly to which of the previously mentioned vertices the new
vertices are adjacent. As long as we do this at each stage, the resulting graph will be
computable—the algorithm for deciding whether (vi, vj) ∈ E is simply to run through the
construction of our graph until a stage at which both vi and vj are mentioned, and check
whether we said they were adjacent by that stage.

While building the graph, we will also be waiting for each ϕe to converge on some
fixed finite set of vertices so that we can ensure ϕe is not a domatic partition. If ϕe never
converges, we “win” for free (in the sense that ϕe can never be a domatic partition of
the graph). If ϕe does converge, then we build the next part of the graph in a way to

1All our graphs are undirected, but we still use parentheses to indicate edges for readability.
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“defeat” ϕe. But because the graph must be computable, we cannot add any new edges
between vertices that were put into the graph previously. We could add a new vertex
adjacent to one previously mentioned, except we might run into issues with the regularity
requirement. If the plan was to wait for ϕe to converge on vi, and then add a vertex
adjacent to vi, we run the risk that ϕe will appear never to converge on vi at all. In
that case we would need to enumerate all the neighbors of vi by some finite stage. After
that stage, we might discover that we were wrong, that is, ϕe(vi) ↓, and we now cannot
put any more vertices adjacent to vi without breaking regularity. For this reason, our
constructions will only add vertices adjacent to other recently-enumerated vertices. In
particular, the methods we use to diagonalize against all ϕe must account for the fact
that a proposed domatic partition on some small subset of vertices can influence how
vertices that are arbitrarily far away must be partitioned.

3 Computable Domatic Number

Define the computable domatic number dc(G) to be the largest n for which there is a com-
putable domatic n-partition of G (i.e., the domatic n-partition is a computable function).
Given a computable graph G, there is no reason to think that d(G) = dc(G). Indeed, in
general, there are computable graphs with d(G) = n but dc(G) = 2 for each n > 3, as
shown in [6]. These graphs are not regular, however. We begin by showing that even for
regular graphs, we might have d(G) > dc(G).

Theorem 3.1. For each n > 3, there is an (n − 1)-regular graph G with d(G) = n and
dc(G) = n− 1.

The construction used in [6] prevented ϕe from being a domatic partition by adding
a new vertex adjacent to a large set of vertices that ϕe partitioned identically. This
technique has no hope of working here where we cannot change the degree of vertices.
Instead, our proof will rely on our ability to generate a chain of vertices in which we can
guarantee that certain vertices must be colored identically.

Definition 3.2. A K−n -link is the graph on vertices {l, r, v1, . . . , vn−2} with edges con-
necting all pairs of vertices except l and r (in other-words, we have Kn− (l, r)). We call l
a left-outer vertex, r a right-outer vertex, and the vertices {v1, . . . , vn−2} all inner vertices.
A K−n -chain consists of a sequence of K−n -links in which each right-outer vertex of one
link is adjacent to the left-outer vertex of the next link. The number of links in a chain
is its length. For example, see Figure 1.

Lemma 3.3. Suppose a graph with domatic number n contains a K−n -chain. Then in any
domatic n-partition, all left-outer vertices in the same chain must be colored identically
to each other and distinctly from all the right-outer vertices in the same chain, which
themselves must also be colored identically.
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v2v1

l

v4 v3

r l

Figure 1: A K−6 -chain of length 4.

Proof. Notice first, each vertex in the chain has degree n− 1 (we assume that either the
first left-outer vertex and last right-outer vertex are each adjacent to exactly one vertex
outside the chain or else that the chain is infinite). Thus in any domatic n-partition,
no vertex can be adjacent to two vertices of the same color, and as such each link must
contain exactly one vertex of each color. In the first link, say the left-outer vertex is
colored red, and the right-outer vertex is colored blue. None of the inner vertices can be
colored red or blue, so within the first link, the right-outer vertex is dominated by every
color except red. Thus the left-outer vertex of the next link must be red again. Now
this vertex is already dominated by red and blue, so the inner vertices of the second link
must be the other n− 2 colors. Each of the inner vertices will be dominated by all colors
except blue, forcing the right-outer vertex of the second link to be blue again. We can
inductively extend this argument to the entire chain.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We build the desired (n − 1)-regular graph G and a computable
domatic (n − 1)-partition of G, while at the same time diagonalizing against all partial
computable functions ϕe, which we interpret as candidates for a computable domatic n-
partition of G. The graph will be built in stages; at each stage s we will have a finite
graph Gs consisting of some number of K−n -chains. In fact, Gs will be

⋃
e6s Te,s, where

each Te,s is either one or two finite K−n -chains which we have built for the purpose of
ensuring that ϕe is not a domatic n-partition. Each stage of the construction will consist
of increasing the length of each Te,s, adding a new Te,s, and possibly connecting the two
K−n -chains in a particular Te,s to form one longer K−n -chain. Our final graph will be
G =

⋃
s∈N Gs =

⋃
e Te, consisting of infinitely many K−n -chains each of infinite length

(where each Te =
⋃

s>e Te,s is either one or two infinitely long K−n -chains).
In order to diagonalize against each ϕe, we will focus on four vertices in each Te,s.

When first initialized as Te,e, this graph will consist of two disjoint K−n -chains each of
length 1 (that is a single K−n -link). Call the left-outer vertices of these two links l1e and
l2e , and the right-outer vertices of these two links r1e and r2e , respectively.

