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Abstract

We study the Maker-Breaker tournament game played on the edge set of a given
graph G. Two players, Maker and Breaker, claim unclaimed edges of G in turns,
while Maker additionally assigns orientations to the edges that she claims. If by the
end of the game Maker claims all the edges of a pre-defined goal tournament, she
wins the game. Given a tournament Tk on k vertices, we determine the threshold
bias for the (1 : b) Tk-tournament game on Kn. We also look at the (1 : 1) Tk-
tournament game played on the edge set of a random graph Gn,p and determine
the threshold probability for Maker’s win. We compare these games with the clique
game and discuss whether a random graph intuition is satisfied.

Keywords: positional games; Maker-Breaker; tournament

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of the subsets of X. Let a and b be two
positive integers. In the (a : b) Maker-Breaker positional game (X,F) two players, Maker
and Breaker, take turns in claiming previously unclaimed elements of X, with Maker
going first. In each turn, Maker claims a unclaimed elements and then Breaker claims b
unclaimed elements of X. The game is played until all the elements of X are claimed.
Maker wins the game if she claims all the elements of some F ⊆ F by the end of the game.
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Otherwise, Breaker wins. If Maker can win against any strategy of Breaker then the game
is said to be a Maker’s win. Otherwise, the game is said to be a Breaker’s win. The set
X is referred to as the board of the game, while the elements of F are referred to as the
winning sets. The values a and b are called biases of Maker, and Breaker, respectively.
The most basic case of these games are unbiased games, where a = b = 1.

In this paper, we focus on Maker-Breaker graph games, i.e., games where the board is the
edge set of a given graph G. In these games Maker’s aim is to create a graph consisting
only of edges claimed by her that contains some predefined graph theoretic structure. For
example, in the k-clique game (or sometimes abbreviated just as clique game when the
value of k is not crucial), Maker’s goal is to create a graph that contains a clique of order
at least k. We denote this game by (E(G),Kk).
Here, we study a variant of the clique game - the T -tournament game (E(G),KT ). In
the T -tournament game, introduced by Beck in [2], the goal graph is a tournament T ,
i.e. a complete graph where each edge has an orientation. That is, in T we have exactly
one arc between each pair of vertices. Before the game starts, the tournament T is fixed.
Then Maker and Breaker in turns claim previously unclaimed edges of G. When Maker
claims an edge of G, she immediately chooses and fixes one of the two possible orientations
for that edge. Contrary, Breaker never orients his edges and, in particular, when Maker
oriented an edge between two vertices x and y, Breaker cannot claim the edge xy anymore.
Finally, if Maker’s graph contains a copy of the given tournament T by the end of the
game, Maker wins. Otherwise, Breaker does.

Games on Kn. Very well-studied graph games are the ones where G = Kn is the complete
graph on n vertices. Erdős and Selfridge [6] initiated the study of the largest value of
k, kc = kc(n), such that Maker can win the kc-clique game on Kn and they were able
to prove that kc 6 2(1 − o(1)) log2 n. Indeed, it turns out that in (1 : 1) Maker-Breaker
clique game on Kn, Maker has a strategy to occupy a clique of size (2 − o(1)) log2(n),
as shown by Beck [2], and therefore kc = 2(1 − o(1)) log2 n holds. The most interesting
fact about this result is that it shows an intriguing relation between games and random
graphs here, referred to as the random graph intuition or probabilistic intuition. To be
precise, if both players played randomly throughout the game, then Maker’s graph would
be distributed as a random graph with n vertices and d1

2

(
n
2

)
e edges, which is well known

to have clique size (2− o(1)) log2(n) with high probability, see e.g. [1]. That is, for most
values of k, a randomly played k-clique game on Kn typically has the same winner as the
deterministic game played by two intelligent players.

For the tournament game we can ask the same question, as initiated by Beck [2]. Moti-
vated by the study of a randomly played T -tournament game, Beck conjectured that the
largest value of k, kt = kt(n), for which Maker can win in the T -tournament game, for
any tournament T on (at most) k vertices, is of size (1 − o(1)) log2 n. However, as the
first author together with Gebauer and Liebenau [5] showed, the truth is twice as large as
the conjectured value, i.e., kt = (2− o(1)) log2 n. This, in particular, tells us two things.
Opposite to the clique game, the tournament game does not satisfy the random graph
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intuition mentioned above. Secondly, since the two values, kc and kt, are very close to
each other, it does not make a big difference for Maker whether she needs to build a graph
with or without orientations in an unbiased game on Kn.

In the following, we want to find out whether we have similar observations in case we fix k
to be a constant, while changing either the bias of Breaker or the board of the game. We
start with biased games, in order to give more power to Breaker. Chvátal and Erdős [4]
observed that Maker-Breaker games are bias monotone, meaning that if the (1 : b) game
(X,F) is a Breaker’s win, then the (1 : b+ 1) game is also a Breaker’s win. Having this in
mind, it thus becomes interesting to find the unique threshold bias bF(n) = bF , which is
the largest non-negative integer such that for every b 6 bF the (1 : b) game is a Maker’s
win. For the k-clique game on Kn, Bednarska and  Luczak [3] showed that the threshold

bias is bKk
= Θ(n

2
k+1 ). Naturally, one may wonder what happens with the tournament

game, and whether in this case orientations of the edges make things more complicated
for Maker. We show that, for every tournament T of order k, the threshold bias of the
T -tournament game (E(Kn),KT ) is of the same order as in the k-clique game.

Proposition 1. Let T be a tournament on k > 3 vertices, then the threshold bias for the

T -tournament game on Kn is bKT
= Θ(n

2
k+1 ).

Games on random boards. Another way to give Breaker more power in positional
games is to play unbiased graph games on a random graph, as introduced by Stojaković
and Szabó [9]. The idea behind this approach is to make the board sparser before the
game starts by randomly eliminating edges, so that some of the winning sets no longer
exist. We look at the random graph model Gn,p, which is obtained from the complete
graph on n vertices by removing each edge independently with probability 1− p.
Now, if an unbiased game (E(Kn),F) is a Maker’s win, then we are curious about finding
the threshold probability pF such that for p = ω(pF) the game (E(Gn,p),F) is a Maker’s
win asymptotically almost surely (i.e. with probability tending to 1 as n tends to infinity
and abbreviated a.a.s. in the rest of the paper), and for p = o(pF), the game (E(Gn,p),F)
is a.a.s. a Breaker’s win.

