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Abstract

A µ-way k-homogeneous Latin trade was defined by Bagheri Gh, Donovan, Mah-
moodian (2012), where the existence of 3-way k-homogeneous Latin trades was
specifically investigated. We investigate the existence of a certain class of µ-way
k-homogeneous Latin trades with an idempotent like property. We present a num-
ber of constructions for µ-way k-homogeneous Latin trades with this property, and
show that these can be used to fill in the spectrum of 3-way k-homogeneous Latin
trades for all but 196 possible exceptions.
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1 Introduction

A partial Latin square of order m, T = [t(r, c)], is an m × m array of cells with each
cell either filled with an element t(r, c) of Ω (a set of m symbols) or left empty, such
that each symbol of Ω appears at most once in each row, and at most once in each
column. In what follows, we typically take Ω = [m] = {1, 2, . . . ,m} and index the
rows and columns of the partial Latin square by [m]. A partial Latin square T has
volume s if it has precisely s filled cells, where 0 6 s 6 m2. A partial Latin square
with volume m2 is a Latin square. We can represent T as a set of s ordered triples
{(r, c, t(r, c)) | r, c ∈ [m] and cell (r, c) is not empty}. The back-circulant Latin squares
are defined as Bm = {(i, j, i+ j mod m) | i, j ∈ [m]}. A diagonal of a Latin square L is
a set of m cells of L such that each row and each column is represented in the set of cells
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precisely once. A transversal of a Latin square is a diagonal that also has each symbol
represented precisely once in the diagonal.

The shape of T is S(T ) = {(r′, c′) ∈ [m]× [m] | (r′, c′, e) ∈ T , for some e ∈ [m]}. The
r-th row set of T is defined as Rr(T ) = {e′ ∈ [m] | (r, c′, e′) ∈ T , for some c′ ∈ [m]}. The
c-th column set of T is defined as Cc(T ) = {e′ ∈ [m] | (r′, c, e′) ∈ T , for some r′ ∈ [m]}.
The e-th symbol set of T is defined as Ee(T ) = {(r′, c′) ∈ [m]× [m] | (r′, c′, e) ∈ T}.

Definition 1. For natural numbers µ,m, µ 6 m, a µ-way Latin trade of order m on
symbol set Ω is a collection T = (T1, . . . , Tµ) of µ partial Latin squares of order m using
symbols of Ω such that:

• S(Tα) = S(Tβ), for each 1 6 α < β 6 µ;

• for each (r, c) ∈ S(Tα) it holds that tα(r, c) 6= tβ(r, c), for every 1 6 α < β 6 µ; and

• Rr(Tα) = Rr(Tβ) and Cc(Tα) = Cc(Tβ), for each r, c ∈ [m] and 1 6 α < β 6 µ.

Let T = (T1, . . . , Tµ) be a µ-way Latin trade. As the shape of each Tα is the same, we
can define the shape of T as S(T ) = S(T1). Then the volume of T is the volume of T1.
Similarly, the row sets (resp. column sets and symbol sets) of each Tα are the same, so we
can define a row set for row r (resp. column set for column c and symbol set for symbol
e) of T as Rr(T ) = Rr(T1) (resp. Cc(T ) = Cc(T1) and Ee(T ) = Ee(T1)).

Definition 2. For an integer k > 0, a (µ, k,m)-Latin trade on symbol set Ω, T =
(T1, . . . , Tµ), is a µ-way Latin trade of order m on Ω that has k = |Rr(T )| = |Cc(T )| =
|Ee(T )|, for each r, c, e ∈ [m]. Such a µ-way Latin trade is called k-homogeneous.

A (µ, k,m)-Latin trade can have k = 0 in the case that each of the µ partial Latin
squares is empty; otherwise k must satisfy µ 6 k 6 m.

We will require the (µ, k,m)-Latin trades that we investigate to have the property that
if (r, c, e) ∈ Tα, where Tα is one of the partial Latin squares that form a (µ, k,m)-Latin
trade, then r, c, e are pairwise distinct. With this property, Tα ∪ {(i, i, i) | i ∈ [m]} would
form a new partial Latin square that resembles an idempotent Latin square with some
unfilled cells.

Definition 3. A µ-way Latin trade T of order m is idempotent if i /∈ Ri(T )∪ Ci(T ) and
(i, i) /∈ S(T ), for i ∈ [m].

Definition 4. A (µ, k,m)-Latin trade is circulant if it can be obtained from the elements
of its first row, called the base row (denoted by µ−Bk

m), by simultaneously permuting each
of the coordinates cyclically. That is, for each α, the cell (1, c, e) ∈ Tα implies (1 + i, c+ i
mod m, e+ i mod m) ∈ Tα, for 1 6 i 6 m− 1.

We write the base row as B = {(a1, . . . , aµ)cl | 1 6 l 6 k}, where aα, cl ∈ [m].
Then the corresponding µ partial Latin squares can be constructed as Tα = {(1 + i, cl + i
mod m, aα + i mod m) | 0 6 i 6 m − 1, 1 6 l 6 k}, α ∈ [µ]. We will denote an
idempotent circulant (µ, k,m)-Latin trade by µ− IBk

m.
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Let m be an integer. The spectrum of µ-way homogeneous Latin trades of order m,
Sµm, is the set of values of k such that there exists a (µ, k,m)-Latin trade. The spectrum
of idempotent µ-way homogeneous Latin trades of order m, ISµm, is the set of values of k
such that there exists an idempotent (µ, k,m)-Latin trade.

A previous study of (µ, k,m)-Latin trades [2] posed the question:

Question 5. For given m and k, m > k > µ, does there exist a (µ, k,m)-Latin trade?

The primary goal of this paper is to investigate this question by deducing S3
m. However

in order to do this, we will use a construction that requires us to first investigate IS3
m.

Clearly IS3
m ⊆ S3

m. It is known that {3, . . . ,m} ⊇ S3
m, and also that 3 ∈ S3

m if and only
if 3|m (see [2]). In this paper, we show there exists 3-way k-homogeneous Latin trades of
order m with 4 6 k 6 m for all but a finite list of possible exceptions.