Construction: At stage 0, initialize G0 = T0,0 as two disjoint K−n -chains each of length
1, and then move on to stage 1. At any stage s > 1, assume that we have already defined
Gs−1 =

⋃
e<s Te,s−1, where each Te,s−1 is either one or two K−n -chains (of some finite

length). Proceed as follows:

1. Initialize Ts,s as two disjoint K−n -chains each of length 1.
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2. For each e < s for which Te,s−1 consists of two chains, run ϕe on the vertices
{l1e , l2e , r1e , r2e}. Do nothing, unless ϕe halts on all four of these inputs, in which case:

(a) If ϕe(l
1
e) = ϕe(l

2
e), add a single link to connect the two chains of Te,s−1, con-

necting the right ends of both chains, as in Figure 2.

(b) If ϕe(l
1
e) 6= ϕe(l

2
e), add a single link to connect the two chains of Te,s−1, con-

necting the right end of one chain to the left end of the other, as in Figure
3.

3. For each e < s, form Te,s by adding a single link to each end of all (one or two) of
the K−n -chains in Te,s−1. Move on to stage s + 1.

This completes the construction.

l1e r1e

l2e r2e

Figure 2: Te if ϕe(l
1
e) = ϕe(l

2
e) after ϕe has halted.

l1e r1e

l2e r2e

Figure 3: Te if ϕe(l
1
e) 6= ϕe(l

2
e) after ϕe has halted.

Verification: First, note that G is indeed (n − 1)-regular and has domatic number
n, since it consists of infinitely many K−n -chains of infinite length. Also, G is clearly
computable, since to decide whether two vertices are adjacent, we simply wait until they
are both used in the construction, at which point their adjacency is established forever.

To see that G contains a computable domatic (n− 1)-partition, notice that if we color
all outer vertices with color 1, and the n−2 inner vertices of each link with the remaining
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n − 2 colors, we will produce a domatic (n − 1)-partition. This coloring can be done
computably for this graph: as soon as a vertex is enumerated, its status as either an inner
or outer vertex is determined, so it can be colored accordingly. Connecting two chains in
the construction can change a left-outer vertex to a right-outer vertex, but never an outer
vertex to an inner vertex.

Finally, we argue that G does not have a computable domatic n-partition. For suppose
it did. Then the computable domatic n-partition would be ϕe for some e. There would be
some finite stage at which ϕe halts on all four of l1e , l

2
e , r

1
e and r2e . So at this stage, the two

K−n -chains for ϕe become a single K−n -chain. In this single chain, l1e is a left-outer vertex,
so by Lemma 3.3, ϕe must eventually color all other left-outer vertices of Te with the same
color as l1e and all right-outer vertices of Te with a different color than l1e . However, ϕe

has already colored l2e . If l1e and l2e were colored identically, then we connected the right
ends of the chains, which makes l2e a right-outer vertex of the single chain. If l1e and l2e
were not colored identically, then we connected the chains in such a way that l2e is still a
left-outer vertex. In either case, we see that ϕe cannot be a domatic n-partition.

One way you might try to find a domatic partition is to assign colors to vertices until
you get stuck, then backtrack a bit, changing colors to help dominate “problem” vertices.
Of course, changing a vertex might create a new problem elsewhere. In fact, you might
cause one of the neighbors of the vertex in question to no longer be dominated, and
the vertex itself might become undominated. With this as motivation, we consider total
domatic partitions, in which a vertex can never help dominate itself.

Specifically, a total dominating set is a subset of V such that every vertex of the graph
is adjacent to a vertex in the set. A total domatic partition is a partition of the vertices
into total dominating sets, and the size of the largest total domatic partition is called
the total domatic number, denoted dt(G). Of course, for computable graphs, we can also
ask about the computable total domatic number, dct(G). We get a result analogous to
Theorem 3.1.

Theorem 3.4. For every n > 3, there is a computable n-regular graph G with dt(G) = n
but dct(G) = n− 1.

The proof of this theorem is similar to that Theorem 3.1. However, in the proof
of this theorem, we generate a different sort of chain. Our proof relies on an important
combinatorial fact about how these chains must be colored in any total domatic partition.

Definition 3.5. Define a double Kn-link (for n > 3) to be the graph consisting of two
complete graphs on vertices {v1, . . . , vn} and {w1, . . . , wn} respectively with additional
edges (vi, wi) for 3 6 i 6 n. A double Kn-chain consists of a sequence of double Kn-links
in which the vertex v2 of each link is adjacent to the v1 in the next link, and the w2 of
each link is adjacent to the w1 of the next.

For example, see Figure 4.
Following the picture, we will sometimes refer to the top and bottom Kn’s in a link,

and refer to v1, v2, w1, and w2 as outer vertices (or sometimes top-left-outer for a v1, for
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v2v1

v5

v4

v3

v2v1

w1 w2
H1

w3

w4

w5

w1 w2
H2 H3 H4

Figure 4: Part of a double K5-chain showing four links.

example). For a finite chain, the ends refer to the vertices v1 and w1 of the “first” link
and v2 and w2 of the “last” link. To keep track of which link we are discussing, we will
enumerate links as Hi and then refer to their vertices as {vi1, . . . , vin, wi

1, . . . , w
i
n}.

