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Abstract

The partial list colouring conjecture due to Albertson, Grossman, and Haas [1]
states that for every s-choosable graph G and every assignment of lists of size ¢,
1 <t < s, to the vertices of G there is an induced subgraph of G on at least w
vertices which can be properly coloured from these lists. In this paper, we show
that the partial list colouring conjecture holds true for certain classes of graphs like
claw-free graphs, graphs with chromatic number at least %, chordless graphs,
and series-parallel graphs.

*While this work was done, the author was an AARMS postdoctoral fellow in the Department of
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1 Introduction

Consider a simple, undirected, and finite graph G. Let £ = {l(v) : v € V(G)} denote an
assignment of a list of admissible colours for each vertex in G. Then G is L-colourable
if there exists a proper colouring (i.e., no two adjacent vertices get the same colour) of
the vertices of G such that each vertex v is assigned a colour from [(v). If |l(v)] = k
for every v € V(G), then L is called a k-assignment. We say G is k-choosable if G is
L-colourable for all k-assignments £. The list chromatic number of G, denoted by x.(G),
is the minimum positive integer k such that G is k-choosable.

Consider a graph whose chromatic number is s. Take an s-colouring. We know that,
for every positive integer ¢ less than s, one can properly colour at least t?" of its vertices
using only ¢ colours (by taking the vertices of the largest ¢ colour classes of the s-colouring).
Albertson, Grossman, and Haas in [1] asked a similar and a very natural question on list
colouring. Consider a graph G on n vertices whose list chromatic number is s. What if
one assigns lists of size ¢ to each vertex where ¢ is some positive integer less than s?7 We
know that with such a list assignment it may not be possible to list colour all the vertices
of G. However, the question here is not to colour all the vertices but to colour as many
vertices as one can. They conjectured that, given a t-assignment, one can always find an
induced subgraph of order at least t?" that can be properly list coloured. We give a more
formal description of the conjecture in the next paragraph.

Consider an arbitrary graph G on n vertices whose list chromatic number is s. Let
t be a positive integer such that 1 < t < s. Let £; = {l;(v) : v € V(G)} be any t-
assignment for G. Let Az, (G) denote the order of a largest induced subgraph of G that
is Li-colourable. Let A\ (G) = min{\,,(G) : L, is a t-assignment for G'}.

Partial list colouring (PLC) conjecture (Conjecture 1 in [1]): X(G) > 2.

The authors in [1] showed that A\ (G) is always at least <1 - (X(G)_l)t) n, where x(G)

x(G)
denotes the chromatic number of G. For a bipartite graph this proves the conjecture as
by induction one can see that <1 — (%)t) n > it = it Chappellin [2] showed

that A(G) is lower bounded by 2. Janssen in [6] proved that the conjecture holds true
for every graph whose list chromatic number is at least its maximum degree. Using a

_n_

clever argument based on the pigeonhole principle, it was shown in [4] that A(G) > .
t

In addition to giving an alternate proof to this result, Iradmusa in [5] proved that either
M(G) =2 or \(G) > @ i.e. the conjecture is true for at least half the number of
different values of . Apart from these initial results, to the best of our knowledge, no
significant progress has been made so far towards settling the conjecture even with regard
to special graph classes. Tuza, Kratochvil, and Voigt in their paper [10] surveying the

then recent trends in colouring discuss the PLC conjecture.
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1.1 Owur Contribution

In Section 2.1, we prove that the PLC conjecture holds true for claw-free graphs. The
complete bipartite graph K 3 is called a claw and a claw-free graph is a graph that does
not have a claw as an induced subgraph. We know that the line graph (or the edge
graph) of a graph is always claw-free. The famous list colouring conjecture states that
the chromatic number of the line graph (of a graph) is equal to its list chromatic number.
Assume the list colouring conjecture is true. Let G be the line graph of some graph.
Let G be s-choosable, and let ¢ € [s]. Since any induced subgraph of G is also a line
graph, choosing the subgraph induced on the vertices of the largest ¢ colour classes of any
proper s-colouring of G would give us a graph of order at least w that is t-choosable,
thus proving the PLC conjecture to be true in the context of line graphs. Hence, if the
list colouring conjecture is true then the PLC conjecture is true for line graphs. The
contrapositive of this statement is what motivated us to investigate the PLC conjecture
in the context of claw-free graphs.