2 Literature review

A 2-way Latin trade is typically called a Latin bitrade. There have been three distinct
approaches used to construct k-homogeneous Latin bitrades.

The first approach used graph theoretic constructions (see also [5], [12], [13], and [14]):

Theorem 6. [6, 7] There exists a (2, p, 3m)-Latin trade when p = 3, 4 and m > 3.

The second approach used block theoretic based constructions:

Theorem 7. [3, 4] There exists a (2, k,m)-Latin trade when 3 6 k 6 37 and m > k.

The third approach relies on finding pairs of transversals of given intersection in the
back-circulant Latin squares:

Theorem 8. [8] For each odd m 6= 5 and for each t ∈ {0, . . . ,m − 3} ∪ {m}, there
exists two transversals in Bm, T1 and T2, with |T1 ∩ T2| = t. When m = 5 and for each
t ∈ {0, 1, 5}, there exists two transversals in Bm, T1 and T2, with |T1 ∩ T2| = t.

Lemma 9. [8] For m an odd integer, let T1 and T2 be two transversals in Bm such that
|T1 ∩ T2| = t. Then there exists a (2,m− t,m)-Latin trade.

These results lead to the completion of the spectrum problem for homogeneous Latin
bitrades:

Theorem 10. [3, 4, 6, 7, 8] There is a (2, k,m)-Latin trade for all 3 6 k 6 m and a
(2, 2, 2m)-Latin trade, for all m > 1.

The first study of (µ, k,m)-Latin trades for general µ produced a number of block
theoretic constructions [2] that yielded results for small k when µ = 3:

Theorem 11. [2] There exist (3, k,m)-Latin trades for m > k when:

• k = 3 and 3 | m;
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• k = 4 and m 6= 6, 7, 11;

• 5 6 k 6 13;

• k = 15; and

• k = m.

3 Idempotent generalization of basic constructions

The constructions that have appeared earlier in the literature for (µ, k,m)-Latin trades
[2] can be used (or modified) for the construction of idempotent (µ, k,m)-Latin trades.
As many of the constructions differ only trivially from their original appearance, we label
the source of the original construction, and give the original proof with an extension if
necessary.

Theorem 12. [2] If there exist idempotent (µ, k,mi)-Latin trades, for i = 1, 2, then there
exists an idempotent (µ, k,m1 +m2)-Latin trade.

Theorem 13. [2] If there exist an idempotent (µ1, k1,m1)-Latin trade and a (µ2, k2,m2)-
Latin trade, then there exists an idempotent (µ1µ2, k1k2,m1m2)-Latin trade.

Theorem 14. [2] If l 6= 2, 6 and for each k ∈ {k2, . . . , kl} there exists a (µ, k, p)-Latin
trade and there exists an idempotent (µ, k1, p)-Latin trade, then an idempotent (µ, k1 +
· · ·+ kl, lp)-Latin trade exists. (Some ki’s can possibly be zero.)

Proof. For l 6= 2, 6, there exists two l × l orthogonal Latin squares. Denote these Latin
squares by L1 and L2, with elements chosen from the sets {e1, . . . , el} and {f1, . . . , fl},
respectively. We can simultaneously permute the rows and columns of L1 and L2 so
the main diagonal of L2 contains only f1, and then re-label the symbols of L1 so that
the symbols in cell (j, j) of L1 is ej. Assume that L∗ is the square that is formed by
superimposing L1 and L2. We replace each (ei, fj) ∈ L∗ such that j > 2 with a (µ, kj, p)-
Latin trade whose elements are from the set {(i− 1)p + 1, . . . , ip}, and when j = 1 with
an idempotent (µ, k1, p)-Latin trade whose elements are from the set {(i−1)p+1, . . . , ip}.
As a result we obtain a (µ, k1 + · · ·+ kl, lp)-Latin trade, which we denote as T .

Then clearly (j, j) /∈ S(T ) as each of the entries on the main diagonal of T came from
an idempotent (µ, k1, p)-Latin trade. Note that in T a row r ∈ {(i − 1)p + 1, . . . , ip}
contains cells filled with symbols e ∈ {(i − 1)p + 1, . . . , ip} only in columns c ∈ {(i −
1)p+ 1, . . . , ip}, and these filled cells came from an idempotent (µ, k, p)-Latin trade. So if
(i− 1)p+ i′ ∈ R(i−1)p+i′(T ), 1 6 i′ 6 p, then there must be a cell in row (i− 1)p+ i′ and
column c with c ∈ {(i− 1)p+ 1, . . . , ip} that contains symbol (i− 1)p+ i′, and this comes
from an idempotent (µ, k,m)-Latin trade, say U . But then U would have i′ ∈ Ri′(U),
a contradiction as U is idempotent. The analogous result holds for the columns, and T
forms an idempotent (µ, k1 + · · ·+ kl, lp)-Latin trade.
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Theorem 15. Take k and k′ to be integers with k′ > k. If for every k′ 6 l 6 2k′−1 there
exists an idempotent (µ, k, l)-Latin trade, then for any m > k′ there exists an idempotent
(µ, k,m)-Latin trade.

Proof. For every m > 2k′, we can write m = rk′ + sl, for some r, s > 0 and k′ + 1 6 l 6
2k′−1. Since there exist an idempotent (µ, k, k′)-Latin trade and an idempotent (µ, k, l)-
Latin trade, by Theorem 12 we conclude that there exists an idempotent (µ, k,m)-Latin
trade.

A large set of idempotent Latin squares of order m is a set of m− 2 idempotent Latin
squares of order m, (L1, . . . , Lm−2), such that for α, β with 1 6 α < β 6 m − 2 and
i, j ∈ [m], Lα(i, i) = Lβ(i, i) = i and Lα(i, j) 6= Lβ(i, j) when i 6= j.

Theorem 16. For m > 3, m 6= 6, there exists an idempotent (µ,m − 1,m)-Latin trade
whenever 1 6 µ 6 m− 2.