Lemma 3.6. Suppose a graph G with total domatic number n > 3 contains a double
Kn-chain (either infinite or with ends adjacent to exactly one other vertex outside of the
chain). Assume p is a total domatic n-partition of G for which p(v1) 6= p(w1) in any link
in the chain. Then for every link in the chain, p(v1) 6= p(w1) and p(v2) 6= p(w2). Further,
for consecutive links Hi and Hj in the chain, we have p(vi1) = p(wi

2) = p(wj
1) = p(vj2) and

similarly p(wi
1) = p(vi2) = p(vj1) = p(wj

2).

Proof. Let p be a total domatic n-partition of G. Note that since each vertex in the double
Kn-chain has degree n, all the neighbors of a given vertex must be colored distinctly so
that the vertex is dominated by all n colors. This implies that the n vertices of each Kn

must be colored distinctly, for if two vertices were colored identically, then a third vertex
of the Kn would have identically colored neighbors.

Every vertex v in the double Kn-chain is adjacent to n − 1 vertices in its complete
graph, plus one vertex w outside of its complete graph. Since v must be dominated by
p(v), and v is colored distinctly from all the other vertices in its complete graph, we must
have p(w) = p(v).

Now suppose that p(v11) 6= p(w1
1) in the link H1, which is adjacent to H2 in the chain.

Since p(v1i ) = p(w1
i ) for all i such that 3 6 i 6 n (because v1i is adjacent to w1

i ), we must
have p(w1

2) = p(v11), since this is the only color not accounted for among {w1
1, . . . , w

1
n}.

Similarly, p(v12) = p(w1
1). Thus we have p(v12) 6= p(w1

2). To extend this to the next link,
note that v12 is adjacent to v21, so p(v12) = p(v21) and similarly p(w1

2) = p(w2
1). Now the

same argument used for H1 can be applied to H2 to get p(w2
1) = p(v22) and p(v21) = p(w2

2).
We can then inductively extend this to all links in the chain.

This lemma allows us to ensure that the top-left-outer vertex of every other link
in a double Kn-chain must be colored identically, as long as we know that one of the
corresponding bottom-left-outer vertices is colored differently. To ensure this happens,
we will build a graph T consisting of four double Kn-chains, connected to a central double
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Kn-link in the following way. The central link H0 will be connected to links H1, H2, H3, H4,
each the first link in their own double Kn-chain, by edges

(v01, w
1
1), (v02, w

2
1), (w0

1, v
3
1), (w0

2, v
4
1)

Additionally, there are edges (v11, v
2
1) and (w3

1, w
4
1). See Figure 5. To keep track of the

links in each of the four chains, we enumerate the links such that Hi is followed by Hi+4

for all i > 1. We will call the number of links in each chain the size of T .

v02v01

w0
1 w0

2

v42v41

w4
1 w4

2

v82v81

w8
1 w8

2

v31v32

w3
2 w3

1

v71v72

w7
2 w7

1

w2
1 w2

2 w6
1 w6

2

v62v61v22v21

w1
2 w1

1w5
2 w5

1

v51v52 v11v12

Figure 5: The graph T of size 2 for n = 6.

Lemma 3.7. Let T be a graph as described above, and p be a total domatic n-partition of
T . Then p(v11) 6= p(w1

1) or p(v21) 6= p(w2
1) (or both); also p(v31) 6= p(w3

1) or p(v41) 6= p(w4
1)

(or both).

Proof. Assume the negation of the lemma for the sake of contradiction. Without loss of
generality, suppose both p(v11) = p(w1

1) and p(v21) = p(w2
1). Since v11 and v21 are adjacent

but in different complete graphs, we have p(v11) = p(v21). Thus we have p(w1
1) = p(w2

1) as
well. But w1

1 is adjacent to v01, and these are in different copies of Kn, so p(w1
1) = p(v01),

and similarly p(w2
1) = p(v02). This implies that p(v01) = p(v02), a contradiction, since these

are two vertices in the same copy of a Kn in a double Kn-link.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. The proof follows the same format as that of Theorem 3.1. As
before, we build a graph for each ϕe, except this time the graph Te will be a copy of the
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graph T described above consisting of a central double Kn-link connected to four double
Kn-chains. As we continue to extend each of the four chains, adding a new link to each
chain at each stage, we wait for ϕe to converge on all 10n vertices of H0, . . . , H4 in Te. If
ϕe never halts on these vertices, or does halt but not in a way that could be extended to
a total domatic n-partition of all of Te, we will simply continue to extend the four chains
forever. On the other hand, if ϕe does halt on these vertices at some stage and appears
to be a total domatic n-partition, we act as follows.

By Lemma 3.7, there will be i ∈ {1, 2} and j ∈ {3, 4} such that ϕe(v
i
1) 6= ϕe(w

i
1) and

ϕe(v
j
1) 6= ϕe(w

j
1), otherwise ϕe could not be extended to a total domatic n-partition. We

will connect the two chains starting with Hi and Hj into one chain by adding in either
one or two links, depending on how ϕe colors the vertices vi1, v

j
1, w

i
1, w

j
1. Note that since

this is happening at stage s, the last links in these chains are called H4s+i and H4s+j.
There are two cases.

Case 1 : If ϕe(v
i
1) = ϕe(v

j
1), then add a link H ′ = {v′1, . . . , w′n} with edges

(v4s+i
2 , v′1), (v4s+j

2 , v′2), (w4s+i
2 , w′1), (w4s+j

2 , w′2).

Case 2 : Otherwise, add two links H ′ and H ′′ with edges

(v4s+i
2 , v′1), (v4s+j

2 , v′′1), (w4s+i
2 , w′1), (w4s+j

2 , w′′1), (v′2, v
′′
2), (w′2, w

′′
2).