Ohba’s conjecture [8] states that, for a graph G on n vertices, if x(G) > 5% then
X.(G) = x(G). In the year 2012, this conjecture was settled in the affirmative by Noel,
Reed, and Wu [7]. Using this result, in Section 2.2, we show that the PLC conjecture is
also true for these graphs.

A graph G is k-degenerate if the vertices of G' can be arranged on a horizontal line
from left to right such that no vertex has more than £ neighbours to its right. From such
an ordering of the vertices it’s easy to see that if G is k-degenerate then x(G) < k + 1
and xr(G) < k+ 1. In particular, if G is 2-degenerate then G is always 3-choosable
and x(G) < 3. Since we know that the PLC conjecture is true (from Theorem 2 in [1])
for bipartite graphs, the interesting scenario is when G is 2-degenerate and x(G) = 3
(, and thereby x.(G) = 3). Thus, investigating the PLC conjecture in the context of
2-degenerate graphs is all about finding an answer to the following question: given any
2-assignment for GG, can we always find an induced subgraph of order m that can be
properly list coloured using the 2-assignment? In Sections 2.3 and 2.4, we find a positive
answer to this question in the context of certain subclasses of 2-degenerate graphs, namely
chordless graphs, and series-parallel graphs.

Notations and Definitions

For any S C V(G), we use G \ S to denote the subgraph of a graph G induced on the
vertex set V(G)\ S. For a v € V(G), we use G \ v to denote the graph G \ {v}. Let
Ng(S) := {v € V(G) \ S | v has a neighbour in S}. For a v € V(G), we use Ng(v) to
denote Ng({v}). Let degg(v) := |Ng(v)|. For any positive integer n, we use [n] to denote
the set {1,...,n}.
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2 Partial list colouring of some graphs

2.1 Claw-free graphs

Here we prove that the PLC conjecture holds true for all claw-free graphs. The proof
technique is similar to the one used in [6] to prove the conjecture for a graph whose list
chromatic number is at least its maximum degree. Given a list assignment for a graph
where the size of lists is smaller than required, we append every list with a set of new
colours such that the new list size equals the list chromatic number of the graph. Next
we do a proper list colouring of the graph using the new lists such that the number of
vertices that are assigned a new colour is minimized. A simple counting argument is then
used to prove that the above list colouring colours sufficient number of vertices using a
colour from their original lists.

Theorem 1. Let G be a claw-free graph on n vertices whose list chromatic number is s.
Then, for every t € [s], \(G) > 2.

Proof. Let L = {l;(v) : v € V(G)} be an arbitrary t-assignment for G. Let U, cy (g l(v)
={1,...,p}. Let l;(v) = l;,(v)U{o1,..., 04}, forevery v € V(G). Let Ly = {ls(v) : v €
V(G)}. Since xr(G) = s, G is Lg-colourable. Let f: V(G) — {1,...,p,01,..., 0s_+}

be an L-colouring of G such that the number of vertices that receive a colour from

the set {o1,...,05—¢} is minimum. For each i € {1,...p,01,...,05_¢}, let C; := {v €
V(G) | f(v) =i} and let V; :== {v € V(G) | i € L(v)}. It |C,y U---UC, | < &2,
then the theorem is proved. Suppose |Cy, U---UC,,_,| > @ Then there exists some
i €{l,...,s—t} such that |C,,| > 2. For ease of notation, from now we shall use o to

denote one such o;. Then,

p

Ylal < = )

i=1
and

p

tn
> _1C NV > . 2)