When the k-clique game is played on Gn,p, Stojaković and Szabó [9] showed that for k = 3,

in the triangle game, pK3 = n−
5
9 and for k > 4, it holds that n−

2
k+1
−ε 6 pKk

6 n−
2

k+1 .
Müller and Stojaković [8] recently proved that for all k > 4 the threshold probability

is indeed pKk
= n−

2
k+1 . This again underlines an intriguing relation between games and

random graphs, again referred to as the probabilistic intuition. Indeed, what we can
observe here in case k > 4 (and also holds for several other natural graph games) is that
the threshold probability for Maker’s win in the (1 : 1) game (E(Gn,p),F) is of the same
order of magnitude as the inverse of the threshold bias bF in the (1 : b) game (E(Kn),F).
The triangle game is the only exception in this regard, as here Maker a.a.s. can win also
for probabilities below the so-called critical probability 1/bK3 .

We show that the tournament game behaves similarly to the clique game when played on
Gn,p. So, even when played on a sparse graph Gn,p, creating a graph with oriented edges
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is not much more difficult for Maker than creating a graph without oriented edges. For
the tournaments on k vertices, k > 4, we show the following, which also supports the
probabilistic intuition.

Proposition 2. Let T be a tournament on k > 4 vertices, then the threshold probability

for winning the T -tournament game on Gn,p is n−
2

k+1 .

So again, for k > 4, the outcome of the game does not depend much on the choice of
the tournament T on k vertices, i.e., on the way the edges of the goal tournament are
oriented. However, our next theorem states that the tournament on three vertices behaves
differently. In case T is the acyclic triangle TA, we obtain the same threshold probability
as in the triangle game on Gn,p. But, in case T is the cyclic triangle TC , the threshold
probability is closer to the critical probability 1/bK3 .

Theorem 3. The threshold probability for winning the unbiased TA-tournament game on
Gn,p is pKTA

= n−
5
9 , while for the unbiased TC-tournament game this threshold probability

is pKTC
= n−

8
15 .

Notation and terminology. Our graph-theoretic notation is standard and follows that
of [10]. In particular, we use the following. For a graph G, V (G) and E(G) denote its
sets of vertices and edges respectively, v(G) = |V (G)| and e(G) = |E(G)|. For disjoint
sets A,B ⊆ V (G), let E(A,B) denote the set of edges of G with one endpoint in A
and one endpoint in B. Given two vertices, x and y, an undirected edge is denoted
by xy, while (x, y) is a directed edge with orientation from vertex x towards vertex y.
If an edge is unclaimed by any of the players we call it free. For a vertex x ∈ V (G),
N(x) = {u ∈ V (G) : ux ∈ E(G)} denotes the set of neighbours of the vertex x in G. We
let d(x) = |N(x)| denote the degree of vertex x in graph G. The minimum and maximum
degrees of a graph G are denoted by δ(G) and ∆(G) respectively. The density of a graph

G is defined as d(G) = e(G)
v(G)

, while its maximum density is m(G) = maxH⊆G d(H).

Let n, k ∈ N be positive integers. Then with Tn,k we denote the Turán graph with n
vertices and k vertex classes. That is, its vertex set V (Tn,k) = [n] comes with a partition

V (Tn,k) = V1 ∪ . . . ∪ Vk such that
∣∣∣|Vi| − |Vj|∣∣∣ 6 1 for all 1 6 i < j 6 k, and such that its

edge set is E(Tn,k) = {vw | v ∈ Vi, w ∈ Vj, 1 6 i < j 6 k}. Moreover, let a graph G be
given together with a partition P = V1 ∪ V2 ∪ . . .∪ Vk of its vertex set. For a given graph
H on at most k vertices we then say that a subgraph G′ ⊆ G is a good copy of H in G
with respect to (w.r.t.) the partition P , if G′ ∼= H and |V (G′) ∩ Vi| 6 1 for every i ∈ [k].

Let p ∈ [0, 1] and moreover let M ∈ [e(Tn,r)]. Then with G(Tn,k, p) we denote the ran-
dom graph model obtained from Tn,k by deleting each edge of Tn,k independently with
probability 1 − p. That is, G(Tn,k, p) is the probability space of all subgraphs G of Tn,k,
where the probability for a subgraph to be chosen is pe(G)(1 − p)e(Tn,k)−e(G). Similarly,
with G(Tn,k,M) we denote the probability space of all subgraphs G of Tn,k with M edges,
together with the uniform distribution. Bin(n, p) denotes the binomial distribution, i.e.
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the distribution of the number of successes among n independent experiments, where in
each experiment we have success with probability p. Moreover, let us write X ∼ Bin(n, p)
if X is a random variable with distribution Bin(n, p).

Finally, Pk denotes the path on k vertices, i.e. V (P ) = {v1, . . . , vk} and E(Pk) = {vivi+1 :
1 6 i 6 k − 1}, while Ck denotes the cycle on k vertices, which is obtained form Pk by
adding the edge vkv1. Wk = (V,E) is called a k-wheel, if it is obtained from the cycle Ck
by adding one further vertex z which is made adjacent to every vertex of Ck. The special
vertex z is called the center of Wk.

Throughout the paper ln stands for the natural logarithm.

Organization of the paper. The rest of the paper is organized as follows. At first we
collect some useful results in the Preliminaries. In Section 3 we prove Proposition 1 and
Proposition 2. Finally, in Section 4 we prove Theorem 3.

2 Preliminaries

As indicated earlier, we will refer to the following result due to Bednarska and  Luczak [3].

Theorem 4 (Corollary from Theorem 1 in [3]). Let k > 3. Then, there is a constant

c = c(k) > 0 such that for large enough n and every b > cn
2

k+1 , Breaker has a winning
strategy in the clique game (E(Kn),Kk).

The following estimate is usually referred to as a Chernoff inequality [7].

Lemma 5 (Theorem 2.1 in [7]). Let X ∼ Bin(n, p) and λ = E(X) = np. Then for t > 0,

it holds that Pr(X > E(X) + t) 6 exp
(
− t2

2λ
+ t3

6λ2

)
.

As indicated above, we will consider the random graph models G(Tn,k, p) and G(Tn,k,M).
For this, we will make use of some general results about random sets.