From this point on, continue to extend the other two chains of Te forever.
We claim that in either case, ϕe can no longer be extended to a total domatic n-

partition. Suppose it could be extended to all of Te. If we are in Case 1 above, then by
Lemma 3.6 we would then have either

ϕe(v
i
1) = ϕe(v

4s+i
1 ) = ϕe(v

4s+j
1 ) = ϕe(v

j
1)

if s is even, or
ϕe(v

i
1) = ϕe(w

4s+i
1 ) = ϕe(w

4s+j
1 ) = ϕe(v

j
1)

if s is odd. But it is then impossible to color H ′ properly, since we would need v′1 and v′2 or
w′1 and w′2 to be colored identically, which cannot happen in a total domatic n-partition.
In Case 2, again by Lemma 3.6, we will either have ϕe(v

i
1) = ϕe(v

′
2) and ϕe(v

j
1) = ϕe(v

′′
2)

or else ϕe(v
i
1) = ϕe(w

′
2) and ϕe(v

j
1) = ϕe(w

′′
2) (depending on the parity of s). But both of

these are impossible because v′2 and v′′2 must be colored identically since they are adjacent
but in different complete graphs, and similarly for w′2 and w′′2 . Therefore ϕe cannot be a
total domatic n-partition, and as such, the computable total domatic number is not n.

However, the graph does have a computable total domatic (n − 1)-partition: simply
color all the outer vertices of all chains with color 1, and all inner vertices with the
remaining n − 2 colors. This is clearly computable and it is easy to check that every
vertex is totally dominated.

Finally, we must argue that the graph does have a (non-computable) domatic n-
partition. For any Te that gets extended forever as four chains, this is clear. For a Te

which has two chains connected, say without loss of generality the chains starting with
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H2 and H4, we can color v21, w2
1, v41, and w4

1 identically (the non-connected chains will
have initial vertices satisfying Lemma 3.7). It is easy to check that this can be extended
to a total domatic n-partition of all of Te. Since the collection {Te} is pairwise disjoint,
the separate total domatic n-partitions of each Te can be combined into a total domatic
n-partition of G.

Here we note that, while we proved Theorem 3.4 for n > 3, the theorem is indeed
still true for n = 2. In fact, the proof of the theorem when n = 2 is much simpler. The
idea of the proof is that Te will start out by consisting of a pair of two-way paths. Since
n = 2, there are only two colors, and therefore there is only one way for ϕe to color each
path in order for the coloring to be a total domatic 2-partition: the coloring would have
to be of the form . . . , 1, 1, 2, 2, 1, 1, 2, 2, . . . (where the colors are 1 and 2, without loss of
generality).

In the construction of Te, we begin by growing both ends of each two-way path at each
stage. As soon as ϕe decides on a particular coloring of each of the two paths in Te, we
simply add new vertices and edges to connect the two paths (to form a single two-way
path) in such a way that it is impossible for ϕe to be a total domatic 2-partition of Te.
For instance, if ϕe colors one path 1, 1, 2, 2 and the other path 1, 1, 2, 2, then we could
add a single new vertex to Te and connect it to the end vertices that have color 2. Then
at subsequent stages we continue to grow the other ends of Te so that Te will become
a single infinite two-way path. Of course, because of this fact, there is certainly a total
domatic 2-partition of Te (it just is not ϕe). Also, there is certainly a computable total
domatic 1-partition—color everything with color 1. If ϕe never yields a total domatic
2-partition, then Te will be a pair of two-way infinite paths, and therefore similarly has a
total domatic 2-partition, as well as a computable total domatic 1-partition.

4 Smaller domatic partitions

A graph with domatic number n necessarily has domatic partitions of all sizes less than
n as well: we can identify two or more of the n colors resulting in fewer than n disjoint
dominating sets. The smaller domatic partitions created in this fashion will be divisible in
that a domatic n-partition can be formed by dividing single dominating sets into smaller
disjoint dominating sets. Of course not all smaller domatic partitions need be divisible; it
could be that the only way to get an additional dominating set would be for two or more
of the dominating sets to contribute vertices to form the new dominating set.

The existence of divisible domatic partitions suggests a potential strategy for building
larger domatic partitions. For instance, to construct a domatic 5-partition in a graph, we
might first build a divisible domatic 4-partition, and then divide a divisible dominating
set. Maybe we start by building a divisible domatic 2-partition, in which one set could
further be divided into two disjoint dominating sets, the other into three. Or perhaps we
start by finding a minimal dominating set, one whose complement can be divided into
four dominating sets.

We will show that all these strategies are fruitless. Not only are there regular graphs
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which possess no computable divisible domatic partitions of a particular type, even if such
a divisible domatic partition were computable, there is no guarantee that we would be
able to carry out the division effectively.

Definition 4.1. A divisible domatic k-partition is a domatic k-partition in which at least
one of the sets in the partition is the disjoint union of two or more dominating sets.

Definition 4.2. Given a graph with domatic number n, a domatic k-partition is called
fully divisible if each set in the k-partition is the union of one or more sets from some
fixed domatic n-partition.

Theorem 4.3. For each n > 3, there is a computable (n − 1)-regular graph G with
d(G) = n containing no computable fully divisible domatic 2-partition.