=1

From Inequalities (1) and (2), we can conclude that there exists some j € [p] such that
|C;] < |C, NVj|. Let X C C, NV, such that |[Ng(X) N C;| < |X| and, subject to this,
|Ne:(X) N C}| is minimized. The existence of such an X is guaranteed by the presence of
the set C, N V; whose neighbourhood in C; is smaller than itself in size. We claim that
every vertex in Ng(X) N C; has at least two neighbours in X. Otherwise, if a vertex in
the neighbourhood of X in C} has only one or no neighbour in X then we can remove
such a vertex only to reduce the size of both Ng(X) N C; and X by at most 1. But this
contradicts the minimality of | Ng(X)NC}|. Hence every vertex in Ng(X)NC; has at least
two neighbours in X. Since G is claw-free and every vertex in Ng(X) N C; has at least
two neighbours in X, no vertex in Ng(X) N C; has a neighbour in C, \ X. By assigning
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colour j to vertices in X and colour o to vertices in Ng(X) N Cj, one can find another
valid L -colouring of GG that has lesser number of vertices taking colours oy,...,0s_; as
compared to f. This contradicts the property of f. m

2.2 Graphs with chromatic number at least %

The statement of the following theorem was a conjecture due to Ohba [8]. In 2012, the
conjecture was settled in the affirmative by Noel, Reed, and Wu [7].

Theorem 2 (Noel, Reed, and Wu [7]). For a graph G, if x(G) > |V( L then x1(G) =
X(G).

Theorem 3 is a strengthening of the PLC conjecture on graphs with chromatic number

at least M(GI=1
.

Theorem 3. Let G be a graph with xp(G) = s, and x(G) > &. Then, for every
t € [s], there is an induced subgraph, say Hy, of G such that
(i) x(H,) > W,
(i1) xr(H;) = (Ht) =t, and
(iii) |V (Hy)| > AL

S

Proof. We prove the lemma by a downward induction on t. When t = s, let H;, = G.
Then, Conditions (i) and (iii) in the lemma are clearly true. By Theorem 2, x(H;) =
X(H) = s. This proves the base case. Let r € [s — 1]. For the induction step, assume the
statement of the lemma to be true for every t greater than r (with ¢ < s). Let ¢t = r. By the
induction hypothesis, we have (i) x(H;11) = M, (i) xp(Hir1) = x(Hegr) =t + 1,

and (iii) |V (Heg)| = % Consider a proper vertex colouring of H;yq using ¢t + 1
colours. Let C'y,...,Cyyq be the t 4+ 1 colour classes of this colouring.

Ife+1 > W, then there exists some C; of size 1. Let Hy = Hyy1\C;. We then have
X(Hy) =t > W —-1= w and therefore, by Theorem 2, xr(H;) = x(H;) = t.
Note that |V(H)| = |[V(Hi1)| — 1 2 w -1 w, since |V(G)| is always at
least s.

Suppose t + 1 < W(# If, for some a € [t + 1], |C,| = 2 then let H; = Hyyq \ C,.

Otherwise, since x(Hp1) = w there exist colour classes Cj, C.. such that |Cy| =1

and |C,| > 2. Consider a vertex u € C,. If x(H1 \u) =t+1, then let H; = Hyq \ (CpU
{u}). Otherwise, if x(Hy11 \ u) = t, then let v € C,. \ {u} and let H; = Hq \ {u,v}.
Now consider the graph H;. No matter how H; was constructed from H;,;, we have
X(H) = t and |V(Hy)| = |V(Hi1)| — 2. We thus have x(Hy) =t = (t+1) -1 >

% -1 = % Hence, by Theorem 2, x.(H;) = x(H;) = t. Note that

V(H)| = |V (Hyy)| —2 = DAl POl g 5 Dl gince [V (Hyya)| > 2(6+1).

Substituting |V (Hyv1)| = w in the above inequality, we get |V (H;)| > —t‘viG)‘, m

Corollary 4. Let G be a graph with x.(G) = s, and x(G) > % Then, for every
€ [s], M(@) > 1AL,
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2.3 Chordless graphs

A graph G is chordless if no cycle in G has a chord. Further, G is minimally 2-connected
if G is 2-connected and chordless. Any graph obtained from a given graph by subdividing
every edge of the given graph at least once is an example of a chordless graph. If the
given graph is 2-connected, then the resultant graph is minimally 2-connected.