Following [7], let Γ be a set of size N ∈ N. For p ∈ [0, 1], we let Γp denote the probability
space of all subsets A ⊆ Γ, where the probability of choosing A is p|A|(1−p)|Γ\A|. Moreover,
for M ∈ [N ], we let ΓM denote the probability space of all subsets A ⊆ Γ of size M ,
together with the uniform distribution. In case we choose a random set A according to
the model Γp, we shortly write A ∼ Γp. Similarly, we write A ∼ ΓM , when A is chosen
according to the uniform model ΓM .

One important fact about the two models above is that in many cases they are closely
related to each other when p ∼ M

N
; see Section 1.4 in [7]. In particular, we will make use

of the following two statements, which help us to transfer results from one model to the
other.

Lemma 6 (Pittel’s Inequality, Equation (1.6) in [7]). Let Γ be a set of size N , let M ∈ [N ],
and p = M

N
∈ [0, 1]. Let P be a family of subsets of Γ. Moreover, let Hp ∼ Γp and

the electronic journal of combinatorics 22(3) (2015), #P3.42 5



HM ∼ ΓM , then
Pr(HM /∈ P) 6 3

√
M · Pr(Hp /∈ P).

Lemma 7 (Corollary 1.16 (iii) in [7]). Let Γ be a set of size N and let M ∈ [N ]. Let
δ > 0 be such that 0 6 (1 + δ)M

N
6 1, and let p = (1 + δ)M

N
. Let P be a family of subsets

of Γ. Moreover, let Hp ∼ Γp and HM ∼ ΓM , then

Pr(HM ∈ P)→ 1 implies Pr(Hp ∈ P)→ 1.

Later we want to know whether a certain random graph contains a copy of a fixed graph
with high probability. In this regard, we make use of the following two theorems.

Theorem 8 (Theorem 2.18 (ii) in [7]). Let Γ be a set, p ∈ [0, 1] and let H ∼ Γp. Let S
be a family of subsets of Γ. Moreover, for every A ∈ S let IA be the indicator variable
which is 1 if A ⊆ H, and 0 otherwise. Finally, let X =

∑
A∈S IA be the random variable

counting the number of elements of S that are contained in H. Then

Pr(X = 0) 6 exp
(
− E(X)2∑

A∈S
∑

B∈S
A∩B 6=∅

E(IAIB)

)
.

Theorem 9 (Theorem 3.4 in [7]). Let H be a graph, and let XH denote random variable
counting the number of copies of H in a random graph G ∼ Gn,p. Then, as n tends to
infinity, we have

Pr(XH > 0)→

{
0 if p� n−

1
m(H)

1 if p� n−
1

m(H) .

3 Most tournaments behave like cliques

The main idea for the proof of the propositions is as follows: Let G be the graph on
which the game is to be played. Let T be the goal tournament with vertices v1, . . . , vk.
Then, before the game starts Maker splits the vertex set of G into k parts V1, . . . , Vk with∣∣∣|Vi| − |Vj|∣∣∣ 6 1 for all 1 6 i < j 6 k, and she identifies each class Vi with the vertex

vi according to the following rule: Whenever Maker claims an edge between some classes
Vi and Vj, she always chooses the orientation of this edge according to the orientation of
the edge vivj in T . Because of this identification, it then remains to show that Maker has
a strategy for the usual Maker-Breaker game on G to occupy a good copy of Kk in Kn

w.r.t. the partition P = V1 ∪ . . . ∪ Vk.
In order to show that Maker has such a strategy for this game, we will make use of results
from [7], and follow the proof ideas from [3, 9]. As most parts are proven analogously
to results in the aforementioned publications, we rather keep our argument short and,
whenever possible, we refer back to the known results. At first, analogously to Theorem 3.9
in [7], we bound the probability that a random graph G ∼ G(Tn,k, p) does not contain a
copy of Kk.
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Claim 10. Let k > 3 be a positive integer. Then there is a constant c1 = c1(k) > 0

such that for every large enough n the following is true: If n−
2

k+1 6 p 6 4n−
2

k+1 and if
X denotes the random variable counting the number of copies of Kk in a random graph
G ∼ G(Tn,k, p), then Pr(X = 0) 6 exp(−c1n

2p).

Proof Let G ∼ G(Tn,k, p). Let S be the family of copies of Kk in Tn,k. For each such copy
Ci ∈ S let ICi

be the indicator variable which is 1 if and only if Ci ⊆ G. By Theorem 8,

Pr(X = 0) 6 exp
(
− (E(X))2∑

C1

∑
C2: E(C1)∩E(C2)6=∅ E(IC1IC2)

)
.

The denominator in the above expression can be bounded from above by

k∑
t=2

∑
C1∈S

∑
C2∈S:

C1∩C2
∼=Kt

p2(k
2)−(t

2) 6
k∑
t=2

n2k−tp2(k
2)−(t

2)

= Θ(E(X)2) ·
k∑
t=2

n−tp−(t
2)

= Θ(E(X)2 · n−2p−1)
k∑
t=2

(
n−1p−

t+1
2

)t−2

= Θ(E(X)2 · n−2p−1),

where in the last equality we use that p = Θ(n−
2

k+1 ). Thus, the claim follows. 2

Corollary 11. Let k > 3 be a positive integer. Then there is a constant c′1 = c′1(k) > 0

such that for every large enough n the following is true: If M = bn2− 2
k+1 c and if X ′

denotes the random variable counting the number of copies of Kk in a random graph
G ∼ G(Tn,k,M), then Pr(X ′ = 0) 6 exp(−c′1M).

Proof Set p = M
e(Tn,k)

and observe that n−
2

k+1 6 p 6 4n−
2

k+1 . The statement now follows

by Claim 10 and Lemma 6. 2

Corollary 12. Let k > 3 be a positive integer. Then there is a constant δ = δ(k) > 0

such that for every large enough n and M = 2bn2− 2
k+1 c, a random graph G ∼ G(Tn,k,M)

satisfies the following property a.a.s.: Every subgraph of G with at least b(1− δ)Mc edges
contains a copy of Kk.

Proof We proceed analogously to [3]. Let δ > 0 such that δ − δ log(δ) < c′1/3, with c′1
from Corollary 11, and count the number of pairs (H,H ′) where H is a subgraph of Tn,k
with M edges and where H ′ ⊆ H is a subgraph with b(1 − δ)Mc edges that does not
contain a copy of Kk. Then using Corollary 11 (and simplifying the notation slightly by
ignoring floor signs) we obtain that the number of such pairs is at most
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exp(−c
′
1M

2
)

(
e(Tn,r)

(1− δ)M

)(
e(Tn,r)− (1− δ)M

δM

)

6 exp(−c
′
1M

2
)

(
M

δM

)(
e(Tn,r)

M

)
6 exp

(
− c′1M

2
+ δM(1− log(δ))

)(e(Tn,r)
M

)
= o(1)

(
e(Tn,r)

M

)
.