Proof. The proof is similar to that of Theorem 3.1. The main difference here is what we
take for the subgraphs Te. Each Te starts as three copies of the star graph Sn−1. During
the construction, we build K−n -chains starting with each leaf of each star. We wait for
ϕe to color its three copies of Sn−1, at which point we select two chains to connect if ϕe

looks like it might be a fully divisible domatic 2-partition. All other chains are extended
forever.

Notice that in a K−n -chain, any fully divisible domatic k-partition must color all left-
outer vertices identically, as well as all right-outer vertices identically, since any full divi-
sion requires that these be so colored. It could be that all outer vertices (both left and
right) could be the same color though. In terms of the stars Sn−1, a fully divisible domatic
k-partition with k > 2 must color the center vertex differently than at least one of the
leaves, otherwise no full division would dominate the center vertex. The center of each
star must be colored as if it were a right-outer vertex of each chain it is attached to.

When ϕe converges on its three stars, we only act if ϕe looks like it could be a fully
divisible domatic 2-partition. Among the three stars, there will necessarily be two central
vertices colored identically. At least one of the leaves from each of these two stars must
be assigned a different color, and the first such pair of chains gets connected. This results
in a chain with left-outer vertices not colored identically, as in Figure 6.

2 1 2 1 1 2 1 2 11

Figure 6: For two stars with identically colored central vertex (in this case 1) connect
chains with initial vertex not colored 1 (in this case, 2).

Finally, we argue that the graph so built does indeed have domatic number n. Each
Te is either the disjoint union of three stars each with infinite K−n -chains attached to each
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of their leaves, or the same only with two of the stars attached by a finite K−n -chain. In
the first case, it is easy to produce a domatic n-partition: color the center of each star
with color 1 and all the leaves with color 2, which are all left-outer vertices of the first
link in their chains. The inner vertices of all links get colors 3 through n, the right-outer
vertices get color 1, and the left-outer vertices color 2. For the second case, we can use
this same coloring for two of the stars, but for one of the stars connected by the K−n -chain,
we simply swap all instances of color 1 and color 2. Note that while we can do this, ϕe

cannot, because it does not know which pair of stars will be connected when it colors the
vertices of the stars.

Corollary 4.4. For each n > 3 and k such that 2 6 k < n, there is a computable
(n − 1)-regular graph G with d(G) = n containing no computable fully divisible domatic
k-partition.

Proof. Consider a graph G as guaranteed by Theorem 4.3. For any k such that 2 6 k < n,
G does not have a computable fully divisible domatic k-partition either. For if it did, we
could identify colors 1 through k−1 to get a fully divisible domatic 2-partition. Identifying
colors can be done computably (in the algorithm for the k-partition, just replace the colors
1 through k− 1 with color 1), so this would result in a computable fully divisible domatic
2 partition.

Even if we could find a fully divisible domatic partition, we might still not be able to
use this to build up to a full domatic partition of the graph.

Theorem 4.5. For any n > 3 and k < n, there is a computable (n − 1)-regular graph
G with d(G) = n which has a computable fully divisible domatic k-partition but no com-
putable domatic n-partition.

Proof. The graph constructed in Theorem 3.1 works, as the computable domatic (n− 1)-
partition constructed there is in fact fully divisible. This shows that the theorem holds
for k = n − 1. For smaller k, we get a computable fully divisible domatic k-partition by
identifying colors.

Although there is no hope of finding these “nice” divisible domatic partitions of smaller
size, there still might be computable domatic partitions of sub-optimal size. Certainly
any computable graph with d(G) = n, for n > 2, has a computable domatic 2-partition.
For computable regular graphs, we can do better.

Theorem 4.6. Suppose G is a computable k-regular graph with domatic number k + 1.
Then G has a computable domatic n-partition for all n satisfying n2 6 k + 1.

Proof. We show the theorem for k > 8. (The theorem clearly holds for k < 8, because
every computable graph without isolated vertices already has a computable domatic 2-
partition, as the current authors showed in [6].) We also fix n to be maximal (such that
n2 6 k + 1), because the theorem will then clearly follow for smaller values of n. Also,
assume G is connected. At the end of the proof, we will describe how to modify the
procedure in case we do not know that G is connected.
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As a point of terminology, we say that a set S of vertices is dominated by a set of
colors {c1, . . . , cl} if all of the vertices of S are colored with {c1, . . . , cl} and each vertex
of S that has all of its neighbors in S is dominated under this coloring. Note that any
finite set S of vertices of G can be dominated by {1, . . . , k + 1}. Indeed, since G has a
domatic (k + 1)-partition by hypothesis, we will eventually find one that works on S by
searching through all possible partitions of S (because each such partition is itself finite).
We will use this fact throughout the procedure.

Procedure: Define the disk centered at vertex v of radius r to be the set Dv(r) =
{u ∈ V : d(u, v) 6 r}, where d(u, v) is the length of the shortest path from u to v.
For brevity, we write Dv0(r) as D(r). At stage 0, color D(4) so that it is dominated by
colors {1, . . . , k + 1}, ensuring that vertex v0 is colored with color 1. We declare v0 to be
permanently colored (with color 1), while the other vertices have only been temporarily
colored. Let r1 = 2, and assume inductively that the vertices of D(rs + 2) \ D(rs − 2)
were temporarily colored with colors {1, . . . , k + 1} at stage s − 1. We color vertices at
stage s as follows. (Some vertices will be permanently colored, while others will only be
temporarily colored.)