The following lemma about minimally 2-connected graphs is due to Plummer [9].

Lemma 5 (Plummer, [9]). Let G be a 2-connected graph. Then G is minimally 2-
connected if and only if either

o (G is a cycle; or

e if S denotes the set of nodes of degree 2 in G, then G\ S is a forest with at least
two components.

We use this lemma to prove the following.

Lemma 6. Let G be a minimally 2-connected graph. Then, for every x € V(G), there
ezist two distinct vertices v,w € V(G)\{z} and a vertezu € V(G) such that v,w € Ng(u)
and degg(v) = dega(w) = 2.

Proof. Consider any = € V(G). If G is a cycle, then let v = x. Clearly, u has two
neighbours of degree 2 none of which is x. Suppose G is not a cycle. Then, by Lemma
5, G\ S is a forest with at least 2 components, where S is the set of nodes of degree 2
in G. If G\ S has any isolated vertex, then it has at least 3 neighbours in S (each of
degree 2) as each vertex outside S has a degree at least 3. Let the isolated vertex be our
vertex u. Clearly, u has two neighbours each of degree 2 in its neighbourhood such that
none of them is z. Suppose G \ S does not contain any isolated vertex. We know that
G\ S contains at least two trees, say T; and Ty, by Lemma 5. Let [} and I} be two leaf
vertices of 7. Similarly, let {3 and I3 be two leaf vertices of Ty. For all i, j € {1,2}, since
lf has degree at least 3 in G, it has at least 2 neighbours (each of degree 2) in S. What
is left is to show that, for some i, € {1,2}, I! (= u) has two neighbours each of degree
2 in S such that none of the two neighbours is z. Since every vertex of S has its degree
equal to 2 in G, no three vertices in G \ S can have the same neighbour in S. Since lg
form a collection of four vertices, there exists one vertex in this collection (which forms
the vertex ) such that it has two neighbours of degree 2 none of which is z. O]

It is a known fact that chordless graphs are 2-degenerate. For the sake of completeness,
we prove this statement below.

Proposition 7. Let G be a chordless graph. Then, G is 2-degenerate.

Proof. We prove this by an induction on |V(G)|. The proposition is trivially true when
|[V(G)| < 3. Assume the proposition is true for every value of |V(G)] less than n, where
n > 4. Let |V(G)| = n. Suppose G contains a vertex, say v, of degree at most 2. Every
induced subgraph of G is also chordless. By induction hypothesis, G \ v is 2-degenerate.
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Therefore, GG is 2-degenerate. Suppose every vertex in G has degree at least 3. Consider
the block graph of G and consider a leaf block B in it. Since every vertex in G is of
degree at least 3, B is 2-connected. Moreover, since G is a chordless graph B is minimally
2-connected. Let x € V(B) be the cut vertex whose removal separates B from rest of the
graph. By Lemma 6, there exists a vertex v € V(B) \ {z} such that degg(v) = 2. Since
v is not a cut vertex and since B is a leaf block, we have degg(v) = 2. By induction
hypothesis, G \ v is 2-degenerate. Therefore, G is 2-degenerate. O

Theorem 8. Let G be a chordless graph on n vertices whose list chromatic number is s.
Then, for every t € [s], \(G) > 2.

Proof. From Proposition 7, we know that G is 2-degenerate. Therefore, s < 3. It is easy
to see that the theorem is trivially true when s < 2. Assume s = 3. We know that, when
t =1, Ai(G) > % since the largest independent set in G is of size at least ¥. Let ¢ = 2. In
rest of the proof, using an induction on n, we show that \y(G) > %” Suppose G contains
a vertex v of degree at most 1. By induction hypothesis, Ao(G \ v) > Q(n; Y Since v
has only one neighbour in GG, we can add back v to G \ v and colour v with a colour in
its list that does not conflict with its neighbour’s colour. Thus, Xo(G) > %. Suppose
every vertex in GG is of degree at least 2. Consider the block graph of G and consider
a leaf block B in it. Since every vertex in G is of degree at least 2, B is 2-connected.
Moreover, since G is a chordless graph B is minimally 2-connected. Let x € V(B) be the
cut vertex whose removal separates B from rest of the graph. By Lemma 6, there exist
two distinct vertices v,w € V(B) \ {z} and a vertex u € V(B) such that v,w € Ng(u)
and degp(v) = degp(w) = 2. Since neither v nor w is a cut vertex, their degrees in G
remain the same, i.e., degs(v) = degg(w) = 2. Now, let S = {u,v,w}. By induction
hypothesis, A2(G\ S) > @ Consider adding u, v and w back in G\ S. It is easy to see
that if we don’t colour vertex u, then both v and w have at most one of their neighbours