2

Using this last corollary, we can start proving the existence of Maker strategies. The
following claim is an analogue statement to Theorem 19 in [9], and thus its proof is
analogous to [9].

Claim 13. Let k > 3 and n be positive integers. Then there is a constant c2 = c2(k) > 0

such that for every M > c−1
2 n2− 2

k+1 , every 1 6 b 6 c2Mn−2+ 2
k+1 , for a random graph

G ∼ G(Tn,k,M) the following a.a.s. holds: Maker has a strategy to occupy a copy of Kk

in the (1 : b) Maker-Breaker game on G.

Proof Choose δ = δ(G) according to Corollary 12 and let c2 = δ/10. Maker’s strategy is
as follows: in each of her moves she chooses an edge from G uniformly at random among
all edges from G that have not been claimed so far by herself. If she chooses an edge that
is not claimed by Breaker so far, she claims this edge. Otherwise, Maker declares her move

as a failure and skips it. Similar to [9], we consider the first M ′ := 2bn2− 2
k+1 c 6 δ

2
· 1
b+1

M

rounds of the game. As only a δ
2
-fraction of all edges are claimed in these rounds, the

probability for a failure is at most δ
2

in each round. So, the number of failures can be
“upper bounded” by a binomial random variable X ∼ Bin(M ′, δ

2
), which by Chernoff’s

inequality (Lemma 5) satisfies Pr(X > 2E(X)) 6 exp(−E(X)
3

) = o(1). That is, the
number of failures will be at most δM ′ a.a.s. Thus, Maker a.a.s. creates a graph H\R with
H ∼ G(Tn,k,M

′) and e(R) 6 δM ′, against any strategy of Breaker, which by Corollary 12
a.a.s. contains a copy of Kk. Thus, a.a.s. Breaker cannot have a strategy to prevent copies
of Kk, and as either Maker or Breaker needs to have a winning strategy, the claim follows.
2

Corollary 14. Let k > 3 and n be positive integers Then there is a constant c3 = c3(k) > 0

such that for every p > c3n
− 2

k+1 and G ∼ G(Tn,k, p) the following a.a.s. holds: Maker has
a strategy to occupy a copy of Kk in the unbiased Maker-Breaker game on G.

Proof The statement follows immediately from Corollary 13 and Lemma 7, where we
choose P to be the family of all graphs G ⊆ Tn,k for which Maker has a strategy to occupy
a copy of Kk in the unbiased Maker-Breaker game on E(G). 2
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Finally, we can prove the two propositions.

Proof of Proposition 1. Let T be the tournament, with k > 3 vertices, of which Maker
aims to create a copy on Kn. By Theorem 4, we know that there is a constant c > 0 such

that for large enough n and for every b > cn
2

k+1 , Breaker has a strategy to prevent cliques
of order k. Using this strategy, Breaker wins the T -tournament game on Kn. Now, let

c2 = c2(k) be given according to Claim 13, and let M = e(Tn,k), b = 0.25c2n
2

k+1 . We now
apply Claim 13, in which case we note that the game is played on Tn,k rather than on a
random graph. The claim implies that Maker has a strategy to occupy a copy of Kk in the
(1 : b) Maker-Breaker game on Tn,k, which at the same time tells us that she has a strategy
to occupy a good copy of Kk in the game on Kn w.r.t. the partition P = V1 ∪ . . . Vk. But,
as we argued earlier, this also gives Maker a strategy for the (1 : b) T -tournament game
on Kn. 2

Proof of Proposition 2. Let T be the tournament, with k > 4 vertices, of which Maker
aims to create a copy in an unbiased game on G ∼ Gn,p. By Theorem 1.1 in [8], we know

that there is a constant c > 0 such that for p 6 cn−
2

k+1 , Breaker a.a.s. has a strategy to
block cliques of order k in the unbiased Maker-Breaker game on G, which again gives a

winning strategy for Breaker in the T -tournament game on G. Now, let p > c3n
− 2

k+1 ,
with c3 = c3(k) from Corollary 14. Before sampling the random graph G ∼ Gn,p fix a
partition P = V1 ∪ . . . ∪ Vk = [n] as before. Then, after sampling G ∼ Gn,p, we know
that the subgraph induced by those edges which intersect two different parts Vi and Vj
is sampled like a random graph F ∼ G(Tn,k, p). According to Corollary 14, Maker a.a.s.
has a strategy to occupy a copy of Kk in F ⊆ G, and therefore it follows, analogously to
the previous proof, that Maker a.a.s. has a strategy to create a copy T in the unbiased
tournament game on G. 2

4 The triangle case

In the following we prove Theorem 3.

For the acyclic triangle TA, the result can be obtained from [9] as follows: For p � n−
5
9

Breaker a.a.s. has a strategy to prevent triangles in the unbiased Maker-Breaker game
on G ∼ Gn,p. Applying such a strategy in the TA-tournament game as Breaker obviously

blocks acyclic triangles. For p � n−
5
9 a.a.s. Maker has a strategy to gain an undirected

triangle in the unbiased Maker-Breaker game on G ∼ Gn,p. In the TA-game, Maker now
can proceed as follows. She fixes an arbitrary ordering {v1, . . . , vn} of V (G) before the
game starts. Then she applies the mentioned strategy of Maker for gaining an undirected
triangle, where she always chooses orientations from vertices of smaller index to vertices
of larger index. This way, every triangle claimed by her will be an acyclic triangle, and
thus she wins.
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Thus, from now on, we can restrict the problem to the discussion of the cyclic triangle
TC . To show that n−

8
15 is the threshold probability for the existence of a winning strategy

for Maker in the TC-tournament game on G ∼ Gn,p, we will study Maker’s and Breaker’s
strategy separately.

e1

e2

e3

e4

Figure 1: Graph H without and with orientation.