Define As = D(rs) and Bs = D(rs +6)\As. Color the set D(rs +6)\D(rs−2) so that
it is dominated by colors {1, . . . , k+1}. Note, we have doubly colored some of the vertices
(i.e., the 2 layers of As closest to Bs and the 2 layers of Bs closest to As, constituting a
4-wide band of doubly-colored vertices): they have their original coloring (the temporary
coloring from the previous stage), which we will say is preferred by As, and the coloring
just given, preferred by Bs. Denote the double-color of each such vertex by x|y, where x
is the color preferred by As and y is the color preferred by Bs.

Resolve the color of each doubly-colored vertex v by choosing one color for v as follows.
First, to change from k+1 down to n colors, we will convert to congruent numbers modulo
n. Specifically, define f : {1, . . . , k + 1} → {1, . . . , n} by f(c) = (c− 1 mod n) + 1. (This
way, colors 1 through n stay the same, color n + 1 goes to 1, n + 2 to 2, n + 3 to 3, and
so on.) Use the following rules to resolve v, which is currently colored x|y.

• If x, y 6 n, color it f(x) if v ∈ As and f(y) if v ∈ Bs.

• If x, y > n, color it f(x).

• Otherwise, color it f(x) if x 6 n and f(y) if y 6 n.

After resolving a doubly-colored vertex, declare it permanently colored. Next, let
rs+1 = rs + 4, and proceed to stage s + 1. Note that As+1 = D(rs+1) will include all the
vertices that are permanently colored, as well as two layers previously just (temporarily)
colored by Bs. For stage s + 1, informally speaking, we consider all the coloring done by
the old B to be the one preferred by the new A, as the new B will be coloring a fresh set
of vertices, including all the non-permanently (i.e., temporarily) colored vertices in the
new A.

Verification: Let v ∈ V and s be the earliest stage of the procedure after which v and
all of its neighbors have been permanently colored. We show that v is dominated by the
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end of stage s and therefore will remain dominated. Consider the two possible cases that
could occur just before the resolution of the doubly-colored vertices: (1) some vertices
among v and its neighbors are singly colored (i.e., colored, but not doubly colored), and
(2) none of these vertices are singly colored. In each case, fix c ∈ {1, . . . , n}. We show
that v or one of its neighbors gets permanently colored c.

Case 1 : At least one vertex (among v and its neighbors) is singly colored. Note that
because of the width of the doubly-colored region, v and its neighbors are either all in As

or all in Bs. If they are all in Bs, then one of them would be colored c by Bs and would
thus get resolved to c by rule 1. Also note that, by our procedure, they cannot all be in
Bs (in fact, none of them is in Bs). However, this might happen in the general case (when
G is not necessarily connected), as we will see when describing that procedure below.

Now assume they are all in As, and assume that no singly-colored vertex (among v
and its neighbors) is colored c. Again, because of the width of the doubly-colored region
in each stage, all of the singly-colored vertices must have been doubly colored (and thus
received their permanent color) during the previous stage (i.e., stage s − 1) and were in
the set Bs−1. So, since none of them resolved to the color c, the preference of Bs−1 for
each of those vertices during stage s − 1 could not have been c. Hence Bs−1 must have
preferred a different vertex w (among v and its neighbors) to be colored c (in order to
dominate v, since v was also in Bs−1 at the time), namely one of the now doubly-colored
vertices (in stage s). Since As and Bs−1 color vertices in the same way and w ∈ As, w
will resolve to c.

Case 2 : All vertices (among v and its neighbors) are doubly colored. Then for every
j, with 0 6 j < n, there is a vertex among v and its neighbors that is colored (c + jn)|yj
for n distinct colors yj. Now if any yj > n, then (c + jn)|yj resolves to f(c + jn) = c
by the second or third rule for resolving doubly-colored vertices. On the other hand, if
yj 6 n for all 0 6 j < n, then one of these n vertices (with color of the form (c + jn)|yj)
has yj = c and hence gets resolved to c by the first or third rule. Thus at least one of the
vertices resolves to c as desired.

Not Necessarily Connected Graphs : If we are not promised that G is connected, we
perform the same procedure as in the connected case, only now we enumerate G and
decide if the current vertex v of G should be part of the existing sets A and B, or if
it should be put in its own pair of sets A and B, disjoint from the original pair. This
decision will depend on the distance of v from A and B.

As the procedure progresses, there will be disjoint collections of vertices with their
own sets A and B. We will call each such collection of vertices a system. These disjoint
systems will get resolved (via the double-coloring routine) simultaneously. As they are
increasing in size, however, they might eventually collide, at which point the part of the
procedure that enlarges B will now enlarge it to a size that fully encompasses all colliding
systems. This will result in all systems that were involved in the collision to combine
into one common system. Note that some vertices in this enlarged B might not be a
part of the double-coloring and will thus still have colors outside of {1, . . . , n}. So we will
change the colors of the vertices of B, except those in its outer 4 layers, according to the
following rule (which will narrow down from k + 1 to n colors and will give these vertices
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their permanent color).

If the vertex has color x, change it to f(x).

Eventually the procedure will have been successfully performed on each component of
G.

We observe the following modification of Theorem 4.6, which uses a more efficient
procedure for small values of k (i.e., for k 6 23). However, it quickly becomes less
efficient, requiring an exponential gap between the domatic numbers. Indeed, our original
procedure only requires a polynomial (in fact, quadratic) gap.