Proof. It was shown in [17] that for m 6= 6, 14, 62 there exists a large set of idempotent
Latin squares of order m. The cases m = 14, 62 were solved in [10] and [9] respectively.
By taking such a large set and deleting the cells of the main diagonals of each of the
idempotent Latin squares, we have an idempotent (m − 2,m − 1,m)-Latin trade for
m > 3, m 6= 6. Clearly we can remove any number of the resulting partial Latin squares
to yield an idempotent (µ,m− 1,m)-Latin trade for 1 6 µ 6 m− 2.

Generalizing from the method of finding pairs of transversals of given intersection in
the back-circulant Latin squares, the author of [16] was able to determine the possible
intersection sizes of three transversals in the back circulant Latin square:

Theorem 17. [16] For odd integer m > 33 with m = 18I + 9 + 2d, 0 6 d < 9, and
m = 22I ′+11+2d′, 0 6 d′ < 11, there exists three transversals of the back circulant Latin
square Bm, T1, T2, T3, for each t ∈ {min(d′+ 3, d), . . . ,m} \ {m− 5, . . . ,m− 1} such that
S = T1 ∩ T2 = T1 ∩ T3 = T2 ∩ T3 and |S| = t, except possibly when:

• m = 51 and t = 29,

• m = 53 and t = 30.

Further, a transformation is provided to construct (µ, k,m)-Latin trades from a col-
lection of µ transversals of the back circulant Latin square.

Theorem 18. [16] Take m odd and 0 6 t 6 m. If there exists a set S ⊆ [m]3 with |S| = t
and µ transversals of Bm, T1, . . . , Tµ with Tα ∩ Tβ = S, for α, β ∈ [µ] and α 6= β, then
there exists a circulant (µ,m− t,m)-Latin trade.

Proof. Consider the µ partial Latin squares defined by Qα = {(i, c + i, r + c + i) | i ∈
[m], (r, c, r + c) ∈ Tα \ S}. The set (Q1, . . . , Qµ) forms a (µ,m− t,m)-Latin trade that is
circulant by definition.

This can be generalized for our purposes in the following manner:
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Theorem 19. Take m odd and 1 6 t 6 m. If there is a set S ⊆ [m]3 with |S| = t such
that there exists µ transversals of Bm, T1, . . . , Tµ, with Tα ∩ Tβ = S, for α, β ∈ [m] and
α 6= β, then there exists an idempotent circulant (µ,m− t,m)-Latin trade.

Proof. Notice that T x,yα = {(r + x, c + y, r + c + x + y) | (r, c, r + c) ∈ Tα}, for α ∈ [µ]
and x, y ∈ {0, . . . ,m − 1}, will define a new collection of µ transversals of Bm with
T x,yα ∩ T x,yβ = Sx,y such that |Sx,y| = t, for α, β ∈ [µ] and α 6= β. As t > 1, this allows us
to assume without loss of generality that (m,m,m) ∈ Tα, for all α ∈ [µ], or equivalently
(m,m,m) ∈ S. Applying the construction from Theorem 18 to these transversals of Bm,
we obtain a circulant (µ,m − t,m)-Latin trade, which we denote as Q = (Q1, . . . , Qµ).
As (m,m,m) ∈ S, then each (r, c, r + c) ∈ Tα \ S has r + 1 6≡ 1, c + 1 6≡ 1, and
r + c + 1 6≡ 1. Then Q has its (1, 1) cell empty as c + 1 6≡ 1, and the symbol 1 will
not appear in the first row as r + c + 1 6≡ 1. The first column of Qα contains cells
{(m− c+ 1, 1, r+ 1) | (r, c, r+ c) ∈ Tα \ S}, for α ∈ [µ]. As r+ 1 6≡ 1, the symbol 1 does
not appear in the first column. By the circulant nature, we also have (i, i) /∈ S(Q) and
i /∈ Ri(Q) ∩ Ci(Q), for i ∈ [m]. Then Q is an idempotent circulant (µ,m − t,m)-Latin
trade.

We can then exploit the existence of two [8] and three [16] transversals of given inter-
section as:

Theorem 20. For odd integer m > 5, there exists an idempotent circulant (2,m− t,m)-
Latin trade for t ∈ [m] \ {m− 2,m− 1} except, perhaps, when (t,m) = (2, 5).

Theorem 21. For odd integer m > 33 with m = 18I + 9 + 2d, 0 6 d < 9, and m =
22I ′+11+2d′, 0 6 d′ < 11, there exists an idempotent circulant (3,m− t,m)-Latin trade,
for t ∈ {max(1,min(d′ + 3, d)), . . . ,m} \ {m− 5, . . . ,m− 1}, except, perhaps, when:

• m = 51 and t = 29,

• m = 53 and t = 30.

4 New constructions for idempotent (µ, k,m)-Latin trades

In this section, we will consider block theoretic constructions that are able to determine
the spectrum of (3, k,m)-Latin trades for all but a small list of values of k and m.

4.1 Computer search for small orders

If B = {(a1, . . . , aµ)cl | 1 6 l 6 k}, Algorithm 1 of [2] can be used to show B is the base
row of a (µ, k,m)-Latin trade. If for each (a1, . . . , aµ)cl it further holds that:

• aα 6= 1, for all α ∈ [µ];

• cl 6= 1; and

• aα 6= cl,
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then B is the base row of an idempotent (µ, k,m)-Latin trade. As the result of a compu-
tational search, we introduce the following base rows of idempotent (3, k,m)-Latin trades:

• k = 5

3− IB5
7 ={(3, 4, 5)2, (5, 7, 4)3, (7, 5, 2)4, (2, 3, 7)5, (4, 2, 3)6}

3− IB5
8 ={(3, 4, 6)2, (8, 2, 4)3, (6, 8, 3)4, (4, 6, 2)5, (2, 3, 8)6}

3− IB5
9 ={(3, 6, 9)2, (6, 2, 7)3, (2, 7, 3)4, (9, 3, 6)5, (7, 9, 2)8}

3− IB5
11 ={(5, 7, 9)2, (7, 2, 8)3, (9, 8, 7)4, (2, 9, 5)6, (8, 5, 2)9}

3− IB5
12 ={(4, 5, 8)2, (11, 2, 5)3, (8, 11, 4)5, (5, 8, 2)6, (2, 4, 11)8}

• k = 6

3− IB6
8 ={(3, 4, 6)2, (5, 8, 2)3, (8, 2, 5)4, (2, 6, 3)5, (4, 5, 8)6, (6, 3, 4)7}

3− IB6
9 ={(3, 6, 7)2, (7, 4, 5)3, (6, 2, 3)4, (4, 7, 6)5, (2, 5, 4)6, (5, 3, 2)7}

3− IB6
10 ={(5, 8, 9)2, (9, 2, 4)3, (2, 5, 3)4, (4, 3, 8)5, (3, 9, 2)6, (8, 4, 5)7}

3− IB6
11 ={(3, 4, 10)2, (6, 9, 4)3, (10, 2, 6)4, (2, 6, 3)5, (4, 3, 9)6, (9, 10, 2)7}

3− IB6
12 ={(3, 9, 11)2, (7, 2, 5)3, (11, 5, 3)4, (2, 7, 9)5, (5, 3, 7)6, (9, 11, 2)7}

3− IB6
13 ={(8, 11, 13)2, (13, 8, 9)3, (9, 2, 8)4, (3, 9, 2)5, (2, 3, 11)6, (11, 13, 3)7}

• k = 7

3− IB7
m ={(3, 4, 6)2, (7, 6, 5)3, (6, 2, 7)4, (2, 9, 3)5, (9, 7, 2)6, (5, 3, 4)7, (4, 5, 9)8},

for m > 9

• k = 8

3− IB8
m ={(3, 4, 5)2, (2, 6, 7)3, (7, 8, 2)4, (9, 2, 6)5, (8, 5, 3)6, (4, 3, 9)7, (6, 9, 4)8,

(5, 7, 8)9}, for m > 10

• k = 9

3− IB9
m ={(3, 4, 5)2, (5, 8, 7)3, (7, 2, 9)4, (9, 6, 2)5, (11, 9, 8)6, (2, 11, 3)7, (4, 3, 6)8,

(6, 5, 4)9, (8, 7, 11)10}, for m > 11

• k = 10

3− IB10
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 5, 9)4, (9, 10, 2)5, (11, 2, 10)6, (10, 11, 3)7, (4, 3, 7)8,

(7, 8, 11)9, (5, 7, 8)10, (8, 9, 6)11}, for m > 12

• k = 11

3− IB11
m ={(3, 4, 5)2, (5, 6, 8)3, (7, 2, 10)4, (9, 11, 3)5, (11, 10, 2)6, (13, 8, 11)7,

(2, 13, 9)8, (4, 3, 6)9, (6, 5, 4)10, (8, 7, 13)11, (10, 9, 7)12}, for m > 13
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• k = 12

3− IB12
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 11)5, (11, 12, 8)6, (13, 3, 12)7,

(12, 13, 2)8, (4, 10, 13)9, (7, 5, 6)10, (5, 8, 9)11, (10, 11, 7)12, (9, 7, 10)13},
for m > 14

• k = 13

3− IB13
m ={(3, 4, 5)2, (5, 6, 4)3, (2, 5, 10)4, (9, 10, 12)5, (11, 13, 2)6, (13, 2, 9)7,

(15, 12, 13)8, (12, 15, 3)9, (4, 3, 8)10, (6, 7, 15)11, (8, 9, 7)12, (10, 11, 6)13,

(7, 8, 11)14}, for m > 15

• k = 14

3− IB14
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 2)5, (10, 3, 13)6, (13, 14, 12)7,

(15, 13, 14)8, (14, 15, 11)9, (4, 5, 6)10, (7, 12, 15)11, (5, 11, 10)12,

(11, 7, 8)13, (9, 10, 7)14, (12, 8, 9)15}, for m > 16

• k = 15

3− IB15
m ={(3, 4, 5)2, (5, 6, 4)3, (2, 5, 6)4, (8, 2, 9)5, (11, 13, 14)6, (13, 15, 12)7,

(15, 12, 2)8, (17, 14, 15)9, (14, 3, 17)10, (4, 17, 3)11, (6, 7, 10)12,

(10, 11, 8)13, (9, 10, 7)14, (7, 9, 11)15, (12, 8, 13)16}, for m > 17

• k = 16

3− IB16
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 2)5, (4, 3, 10)6, (13, 12, 15)7,

(15, 16, 13)8, (17, 15, 16)9, (14, 17, 6)10, (16, 5, 17)11, (5, 7, 14)12,

(7, 14, 8)13, (10, 13, 12)14, (12, 11, 7)15, (11, 8, 9)16, (9, 10, 11)17},
for m > 18

• k = 17

3− IB17
19 ={(3, 4, 5)2, (5, 6, 4)3, (2, 5, 6)4, (8, 2, 3)5, (10, 11, 12)6, (13, 14, 15)7,

(15, 17, 19)8, (17, 13, 14)9, (19, 16, 17)10, (16, 19, 2)11, (4, 3, 16)12,

(6, 8, 7)13, (9, 7, 11)14, (11, 9, 10)15, (7, 12, 9)16, (14, 15, 13)17,

(12, 10, 8)18}
3− IB17

m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 7)5, (10, 5, 11)6, (14, 15, 16)7,

(16, 17, 15)8, (18, 14, 17)9, (15, 16, 14)10, (17, 18, 2)11, (4, 13, 18)12,

(7, 3, 8)13, (12, 8, 10)14, (5, 11, 13)15, (11, 7, 6)16, (13, 12, 9)17,

(9, 10, 12)18}, for m > 20
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• k = 18

3− IB18
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 2)5, (4, 3, 8)6, (11, 8, 12)7,

(15, 16, 17)8, (17, 18, 16)9, (19, 15, 18)10, (16, 17, 15)11, (18, 19, 6)12,

(5, 7, 19)13, (7, 5, 9)14, (9, 14, 13)15, (12, 11, 7)16, (14, 13, 10)17,

(13, 10, 14)18, (10, 12, 11)19}, for m > 20

Theorem 22. There exist idempotent (3, k,m)-Latin trades for m > k + 1 when:

• k = 4 and 5|m;

• k = 5, except when m = 6 and perhaps when m = 10, 13; and

• 6 6 k 6 18.