We start with Maker’s strategy. Let p � n−
8
15 . Then, by Theorem 9, a.a.s. G ∼ Gn,p

contains the graph H, presented in the left half of Figure 1, as m(H) = 15
8

. As indicated
in the right half of the same figure, its edges can be oriented in such a way that each
triangle has a cyclic orientation, and thus, it is enough to prove that Maker has a strategy
to claim an undirected triangle in the unbiased Maker-Breaker game on H. Her strategy
is as follows. At first she claims the edge e1, as indicated in the figure. By symmetry,
we can assume that afterwards Breaker claims an edge which is on the “left side” of e1.
Then in the next moves, as long as she cannot close a triangle, Maker claims the edges
e2, e3 and e4, always forcing Breaker to block an edge which could close a triangle, and
Maker will surely be able to complete a triangle in the next round.

Now, let p� n−
8
15 . We are going to show that a.a.s. there exists a Breaker’s strategy

which blocks copies of TC , when playing on G ∼ Gn,p. We start with some preparations.
Amongst others, we will consider triangle collections, as studied in [9].

Definition 15. Let G = (V,E) be some graph without isolated vertices. Further, let
T (G) = (VT , ET ) be the graph where VT = {H ⊆ G : H ∼= K3} is the set of all triangles
in G, and ET = {H1H2 : E(H1) ∩ E(H2) 6= ∅} is the (binary) relation on VT of having
a common edge. Then:

• G is called very basic if T (G) is a subgraph of a copy of K+
3 (triangle plus a pending

edge), or a subgraph of a copy of Pk with k ∈ N.

• G is called basic if there are distinct edges e1, e2 ∈ E(G) such that G − ei is very
basic for both i ∈ {1, 2}.

• G is a triangle collection if every edge of G is contained in some triangle and T (G)
is connected.
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If G is a triangle collection we further call it a bunch (of triangles) if we can find triangles
F1, . . . Fr ∈ VT covering all edges of G with the property that |V (Fi)\∪j<iV (Fj)| = 1 and
|E(Fi) \ ∪j<iE(Fj)| > 2 for every i ∈ [r].

A1 A2 A3

B1
B2 B3 B4 B5 B6 B7

e1

e1

e1

e1
e1 e1 e1

e1
e1 e1

e2

e2

e2

e2

e2 e2

e2

e2
e2 e2

Figure 2: Basic triangle collections.

Note that every collection on a given number n of vertices, contains a bunch on the same
number of vertices with at least 2n − 3 edges. Figure 2 shows some collections that are
easily checked to be basic. For each of the graphs, the edges e1 and e2 indicated in the
figure satisfy the condition from the definition of basic graphs. Moreover, the following
observation is easily verified.

Observation 16. Let G = (V,E). Maker has a strategy to create a triangle (a copy of
TC) on G if and only if G contains a collection C such that she has a strategy to create a
triangle (a copy of TC) on C.

In the following we show now that Breaker can prevent Maker from occupying a triangle
when playing on basic graphs. This also ensures a winning strategy for Breaker in the
corresponding TC-tournament game. We start with the following proposition.

Proposition 17. Let G = (V,E) be very basic, then Breaker can block every triangle in
the unbiased Maker-Breaker game on E(G), even if Maker is allowed to claim two edges
in the very first round.

Proof Without loss of generality (abbreviated W.l.o.g. in the rest of the paper) we can
assume that T (G) ∼= Pk for some k, or T (G) ∼= K+

3 , with T (G) as given in Definition 15.
We further can assume that Maker in the first round claims two edges f1, f2 ∈ E(G)
that participate in triangles of G. If T (G) ∼= Pk then observe that there is an ordering
F1, . . . , Fk of the vertices in T (G), such that f1 ∈ E(F1), and |V (Fi) \ ∪j<iV (Fj)| = 1,
and |E(Fi) \ ∪j<iE(Fj)| = 2 for every 2 6 i 6 k. To see this one just has to start the
sequence with a triangle F1 containing f1, and to extend the sequence along the path-like
structure of T (G). Finally, let A1 := E(F1) \ {f1} and Ai := E(Fi) \ ∪j<iE(Fj) for every
i ∈ [k] \ {1}. These sets are pairwise disjoint, have cardinality 2 and satisfy Ai ⊆ E(Fi)
for each i ∈ [k]. That is, Breaker can block triangles by an easy pairing strategy. (In
particular, for his first move, Breaker claims the unique edge f for which there is an i ∈ [k]
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with Ai = {f2, f}.) If T (G) ∼= K+
3 , then it can be shown that G contains exactly four

triangles and that one can find an ordering F1, . . . Fk (with k = 4) with the properties
from the previous case. Indeed, G needs to be a copy of the graph presented in Figure 3.
So, Breaker wins similarly. 2

Figure 3: T (G) ∼= K+
3

Corollary 18. Let G = (V,E) be basic, then Breaker can block every triangle in the
unbiased Maker-Breaker game on E(G).

Proof Let e1, e2 be the edges given by the definition of a basic graph. Breaker’s strategy
is to claim e1 or e2 in the first round. Afterwards, the game reduces to the graph G−ei for
some i ∈ [2], where Maker claims 2 edges, before Breaker claims his first edge. Now, since
G−ei is very basic for both i ∈ {1, 2}, Breaker then succeeds by the previous proposition.
2

We further observe the following two statements which can be checked by easy case
distinctions.

Observation 19. Breaker has a strategy to prevent cyclic triangles in an unbiased game
on E(K4), even if Maker is allowed to claim and orient two edges in her first turn.

Observation 20. Breaker has a strategy to prevent cyclic triangles in an unbiased game
on E(W4), even if Maker is allowed to claim and orient two edges in her first turn, as
long as not both edges are incident with the center vertex of W4.

Now, using the previous statements we will show that for p � n−
8
15 a.a.s. every collec-

tion C in G ∼ Gn,p is such that Breaker has a strategy to prevent cyclic triangles in an
unbiased game on C. It follows then by Observation 16 that a.a.s. Breaker wins on G. To
do so, we start with the following propositions, motivated by [9], which helps to restrict
the set of collections we need to consider.

Proposition 21. Let p � n−
8
15 , then a.a.s. every triangle collection C in G ∼ Gn,p

satisfies m(C) < 15
8

.

Proof Each collection C on at least 25 vertices contains a bunch B on exactly 25 vertices
with

d(B) =
e(B)

v(B)
>

2v(B)− 3

v(B)
>

15

8
.