coloured and therefore can be properly coloured using a colour from their respective lists.
Thus, \p(G) > 252 2= 2, O

2.4 Series-parallel graphs

A connected series-parallel graph is a graph with two designated vertices s and ¢ and the
graph can be turned into a K, by a sequence of the following operations: (a) Replacement
of a pair of edges with a single edge that connects their endpoints, and (b) Replacement
of a pair of edges incident to a vertex of degree 2 other than s or ¢ with a single edge.
Note that outerplanar graphs are series-parallel. From the definition, it is easy to see
that series-parallel graphs are 2-degenerate and therefore 3-choosable. Hence, in order to
prove the PLC conjecture for a series-parallel graph G on n vertices, it is enough to show
that \o(G) > %” We prove this by using the fact that series-parallel graphs are precisely
the class of graphs with treewidth at most 2. Before we prove this result, let us explore
the connection between the treewidth of a graph G and A\(G).

A graph family G is called a hereditary graph family if it is closed under induced
subgraphs. For example, the families of planar graphs, forests, chordal graphs etc. are
hereditary graph families.
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Proposition 9. Let G be a hereditary graph family. If, for every graph G € G, x(G) =

XL(G) then for every t, where 0 < t < xr(G), M(G) = 'th?G)'

Proof. The proof is straightforward. Consider a graph G € G. Let x.(G) = x(G) = s.
Remove the vertices belonging to the smallest s — ¢ colour classes in a proper s-colouring
of G to obtain a graph G’ of order at least 2. Since G’ € G, x(G") = x(G") = . O

A graph is chordal if it does not contain any induced cycle of size greater than 3. Note
that chordal graphs form a hereditary family of graphs. Moreover, for every chordal graph
G, x(G) = x1(G) = w(G) (clique number). Since chordal graphs satisfy the conditions
given in Proposition 9, we have the following corollary.

Corollary 10. Let G be a chordal graph on n vertices whose list chromatic number is s.
Then, for every t € [s], M(G) = 2.

A tree decomposition of a graph G is a pair ({X; : ¢ € I},T), where I is an index set,
{X; :i € I} is a collection of subsets of V(G), and T is a tree on I such that

(1) Uie, Xi = V(G),
(ii) V{u,v} € E(G),3i € I such that u,v € X;, and
(iii) Vi, j,k € I: if j is on the path in T from ¢ to k, then X; N X, C Xj.

The width of a tree decomposition ({X; : i € I},T) is max;es | X;| — 1. The treewidth
of G is the minimum width over all tree decompositions of G and is denoted by tw(G).
It is known that the treewidth of a graph G is one less than the order of a largest clique

in the chordal graph containing G' with the smallest clique number. The corollary below
relates Ay (G) with the treewidth of G.

Corollary 11. Let G be a graph on n vertices whose list chromatic number is s. Then,

for every t € [s], M(G) 2 i

Proof. Let G' be a chordal graph obtained by adding edges to G such that the order of a

largest clique in G’, denoted by w(G’), is tw(G) + 1. Since tw(G) +1 = w(G') = x(G') =
tn

x1(G"), from Corollary 10, we get A\ (G') > PTEIESE As G is a subgraph of G’, any proper
[

colouring of G’ is a proper colouring for G as well. Thus we get \(G) > twéﬁ

The following result on series-parallel graphs follows directly from Corollary 11.

Corollary 12. Let G be a series-parallel graph on n vertices whose list chromatic number
is 5. Then, for every t € [s], \(G) > 2.
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