Proof. The previously stated base rows, along with the idempotent (3,m − 1,m)-Latin
trades of Theorem 16 complete the cases for 7 6 k 6 18. For k = 6, we can use the
previously stated base rows along with an idempotent (3, 6, 7)-Latin trade from Theorem
16 with Theorem 15. For k = 5, there exists idempotent (3, 5,m)-Latin trades for m ∈
{7, 8, 9, 11, 12}. Using these (3, 5,m)-Latin trades in Theorem 12 will, after two iterations,
yield the required (3, 5,m)-Latin trades for Theorem 15 with k′ = 14. For k = 4, there
exists an idempotent (3, 4, 5)-Latin trade by Theorem 16, on which we can repeatedly
apply Theorem 12 to get the result. If an idempotent (3, 5, 6)-Latin trade existed, then
adding the cells {(i, i, i) | 1 6 i 6 n} to each of the partial Latin squares of the idempotent
(3, 5, 6)-Latin trade would yield an ordered triple of idempotent Latin squares of order 6
that are pairwise disjoint in each cell not on the main diagonal. Using a computer we
searched for such ordered triples of idempotent Latin squares by testing all possible triples
of idempotent Latin squares of order 6. None existed, and so there does not exists an
idempotent (3, 5, 6)-Latin trade.

We conjecture that the two unresolved cases with k = 5 and m = 10, 13 both exist.

4.2 Extended multiplication construction

Lemma 23. Take n > 3 and m > 4. If n = 6, let y be a positive integer with µ < y 6 m
4
.

If n 6= 6, let y be a positive integer with µ < y 6 m
2
. If there exists an idempotent

(µ, k,m)-Latin trade for each k ∈ {0, y, y+ 1, . . . ,m− 1}, then there exists an idempotent
(µ, k,mn)-Latin trade for each k ∈ {0, y, y + 1, . . . ,mn− 1}.

Proof. In the case that n 6= 6, Theorem 14 yields idempotent (µ, k,mn)-Latin trades for
k ∈ {

∑n
i=1 yi | y1 ∈ {0, y, y + 1, . . . ,m − 1} and yi ∈ {0, y, y + 1, . . . ,m}, 2 6 i 6 n} =

{0, y, y+1, . . . ,mn−1} (yi, with 2 6 i 6 n, may equal m as there exists a (3,m,m)-Latin
trade by Theorem 11).

Now we consider the case when n = 6. Applying Theorem 13 using an idempotent
(µ, k,m)-Latin trade and a (1, 2, 2)-Latin trade (which exists by Theorem 10) yields an
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idempotent (µ, 2k, 2m)-Latin trade for each k with y 6 k 6 m − 1. Applying Theorem
12 to the idempotent (µ, k,m)-Latin trades yields idempotent (µ, k, 2m)-Latin trades
for each k with y 6 k 6 m − 1. Considering these, along with the existence of an
idempotent (µ, 2m− 1, 2m)-Latin trade from Theorem 16, yields idempotent (µ, k′, 2m)-
Latin trades for k′ ∈ Γ = Γ1 ∪ Γ2, where Γ1 = {0} ∪ {y, y + 1, . . . ,m − 1} and Γ2 =
{2y, 2y + 2, . . . , 2m − 2} ∪ {2m − 1}. Applying Theorem 14 with l = 3, using the above
idempotent (µ, k′, 2m)-Latin trades with k′ ∈ Γ along with (µ, 2m, 2m)-Latin trades and
(µ,m, 2m)-Latin trades that exist by Theorem 11 and Theorem 12, yields idempotent
(µ, k′′, 6m)-Latin trades for each k′′ ∈ {

∑3
i=1 yi | y1 ∈ Γ and y2, y3 ∈ Γ ∪ {m, 2m}}.

It holds that {
∑3

i=1 yi | y1 ∈ Γ2 and y2, y3 ∈ Γ2 ∪ {2m}} = {6y, 6y + 2, . . . , 4y + 2m−
4, 4y + 2m − 2} ∪ {4y + 2m − 1, 4y + 2m, . . . , 6m − 1}, and also that {

∑3
i=1 yi | y1 ∈

Γ1 and y2, y3 ∈ Γ1 ∪ {m}} = {0} ∪ {y, y + 1, . . . ,m} ∪ {2y, 2y + 1, . . . , 2m} ∪ {3y, 3y +
1, . . . , 3m − 1} = {0} ∪ {y, y + 1, . . . , 3m − 1} as y 6 m/4 implies both m > 2y and
2m > 3y. Then it holds that {

∑3
i=1 yi | y1 ∈ Γ and y2, y3 ∈ Γ∪ {m, 2m}} ⊇ {0} ∪ {y, y+

1, . . . , 3m− 1} ∪ {4y + 2m− 1, . . . , 6m− 1} = {0} ∪ {y, . . . , 6m− 1}, as m > 4y, and so
the proof is complete.

There does not exist a pair of orthogonal Latin squares of order 2, so we do not
have a similar result to this lemma when n = 2. This leaves us with two cases that are
of particular interest, as they are not covered by Lemma 23: m = p and m = 2p, for
p a prime. The next two subsection contain constructions that will be used to fill the
spectrum IS3

m for certain m = p and m = 2p.

4.3 Packing construction

The following theorem uses µ-way Latin trades of order λ and volume s in the construction
of (µ, s,m)-Latin trades, for certain integers m > λ2 + 2λ+ 1. Afterwards we will modify
the resulting structures to yield idempotent (µ, s,m)-Latin trades. The 3-way intersection
problem for Latin squares has been studied previously, and this will yield the 3-way Latin
trades we need in order to apply this construction, which we detail later.