Theorem 4.7. Suppose G is a computable k-regular graph with domatic number k + 1.
Then G has a computable domatic n-partition for all n satisfying 2n − 1 6 k + 1.

Proof. Let k > 6, and let n be maximal such that 2n− 1 6 k + 1. Consider a computable
graph that is k-regular and has domatic number k + 1. Also assume that the graph is
connected; as before, the procedure can be modified to deal with graphs that are not
necessarily connected. We perform a similar procedure as in Theorem 4.6, but we use
a different set of rules to resolve the doubly-colored vertices. Also, due to a counting
argument needed in the verification, we make a slight change to the placement of the
doubly-colored region of vertices in each stage. In the original procedure, the doubly-
colored regions in consecutive stages were adjacent to each other; this time around, we
must keep them apart by a distance of two vertices.

Procedure: At stage 0, perform the coloring as we did in Theorem 4.6 but now on D(6)
instead of D(4). We proceed just as before but with one additional condition. Whenever
coloring a set S of vertices, ensure that any vertex v outside of S but adjacent to at
least two vertices in S is not adjacent to two vertices of the same color, according to the
coloring just performed. This can be ensured by coloring the union of S and all such v,
then suppressing the coloring of those v. Let r1 = 4, and proceed inductively to stage s
as follows. Let As = D(rs) and Bs = D(rs + 8) \ As. Color the set D(rs + 8) \D(rs − 2)
as we similarly did in the original procedure, creating a 4-wide band of doubly-colored
vertices. Different from the original procedure, however, we additionally have a 2-wide
band of singly-colored vertices (in As) that have yet to receive a permanent color.

Now use the new set of rules shown below to resolve (i.e., permanently color) these
bands of singly- and doubly-colored vertices. As a point of terminology, we say that a
color c is present if the vertex in question is either singly colored and has color c or is
doubly colored and has color of the form c|x or x|c for some x. The rules are as follows,
where 2 6 c 6 n− 1.

1. If 1 is present, color it 1.

c. If at least one of 2c−1, . . . , 2c − 1 is present (with 1, . . . , 2c−1 − 1 not), color it c.

n. Otherwise, color it n.
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Notice, the pattern here is that each rule uses one more color than the previous rules
combined. Indeed, rule c uses 2c− 1− 2c−1 + 1 = 2c−1 colors, and the sum of the number
of colors used in the previous rules is

∑c−1
i=1 2i−1 = 2c−1− 1. Finally, let rs+1 = rs + 6, and

proceed to stage s + 1.
Verification: We show that each v ∈ V is eventually dominated. For a fixed v ∈ V ,

wait for the first stage s after which v and all of its neighbors have been permanently
colored. First, we consider the case where none of the vertices (among v and its neighbors)
received its permanent color prior to stage s (namely, in stage s−1). So all of the vertices
received their permanent color in stage s. Moreover, they received their permanent color
at a time they were being either singly colored by one of the two sets As and Bs, or
doubly colored by these two sets. In fact, such vertices that are singly colored are not
being colored by Bs. But this could happen in the general case, i.e., when G is not
necessarily connected, so it is important to consider this possibility.

Let A = As and B = Bs, and note the following two facts. First, neither A nor B
colors any two vertices (among v and its neighbors) the same, because we ensured that
whenever a set of vertices was being dominated, no vertex adjacent to at least two vertices
in the set could have two neighbors colored the same. Second, note that either A colors
all k + 1 vertices or B colors all k + 1 vertices (or both sets color all of them). Note, B
does not color all the vertices without A also coloring them all, but this could happen
in the general case. Therefore, for the sake of this verification, we can consider all k + 1
vertices to be “doubly colored.” Specifically, each vertex has color of the form x|y, where
A prefers x and B prefers y, and we use a blank color when a set has not actually colored
the vertex. Also, because of our second observation above, we know that either A colors
none of the vertices blank or B colors none of them blank.

We can now show that for each color 1 6 c 6 n, at least one of the vertices among v
and its neighbors gets permanently colored c. When making this claim we will say, “there
is a c.” First, it is clear that there is a 1, because by the discussion above there is a vertex
for which 1 is present (i.e., colored 1|x or x|1 for some color x). So it gets permanently
colored 1 by rule 1. Now let 2 6 c 6 n. Consider rule c, and let p be the sum of the
number of colors used in all of the previous rules. By our earlier observation (immediately
following the list of n rules, shown above), the number of colors used in rule c is p+1. We
also mentioned earlier that one of the two sets A and B colors none of the vertices blank;
say it is A, without loss of generality. Therefore, A will use each of the aforementioned
p + 1 colors; that is, A will color p + 1 vertices with the colors from rule c in such a way
that it colors no two vertices the same. However, B can only use colors from the previous
rules on at most p of those p + 1 vertices. So there is at least one vertex with a color
present from rule c but no color present from any of the previous rules. Hence there is a
c by rule c.

Finally, in the case where at least one of the vertices (among v and its neighbors)
received its permanent color prior to stage s, the same argument works by using A = As−1
and B = Bs−1. Notice that in this case, v and its neighbors are too far away to be doubly
colored by the “current” pair of sets, i.e., As and Bs, so the double coloring will only be
done by the “previous” pair of sets, As−1 and Bs−1.
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5 Conclusion and Open Questions

As it stands right now, we know that there are computable regular graphs with domatic
number n but computable domatic number n − 1, and that every computable regular
graph with domatic number n has a computable domatic partition of size at least b

√
nc.