Since there are only finitely many such bunches and each of them a.a.s. does not appear
in G according to Theorem 9, together with the union bound we obtain that a.a.s. each
collection in G lives on at most 25 vertices. Since there are only finitely many collections
with at most 25 vertices, we also know by the same reason that a.a.s. each collection in
G on at most 25 vertices needs to have maximum density smaller than 15

8
. 2
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Proposition 22. Let C be a triangle collection with m(C) < 15
8

such that Maker has a
strategy to create a cyclic triangle in an unbiased game on C, but there is no such strategy
for any collection C ′ ⊂ C. Then the following properties hold:

(a) 5 6 v(C) 6 7,

(b) e(C) = 2v(C)− 1,

(c) δ(C) > 3,

(d) C is not basic.

Proof Property (d) obviously holds, using Corollary 18. Moreover, (c) follows immedi-
ately. Indeed, if there were a vertex v with dC(v) 6 2, then Breaker could prevent cycles
on C − v by the minimality condition on C, and cycles containing v by simply pairing
the edges incident with v (if there exist two such edges), a contradiction. Furthermore,
v(C) > 5 is needed, according to Observation 19. Now, let B be a bunch contained in C
with v(C) vertices, then e(C) > e(B), since δ(B) = 2 < δ(C). As such a bunch contains
at least 2v(B)−3 edges, it follows that e(C) > e(B)+1 > 2v(C)−2. Furthermore e(C) 6
2v(C)−1, since otherwise m(C) > 2. If e(C) = 2v(C)−1, then together with m(C) < 15

8
,

we deduce that v(C) 6 7. Otherwise, we have e(C) = 2v(C) − 2 and e(C) = e(B) + 1.
Analogously to the proof of Theorem 23 in [9] it then follows that C can only be a wheel;
for completeness let us include the argument here: Let E(C) \ E(B) = {v1v2}. By the
definition of a bunch, we can find triangles F1, . . . Fr in B covering all edges of B with the
property that |V (Fi) \ ∪j<iV (Fj)| = 1 and |E(Fi) \ ∪j<iE(Fj)| > 2 for every i ∈ [r]. As
e(B) = e(C)−1 = 2v(B)−3 it then follows that r = v(C)−2 and |E(Fi)\∪j<iE(Fj)| = 2
for every i ∈ [r] \ {1}, as otherwise e(B) > 3 + 2(r − 1) = 2v(C) − 3, a contradiction.
Thus, for every i ∈ [r] \ {1}, Fi needs to share exactly one edge with ∪j<iFj. From this,
we can conclude that B needs to contain at least two vertices of degree 2. However, as
δ(C) > 3 and E(C) \ E(B) = {v1v2}, we know that v1 and v2 must be the only vertices
in B of degree 2. Now, by the definition of a triangle collection, v1v2 needs to be part of
a triangle in C. Thus, there needs to be a vertex v3 such that v1v3, v3v2 ∈ E(B). But this
is only possible if v3 belongs to every triangle Fi, i ∈ [r], and thus, C needs to be a wheel.
Now, to finish the proof, observe that Breaker can always prevent triangles in an unbiased
game on a wheel by a simple pairing strategy, a contradiction to our assumption. 2

So, the goal will be to show that there exists no collection C which satisfies all the
conditions given in Proposition 22.

Lemma 23. If a collection C satisfies (a) - (d) from Proposition 22, then either C is
isomorphic to K−5 (K5 minus one edge) or C is isomorphic to one of the graphs Si,
1 6 i 6 4, given in Figure 4.

Proof If v(C) = 5, then e(C) = 9, by Property (b), and the statement follows obviously.
So, let v(C) 6= 5. We will show now that a collection satisfying (a) - (c) either is isomorphic
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S1 S2 S3 S4

a1

a2

a1

a2

a1
a2 a1

a2

Figure 4: Special collections.

to one of the collections Si, or it is isomorphic to one of the basic collections Ai or Bi

from Figure 2, thus contradicting Property (d).

Let us start with v(C) = 6. Assume first that C contains a subgraph H ∼= K4 and let
{x, y} = V (C) \ V (H). With e(C) = 11 and δ(C) > 3 we conclude xy ∈ E(C), and by
the definition of a collection it follows that x and y have a common neighbour v1 ∈ V (H).
Because of (c), we further have xv2 ∈ E(C) for some v2 ∈ V (H)\{v1}. Now, if yv2 ∈ E(C),
then C ∼= S1, otherwise by (c) we have yv3 ∈ E(C) for some v3 ∈ V (H) \ {v1, v2} and so
C ∼= A1.
Assume then that C does not contain a clique of order 4. We still find a subgraph H ′ ⊆ C
with four vertices V (H ′) = {v1, v2, v3, v4} and five edges, say v1v3 /∈ E(H), as C is a
triangle collection and therefore needs to contain two intersecting triangles. Moreover,
since C is a triangle collection, there needs to be some x ∈ V (C)\V (H ′) that is part of the
same triangle as an edge e from H ′. Let y be the unique vertex in V (C) \ (V (H ′)∪ {x}).
Assume first that e = v2v4. We know then that {x, v1, v3} is an independent set in C, since
otherwise we would have a 4-clique in C. Using (c), we conclude that N(x) = {v2, v4, y}.
With (b) we obtain that y needs to have exactly four neighbours, but not both v2 and v4

can be neighbours since otherwise there we find a copy of K4 in C. Therefore, N(y) =
{x, v1, v3, vi} for some i ∈ {2, 4}, which gives C ∼= A2.

Assume then that e 6= v2v4 and w.l.o.g. e = v3v4 by symmetry of H ′. If v1x ∈ E(C), it
then follows that d(y) = 3, since (b) and (c) need to hold; moreover, C[V (C) \ {y}] ∼= W4

where v4 represents the center of the wheel. In case v4y ∈ E(C), we can only have
C ∼= A2, as C does not contain a 4-clique; and in case v4y /∈ E(C), we can assume
that N(y) = {v1, v2, v3} (because of the symmetry of the 4-wheel), which yields C ∼= A3.
If otherwise v1x /∈ E(C), then, since there is no 4-clique in C, we immediately obtain
d(y) = 4 and v1, x ∈ N(y), as e(C) = 11 and δ(C) > 3. Moreover, v4 /∈ N(y), since we
otherwise would obtain a 4-clique, independently of the choice of the fourth neighbour of
y. Thus, we conclude N(y) = {v1, v2, v3, x} and C ∼= A3.

Now, let v(C) = 7. We distinguish three cases.