Theorem 24. Suppose there exists a µ-way Latin trade of volume s and of order λ. For
every m = λ(λ+ a) + b, where 0 < b < λ, a > b+ 1, and gcd(m,λ) = gcd(λ, b) = 1, there
exists a (µ, s,m)-Latin trade.

In order to prove this theorem, we construct the (µ, s,m)-Latin trade as follows.

Construction 25. Suppose there exists a µ-way Latin trade U = (U1, . . . , Uµ) of volume
s, order λ, and using symbol set Ω = [λ]. Let m = λ(λ+a)+b, where a and b are integers
with 0 < b < λ, a > b+1, and gcd(m,λ) = gcd(λ, b) = 1. Let Uα[f ] be the array obtained
from Uα by replacing each occurrence of symbol i with symbol bi + f (mod m), where
bi = i(λ+ a− 1) for each 1 6 i 6 λ, α ∈ [µ], and 0 6 f < m.

We construct Rα, an m×m array of cells for each α ∈ [µ]. For each f ∈ {0, . . . ,m−1},
consider the λ× λ block of cells within Rα given by Bf = {(i, j) | λf < i 6 λ(f + 1), f <
j 6 f+λ}, with i, j taken mod m, but 0 is identified with m such that 1 6 i, j 6 m. This
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1 . . . λ

1
...

λ

B0

λ+ 1
...

2λ

B1

2λ+ 1
...

3λ

B2

(λ+ a− 1)λ+ 1

...

(λ+ a)λ

Bλ+a−1

Bλ+ab
m = (λ+ a)λ+ b

a

λ− b

Figure 1: An illustrative example of the placement of blocks in Construction 25

placement of the blocks of cells in Rα is displayed visually in Figure 1. Notice Bf∩Bg = ∅
for each 0 6 f, g < m, f 6= g. Place Uα[f ] into the cells Bf of Rα, for each 0 6 f < m,
and leave every other cell empty. Then cell (λf + i′, f + j′) ∈ Bf is filled in Rα with the
symbol Uα[f ](i′, j′), for 1 6 i′, j′ 6 λ.

The following proof verifies that the Rα form a (µ, s,m)-Latin trade.

Proof. We will show that the collection of µ m ×m arrays R = (R1, . . . , Rµ) defined by
Construction 25 form a (µ, s,m)-Latin trade. We begin by showing that R forms a µ-way
Latin trade of order m. This amounts to showing that each Rα forms a partial Latin
square, as then by construction it is clear that the µ partial Latin squares form a µ-way
Latin trade of order m. To this end, we must verify that any symbol appears in a column
of Rα at most once, and that any symbol appears in a row of Rα at most once.

To show the symbols that appear in a column of Rα are distinct, we will consider a
specific symbol bλ = λ(λ+a−1). This symbol appears only in the block of cells Bj(λ+a−1)
of Rα, for 0 6 j 6 λ − 1. The columns of the block of cells Bj(λ+a−1) of Rα are exactly
those columns c with j(λ + a − 1) < c 6 j(λ + a − 1) + λ. For 0 6 j 6 λ − 1, the sets
of integers {j(λ + a − 1) + 1, . . . , j(λ + a − 1) + λ} are each disjoint, and in the range

the electronic journal of combinatorics 22(4) (2015), #P4.1 11



1 to m. That is to say that two distinct block of cells Bf and Bf ′ containing bλ do not
intersect column-wise, and as a column within each block of cells Bf of Rα can contain
bλ at most once, we can conclude that bλ appears in each column of Rα at most once. By
construction, (r, c, bλ) ∈ Rα if and only if (r+ λ, c+ 1, bλ + 1) ∈ Rα, and so symbol bλ + 1
appears in each column of Rα at most once. Repeating this argument, we see that every
symbol will appear in each column of Rα at most once.

To show the symbols that appear in a row of Rα are distinct, we consider a specific
symbol a− b− 1 = bλ + (λ+ a− 1)−m, which we denote as bλ+1. This symbol appears
in the block of cells Bj(λ+a−1) of Rα, for 1 6 j 6 λ. The rows of the subsquare Bj(λ+a−1)
of Rα are exactly those rows r with jλ(λ+ a− 1) < r 6 jλ(λ+ a− 1) +λ, or equivalently
m − j(λ + b) < r 6 m − j(λ + b) + λ once we consider r to be taken modulo m. For
1 6 j 6 λ, the sets of integers {m− j(λ+ b) + 1, . . . ,m− j(λ+ b) + λ} are each disjoint.
As λ(λ + b) < λ(λ + a) < m, these sets of integers only contain values in the range 1 to
m. That is to say that two distinct blocks of cells Bf and Bf ′ that both contain bλ+1 do
not intersect row-wise, so we can conclude that bλ+1 appears in each row of Rα at most
once. By construction, (r, c, bλ+1) ∈ Rα if and only if (r+ λ, c+ 1, bλ+1 + 1) ∈ Rα, and so
bλ+1 + 1 appears in each row of Rα at most once. Repeating this argument, we see that
every symbol will appear in each row of Rα at most once. We have now shown that the
Rα form a µ-way Latin trade of order m.

Now we show that Rα is s-homogeneous, for each α ∈ [µ]. For α ∈ [µ], the construction
filled each of the m blocks Bf of Rα with s cells, for 0 6 f < m. As no overlap occurs
between the blocks Bf , Rα was filled by precisely sm filled cells. By construction, if cell
(r, c) is filled in Rα, then it holds that (r, c, e) ∈ Rα if and only if (r+λ, c+1, e+1) ∈ Rα.
Then row r (column c, symbol e) must contain the same number of filled cells as row r+λ
(column c+ 1, symbol e+ 1). We can repeat this argument m− 1 times to show each row
and column will have the same number of filled cells, and that each each symbol will have
the same number of occurrences in Rα (for the row case, we have used the assumption
that gcd(m,λ) = 1). Then this implies the sm filled cells are spread evenly amongst the
m rows, columns, and symbols. This gives s filled cells per row, s filled cells per column,
and s occurrences per symbol.