It would be nice to shrink this gap. We suspect that Theorem 3.1 could be improved to
build a computable regular graph with domatic number n but no computable domatic n−1
partition. However, notice that the method we used to diagonalize against all computable
functions relied on our ability to force all domatic n-partitions to color specific vertices
identically. We can be sure that this particular approach will not help in separating d(G)
and dc(G) further.

Proposition 5.1. If a graph G has domatic number n > 3, then for any vertices u and
v of G, there is a domatic (n− 1)-partition in which u and v are colored identically, and
a domatic (n− 1)-partition in which u and v are colored differently.

Proof. Consider the domatic n-partitions of G. If there exists partitions in which u and
v are colored differently, then we can get a domatic (n − 1)-partition in which u and v
are colored differently by eliminating another color, and a domatic (n − 1)-partition in
which u and v are colored identically by changing the color of u (for all similarly colored
vertices) to the color of v. On the other hand, if all domatic n-partitions put u and v into
the same color, the we can get a domatic (n−1)-partition in which u and v are identically
colored by eliminating a different color. To get a domatic (n − 1)-partition in which u
and v are differently colored, take a color other than that of u and v and merge it with
the color of u and v. Then v and all of its neighbors will be dominated by v’s color at
least twice: once by v and once by the vertices whose color we just changed. Thus we can
recolor v without losing domination.

Similar arguments can show that there is in fact very little we can force all domatic
(n − 1)-partitions to do when the graph has domatic number n. There are two obvious
exceptions to this general principle. First, by the pigeonhole principle, given n vertices,
we know that every domatic (n− 1)-partition will put at least two of these into the same
class. Second, since it is possible to force n vertices to belong to n different classes in a
domatic n-partition, we can force that among n vertices, every domatic (n− 1)-partitions
will put exactly two of them into the same class. To summarize:

Proposition 5.2. There is a graph G with domatic number n containing a set of n
vertices {v0, v1, . . . , vn−1} such that every domatic (n− 1)-partition of G will put exactly
two of these n vertices into the same class.

Whether this observation can be leveraged to further separate d(G) and dc(G) is not
clear. Thus we ask:

Question 5.3. Is there a computable regular graph G with d(G) = n but dc(G) = n− 2?
In general, for a fixed n, what is the largest d(G)− dc(G) can be?
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Also not clear is what role the minimal degree of our graphs play. The graph in
Theorem 3.1 is domatically full in that the domatic number is as large as possible based
on the minimal degree of the graph, so we have that the minimal degree of G is n−1, equal
to the computable domatic number. Can we force the computable domatic number to be
less than the minimal degree? The answer is yes if the graphs need not be regular - we can
build a graph in which the minimal degree is arbitrarily larger than the domatic number,
using a generalization of Zelinka’s argument in [12] and independently build a graph with
large domatic number but computable domatic number 2. If we can further separate
d(G) and dc(G) for regular computable graphs, then a similar argument can separate
the minimal degree and the computable domatic number. But perhaps answering the
following question would be easier.

Question 5.4. Is there a computable n-regular graph G with d(G) = n and dc(G) = n−1.

Along similar lines, we would like to know what happens when we relax our insistence
that our graphs be regular, but still require that there was a procedure to find all neighbors
of a given vertex. In particular, regularity is required for the proof of Theorem 4.6, but
perhaps a different approach would allow us to find a small non-trivial domatic partition.

Question 5.5. Suppose G is a highly computable graph (i.e., there is an algorithm which
produces all the neighbors of any given vertex) with domatic number n > 4. For which
such n (if any) must there be a computable domatic k-partition with k > 3?

Finally, another direction to take this line of inquiry is to consider other kinds of
domatic partitions. We have already seen that considering total domatic partitions gives
at least some separation between classical and computable domatic number, but there are
other notions of domatic partition which might be interesting to consider. For example,
the independent domatic number, denoted di(G) is defined in [5] to be the size of the largest
partition of vertices into sets which are both domatic and independent. Another: the
paired domatic number, denoted dpr(G) is the size of the largest partition into dominating
sets, for which the induced subgraph of each contains a perfect matching (this notion
is also defined in [5]). We can, of course, consider the computable analogues of these
invariants, dci(G) and dcpr(G), and ask how they can differ from the classical invariants.

Quite by accident, the graph constructed in Theorem 3.1 has di(G) = n but dci(G) =
n−1: the domatic n partition of G happens to be an independent domatic partition, and
the computable domatic (n− 1)-partition is a computable independent domatic (n− 1)-
partition. It also just so happens that the total domatic n-partition and computable total
domatic (n − 1)-partition in the graph built for Theorem 3.4 are also paired domatic
partitions, so we have an example of a computable graph with dpr(G) = n but dcpr(G) =
n− 1. We wonder if this is a coincidence.

Classically we have d(G) > di(G) and d(G) > dt(G) > dpr(G). It would be interesting
to see what happens to these inequalities when we consider the computable analogues. For
example, is there a computable graph G for which dt(G) = dpr(G) but dct(G) > dcpr(G)?
Could we have dt(G) > dpr(G) but dct(G) = dcpr(G)? How extreme could the inequalities
be? We summarize these questions as follows.
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Question 5.6. Let G be a computable graph. Let dx and dy be two comparable notions of
domatic number. Then what, if anything, does dx(G)−dy(G) imply about dcx(G)−dcy(G)?
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