Case 1. Assume that C contains a subgraph H ∼= K4. Let {x, y, z} = V (C)\V (H) =: V ′.
If V ′ were an independent set, then with (c), we would conclude that e(C) > 15, in
contradiction to (b). Thus, it follows that {x, y, z} is not an independent set, w.l.o.g.
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xy ∈ E(C). By the definition of a collection it further follows that x and y have a
common neighbour – the vertex z or some vertex v ∈ V (H).

Assume first that z ∈ N(x)∩N(y). By δ(C) > 3 each vertex in V ′ needs to have at least
one neighbour in V (H). If there were a matching of size 3 between V ′ and V (H), then
by (b), one of the matching edges could not be part of a triangle, a contradiction. If all
the three vertices have a common neighbour in V (H), then one easily deduces C ∼= S2.
Otherwise, by symmetry we can assume that there is a vertex v1 ∈ V (H) such that
v1x, v1y ∈ E(C) and v1z /∈ E(C), and moreover, v2z ∈ E(C) for some v2 ∈ V (H) \ {v1}.
Now, let {v3, v4} = V (H) \ {v1, v2}. To ensure that v2z belongs to some triangle in C, we
finally need to have exactly one of the edges from {v3z, v4z, v2x, v2y} to be an edge in C.
The first two edges however do not result in a triangle collection, while for the other two
edges we get C ∼= S3.

Assume then that z /∈ N(x)∩N(y), but v ∈ N(x)∩N(y) for some v ∈ V (H). Because of
(b) and (c), either xz ∈ E(C) or yz ∈ E(C), w.l.o.g. say xz ∈ E(C) and yz /∈ E(C). As
δ(C) > 3, we then immediately get yw ∈ E(C) for some w ∈ V (H) \ {v}. Moreover, we
then need two other edges incident with z besides xz, of which one is zv to ensure that
xz belongs to a triangle. If the second edge is zw, then C ∼= S4; otherwise C ∼= B1.

Case 2. Assume that C does not contain a clique of order 4, but there is some H ⊆ C
with H ∼= W4. Let {x, y} = V (C) \ V (H) =: V ′ and let z be the unique vertex with
dH(z) = 4. By (b) and (c), it follows that xy ∈ E(C), and since C is a collection, there
is a common neighbour of x and y in V (H).

Assume first that z ∈ N(x) ∩ N(y). As δ(C) > 3, both vertices x and y have another
neighbour in V (H) \ {z}, however there cannot be a second common neighbour, since
there is no 4-clique in C. One easily checks that C ∼= B2 or C ∼= B3 follows.

Assume then that z /∈ N(x) ∩ N(y), but v ∈ N(x) ∩ N(y) for some v ∈ V (H) \ {z}.
If xz ∈ E(C) (or yz ∈ E(C)), we then need yw ∈ E(C) (or xw ∈ E(C)) for some
w ∈ NH(v) \ {z} to ensure that e(C) = 13 and δ(C) > 3 holds while C is a triangle
collection. This gives C ∼= B4. Otherwise, we have z /∈ N(x) ∪ N(y). In this case,
let w′ to be the unique vertex of H not belonging to N(v) ∪ {v}. Then we also have
w′ /∈ N(x) ∪ N(y). Indeed, if we had yw′ ∈ E(C) say, then as yw′ needs to be part of
some triangle and as d(x) > 3 and e(C) = 13, we would need xw′ ∈ E(C), in which case it
is easily checked that C is not a triangle collection. So, we can assume that xv1 ∈ E(C) for
some v1 ∈ V (H)\{v, w′, z}, and yv1 /∈ E(C), because C does not have a 4-clique. Finally,
since δ(C) > 3, we need v2y ∈ E(C) for the unique vertex v2 ∈ V (H) \ {v, w′, z, v1}, i.e.
C ∼= B5.

Case 3. Finally assume that C neither contains a 4-clique nor a 4-wheel. It is easy to
check that C0 ⊆ C (see Figure 5): Indeed, as C is a triangle collection, there needs to be
a subgraph C ′ which consists of two triangles that intersect in some edge e′. Now, if we
had C0 6⊆ C, then each of the three vertices in V (C)\V (C ′) would need to form a triangle
together with the edge e′. However, this then leads to a graph which cannot satisfy (b)
and (c) at the same time, a contradiction.
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Thus, we can fix a subgraph C0 (with notation of vertices as given in Figure 5) and by
the assumption of this case we further have v1v3, v1v4, v3v5 /∈ E(C). Since C is a triangle
collection, we find a vertex x ∈ V ′ := V (C) \ V (C0) which belongs to a triangle that also
contains an edge e ∈ E(C0). Let {y} = V ′ \ {x}. By symmetry of C0 we may assume
that e ∈ {v2v5, v4v5, v1v5, v1v2}.

v1 v2 v3

v4v5

v1 v2 v3

v4v5x

v1 v2 v3

v4v5x

v1 v2 v3

v4v5

x

v1 v2 v3

v4v5

x

C0

C1
C2

C3 C4

Figure 5: Subgraphs.

Assume first that e = v2v5 were possible, i.e. C1 ⊆ C. Then we conclude that v1, v3, v4 /∈
N(x), as otherwise we had a copy of K4 or W4, in contradiction to the assumption of
Case 3. Thus, every edge in E(C) \ E(C1) would need to be incident with y. Because of
(b) and (c) we then had that d(y) = 4 and v1y, v3y, xy ∈ E(C). Since these three edges
would need to belong to triangles, we further would need yv2 ∈ E(C), which would create
a 4-wheel on V (C) \ {v3, v4} with center v2, again in contradiction to our assumption.

So, as next assume that e = v4v5 were possible, i.e. C2 ⊆ C. Then analogously every edge
in E(C) \ E(C2) would need to be incident with y, and d(y) = 4 and {v1, v3, x} ⊆ N(y),
because of (b) and (c). But then, independently of what the fourth neighbour of y is, one
of the edges v1y, v3y, xy could not belong to a triangle, again a contradiction.

As third, assume that e = v1v5, i.e. C3 ⊆ C. By the assumption of Case 3, every edge
in E(C) \ (E(C3) ∪ {xv3}) needs to be incident with y. If xv3 /∈ E(C), then we have
d(y) = 4 and xy, v3y ∈ E(C), because of e(C) = 13 and δ(C) > 3. Depending on how the
other two edges incident with y are chosen, we either obtain a contradiction by creating a
4-clique or a 4-wheel, or we see that C ∼= B6. So, let xv3 ∈ E(C). Then d(y) = 3, by (b)
and (c), and to have xv3 in a triangle, we need yx, yv3 ∈ E(C). It follows that C ∼= B6,
if yv1 ∈ E(C) or yv4 ∈ E(C), or C ∼= B7, if yv2 ∈ E(C) or yv5 ∈ E(C).