This shows that each Rα is s-homogeneous, and so the proof is complete.

Example 26. We demonstrate this technique using a 2-way Latin trade of volume s = 7
and of order λ = 3 given by the pair of partial Latin squares:

1 2 3
3 1
2 3

2 3 1
1 3
3 2

We will take a = 2 and b = 1, giving the order of the resulting trade as λ(λ+a)+b = 16.
Then b1 = 4, b2 = 8, and b3 = 12. Using the first of the above partial Latin squares of
order 3 and volume 7 in the construction gives a partial Latin square of order 16 that is
7-homogeneous:
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4 8 12 1 9 2 6

12 4 13 1 15 3 7

8 12 10 14 2 7 15

5 9 13 2 10 3 7

13 5 14 2 16 4 8

9 13 11 15 3 8 16

6 10 14 3 11 4 8

14 6 15 3 1 5 9

10 14 12 16 4 9 1

7 11 15 4 12 5 9

10 15 7 16 4 2 6

2 11 15 13 1 5 10

8 12 16 5 13 6 10

7 11 16 8 1 5 3

3 12 16 14 2 6 11

11 9 13 1 6 14 7

We can use the second partial Latin square of order 3 and volume 7 to construct a
similar partial Latin square of order 16 that is 7-homogeneous. Together, these partial
Latin squares form a 2-way 7-homogeneous Latin trade of order 16.

Theorem 27. Suppose there exists a µ-way Latin trade of volume s and of order λ, with
λ > 1. For every m = λ(λ + a) + b, where 0 < b < λ, a > b + 1, and gcd(m,λ) =
gcd(λ, b) = 1, there exists a circulant idempotent (µ, s,m)-Latin trade.

Proof. Consider the µ arrays R1, . . . , Rµ from Construction 25. Define the array R̄α by the
set of ordered triples R̄α = {(σ1(r), c, σ2(e)) | (r, c, e) ∈ Rα} with σ1(r) = λ−1 · (r− 1)− 1
(mod m) and σ2(e) = e − 2(λ + a − 1) (mod m), for each α ∈ [µ], where λ−1 is the
unique inverse of λ (mod m) which exists by the assumption that gcd(m,λ) = 1. Both
σ1 and σ2 are permutations of [m]. As the Rα form a (µ, s,m)-Latin trade, the R̄α also
form a (µ, s,m)-Latin trade as the three properties of Definition 1 are invariant under
permutation swaps of the rows, columns, and symbols.

Since (r, c, e) ∈ Rα implies (r + λ, c + 1, e + 1) ∈ Rα by construction, it follows that
(r, c, e) ∈ R̄α implies (r + 1, c + 1, e + 1) ∈ R̄α, and so R̄α is a circulant (µ, s,m)-Latin
trade.

We show that 1 /∈ R1(R̄α), 1 /∈ C1(R̄α), and (1, 1) /∈ S(R̄α). Noting that σ−11 (1) =
2λ+ 1 and σ−12 (1) = 2λ+ 2a− 1, this is equivalent to showing 2λ+ 2a− 1 /∈ R2λ+1(Rα),
2λ+ 2a− 1 /∈ C1(Rα), and (2λ+ 1, 1) /∈ S(Rα).

We first show that 2λ+ 2a− 1 /∈ R2λ+1(Rα). The symbol 2λ+ 2a− 1 appears only in
the blocks Bj(λ+a−1)+b+3λ+2a−1 of Rα for 0 6 j 6 λ− 1, hence it only appears within the
rows T = ∪λ−1j=0{λ(j(λ+a−1)+b+3λ+2a−1)+1, . . . , λ(j(λ+a−1)+b+3λ+2a−1)+λ}.
If we perform a change in variables, sending j to λ− 2− j, then T = ∪λ−2j=0{λ+ 1 + j(λ+
b), . . . , 2λ+ j(λ+ b)}∪{m− b+ 1, . . . ,m}∪{1, . . . , λ− b}, which does not contain 2λ+ 1.
Then the symbol 2λ+ 2a− 1 does not appear in the row 2λ+ 1.
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Secondly we show that 2λ+2a−1 /∈ C1(Rα). The symbol 2λ+2a−1 appears exactly in
the blocks Bj(λ+a−1)+b+3λ+2a−1 of Rα, for 0 6 j 6 λ−1. These blocks only use the columns
∪λ−1j=0{j(λ+a−1)+b+3λ+2a, . . . , j(λ+a−1)+b+3λ+2a+λ−1} = ∪λ−3j=0{j(λ+a−1)+
b+3λ+2a, . . . , j(λ+a−1)+b+3λ+2a+λ−1}∪{2, . . . , λ+1}∪{λ+a+1, . . . , λ+a+λ}.
As such, the column with index 1 does not contain 2λ+ 2a− 1.

Thirdly we show that (2λ+ 1, 1) /∈ S(Rα). Suppose for the sake of contradiction that
(2λ + 1, 1) ∈ S(Rα). Then there must be some block Bf ′ that contains cell (2λ + 1, 1),
0 6 f ′ 6 m− 1. As B1 = {(i, j) | λ+ 1 6 i 6 2λ, 2 6 j 6 1 + λ}, Bf ′ cannot contain the
cell (2λ, 2). Then Bf ′ must either have exactly the rows {2λ+ 1, . . . , 3λ}, or have exactly
the columns {m− λ+ 2, . . . ,m} ∪ {1}.

The former implies Bf ′ contains exactly the same rows as B2. As the first rows are
the same, f ′λ+ 1 ≡ 2λ+ 1 mod m, and as gcd(λ,m) = 1, we have f ′ = 2. But then B2

must contain cell (2λ+ 1, 1), which when we look at the columns implies λ+ 2 > m+ 1.
As m > λ(λ+ 2) + 1 and λ > 1, this is impossible.