As last, assume that e = v1v2, i.e. C4 ⊆ C. If xv3 ∈ E(C) were possible, then we had
d(y) = 3 because of e(C) = 13 and δ(C) > 3. But then, depending on the three edges
incident with y, we would get a 4-clique or a 4-wheel in C, or we would find an edge which
is not contained in a triangle, a contradiction. So, we can assume that xv3 /∈ E(C). Then,
by (b), (c) and the assumption of Case 3, we deduce that d(y) = 4 and yx, yv3 ∈ E(C). If
yv2 ∈ E(C) were also an edge of C, then for any choice of the fourth edge incident with
y, we would create a 4-clique or a 4-wheel in C. That is, we can assume that yv2 /∈ E(C).
But then we need v1y, v4y ∈ E(C) to ensure that yx and yv3 belong to triangles, which
yields C ∼= B7. 2
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Lemma 24. For any collection given by Lemma 23, Breaker has a strategy to prevent
cyclic triangles.

Proof If C ∼= Si for some i, note that C is covered by two (not necessarily disjoint)
graphs C(1), C(2), plus at most one additional edge if C ∼= S2, where each of the C(i)
is isomorphic to K4 or W4. Choose edges a1 and a2 as indicated in Figure 4. In his first
move, Breaker claims the edge a1 if Maker did not orient it before; otherwise he claims
the edge a2. Afterwards, Breaker plays on C(1) and C(2) separately, meaning: each time
Maker orients an edge of C(i), Breaker claims an edge of C(i) if there remains one. Now,
using Proposition 17 and Observation 19, Breaker can do this in a way such that he
prevents cyclic triangles on each C(i), and therefore in C.

Finally, we need to look at the case when C ∼= K−5 . By an easy case analysis, it can be
proven that Breaker has a strategy to prevent cyclic triangles on C. We give a sketch
in the following. Let V (C) = X ∪ Y with X = {v1, v2, v3} and Y = {v4, v5}, and let
E(C) =

(
X
2

)
∪ {xy : x ∈ X, y ∈ Y }.

Case 1. Maker orients an edge in E(X, Y ) in her first turn.

W.l.o.g. let e = v1v4 ∈ E(X, Y ) be the edge to which Maker gives an orientation in her
first move. Then Breaker’s strategy is to delete the edge v1v2. Note that C − {v1v2} is
isomorphic to the 4-wheel W4, here with center v3, and Maker’s first arc is not incident
with v3. Thus, Breaker can win by Observation 20.

Case 2. Maker orients an edge inside E(X) in her first turn.

W.l.o.g. let Maker’s first oriented edge be (v1, v2). Then Breaker’s first move will be to
delete the edge v2v4. Afterwards, Breaker’s second move will depend on Makers second
move, as follows:

If Maker orients (v1, v3) or (v3, v2) for her second move, then Breaker claims v2v5 and
afterwards he wins by an easy pairing strategy, with the pairs {v1v4, v3v4} and {v1v5, v3v5}.
If Maker for her second move chooses one of the arcs (v1, v4), (v4, v1), (v3, v4), (v4, v3),
(v1, v5), (v5, v2), (v2, v3) and (v3, v5), then Breaker for his second move claims the edge
v1v3. As he claims v2v4 and v1v3 then, the only triplets on which Maker could create a
triangle are {v1, v2, v5} and {v2, v3, v5}. In either of the cases it is easy to check that from
now on Breaker can prevent cyclic triangles.

If Maker for her second move chooses (v2, v5) or (v5, v3), then Breaker claims v1v5 for his
second move. Afterwards there remain three triplets on which Maker still could create a
triangle, namely {v1, v3, v4}, {v1, v2, v3} and {v2, v3, v5}. To block a triangle on {v1, v3, v4},
Breaker can consider a pairing {v1v4, v3v4}. For the other two triplets it is easy to check
then that Breaker can prevent cyclic triangles, since the orientation which v2v3 needs, to
create a cyclic triangle, is different for these two remaining triplets.

If Maker for her second move chooses (v3, v1), then Breaker needs to claim v2v3. After-
wards there remain three triplets on which Maker still could create a triangle, namely
{v1, v3, v4}, {v1, v2, v5} and {v1, v3, v5}. To block a triangle on {v1, v3, v4}, Breaker can
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consider a pairing {v1v4, v3v4}. For the other two triplets it again is easy to check that
Breaker can prevent cyclic triangles, since the orientation which v1v5 needs, to create a
cyclic triangle, is different for these two triplets.

Finally, if Maker for her second move chooses (v5, v1), then Breaker needs to claim v2v5.
Afterwards there remain three triplets on which Maker still could create a triangle, namely
{v1, v3, v4}, {v1, v2, v3} and {v1, v3, v5}. To block a triangle on {v1, v3, v4}, Breaker can
consider a pairing {v1v4, v3v4}. For the other two triplets it again is easy to check that
Breaker can prevent cyclic triangles, since the orientation which v1v3 needs, to create a
cyclic triangle, is different for these two triplets. 2

To summarize, we have shown now that for p � n−
8
15 , a.a.s. Breaker can prevent cyclic

triangles in the tournament game on G ∼ Gn,p. Indeed, by Proposition 22, Lemma 23 and
Lemma 24, we know that there exists no collection C with m(C) < 15

8
on which Maker has

a strategy to create a copy of TC . By Proposition 21 we however know that for p� n−
8
15

a random graph G ∼ Gn,p a.a.s. only contains such collections, and using Observation 16
we thus conclude that a.a.s. Maker does not have a winning strategy when playing on
G ∼ Gn,p, which at the same time guarantees a winning strategy for Breaker. 2
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[9] M. Stojaković, and T. Szabó. Positional games on random graphs. Random Structures
& Algorithms, 26:204–223, 2005.

[10] D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.

the electronic journal of combinatorics 22(3) (2015), #P3.42 18

http://arxiv.org/abs/1307.4229

	Introduction
	Preliminaries
	Most tournaments behave like cliques
	The triangle case