The later implies Bf ′ = B1−λ = Bm+1−λ. Then each of the m rows are represented at
least once in the set of λ + 1 blocks {Bm+1−λ, Bm+2−λ, . . . , Bm−1} ∪ {B0, B1}, but these
λ+1 blocks only use λ rows each, and so λ(λ+1) rows in total. This implies m 6 λ(λ+1),
which contradicts the fact that m = λ(λ+ a) + b and that a > b > 1.

Then none of the cases are possible, forming a contradiction, and so (2λ+1, 1) /∈ S(Rα).
This completes the proof.

The three-way intersection problem for Latin squares has been studied in [1], where the
authors consider three Latin squares L1, L2, L3 of order n with common intersection P =
L1∩L2 = L1∩L3 = L2∩L3. The collection of partial Latin squares (L1 \P,L2 \P,L3 \P )
forms a 3-way Latin trade of volume n2 − |P | and of any order n′ greater than or equal
to n (as we allow empty rows and columns in 3-way Latin trades). We can thus interpret
the results of [1] in terms of 3-way Latin trades and combine them with Theorem 27 to
yield:

Theorem 28. For λ > 3, there exists circulant idempotent (3, k,m)-Latin trades for
m = λ(λ+ a) + b, where 0 < b < λ, gcd(λ, b) = 1, and a > b+ 1, and:

• k ∈ {0, 9}, for λ = 3;

• k ∈ {0, 9, 12, 15, 16}, for λ = 4;

• k ∈ {0, 9, 12, 15, 16} or 18 6 k 6 25, for λ = 5;

• k ∈ {0, 9, 12} or 15 6 k 6 λ2, for λ > 6.

4.4 Construction via RPBDs

Definition 29. A (v,M, λ) pairwise balanced design, denoted PBD(v,M, λ), is a pair
(V,B), with V a set of v symbols and B a set of subsets of V (each subset is called a
block) with sizes from M , such that each pair of elements of V can be found in exactly λ
blocks of B.
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Definition 30. A resolvable (v,M, λ, n) pairwise balanced design, which we denote by
RPBD(v,M, λ, n), is a pair (V,B) along with n resolution classes R1, . . . , Rn, such that
(V,B) is a PBD(v,M, λ), the sets R1, . . . , Rn partition B, and each symbol appears in
precisely one block of each resolution class.

Theorem 31. Suppose there exists a RPBD(v,M, 1, n+1), (V,B), with resolution classes
R1, . . . , Rn and R∞. Suppose there exists integers di > 1, 1 6 i 6 n, such that for each
b ∈ Ri there exists an idempotent (µ, |b| − di, |b|)-Latin trade and integer d∞ > 0 such
that for each b ∈ R∞ there exists a (µ, |b| − d∞, |b|)-Latin trade. Then there exists a
(µ, v + n−

∑n
i=1 di − d∞, v)-Latin trade.

The following construction was suggested by Prof. L. Zhu, which is a modification
of a construction for sets of idempotent Latin squares (see [18], page 188). After the
construction, we will give a proof to show that the construction yields Theorem 31.

Construction 32. Take (V,B), aRPBD(v,M, 1, n+1) with resolution classesR1, . . . , Rn

and R∞. Suppose there are integers di > 1, 1 6 i 6 n, such that for each b ∈ Ri there
exists an idempotent (µ, |b| − di, |b|)-Latin trade, and integer d∞ > 0 such that for each
b ∈ R∞ there exists a (µ, |b|− d∞, |b|)-Latin trade. We impose an arbitrary total ordering
< on V . For a block b ⊆ V , define bh to be the hth smallest symbol in b when b is
considered under the ordering imposed on V , for 1 6 h 6 |b|. That is {b1, . . . , b|b|} = b
and bi < bi+1 for 1 6 i 6 |b| − 1.

We construct µ v × v arrays, T1, . . . , Tµ, each with rows and columns indexed by V .
For each 1 6 i 6 n and each block b ∈ Ri, let S = (S1, . . . , Sµ) be an idempotent
(µ, |b| − di, |b|)-Latin trade on the set of symbols Ω = [|b|]. For each block b ∈ R∞,
let S = (S1, . . . , Sµ) be a (µ, |b| − d∞, |b|)-Latin trade on the set of symbols Ω = [|b|].
Whenever (r, c, e) ∈ Sα put (br, bc, be) into Tα, for 1 6 r, c 6 |b|. Note that if (r, c) is
empty in Sα for any 1 6 r, c 6 |b|, then (br, bc) is left empty in Tα.

Proof. Consider the µ v× v arrays T = (T1, . . . , Tµ) from Construction 32. We will show
that T is a (µ, v + n−

∑n
i=1 di − d∞, v)-Latin trade.

During the construction, any single cell (r, c, e) ∈ Tα with |{r, c, e}| 6 2 must have been
constructed using some x ∈ R∞, as the other blocks were replaced during the construction
by idempotent (µ, k,m)-Latin trades, which would imply |{r, c, e}| = 3 by the definition
of idempotent µ-way Latin trades.

Suppose the construction filled two cells (r1, c1, e1) and (r2, c2, e2) of Tα such that the
two cells have two of three indices the same. Let a and b be the values of the two identical
indices (for example if the two cells we are observing are (r, c, e1), (r, c, e2) ∈ Tα with e1 6=
e2, then a = r and b = c). If distinct blocks x and y were used respectively to construct
(r1, c1, e1) and (r2, c2, e2), then {a, b} ⊆ x ∩ y. By the definition of a PBD(v,M, 1),
|x ∩ y| 6 1, and so a = b. Then |{r1, c1, e1}| 6 2 and |{r2, c2, e2}| 6 2, and so x, y ∈ R∞,
which implies |x∩ y| = 0 as x and y are distinct blocks in the same resolution class. This
forms a contradiction, as a ∈ x ∩ y. So any two filled cells that have two of three indices
the same were both filled during construction using the same block.
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As we filled µ-way Latin trades into Tα from these blocks, it follows that no cell was
filled twice, each row contains each symbol at most once, and each column contains each
symbol at most once. Then each Tα is a partial Latin square.

To see T forms a µ-way Latin trade, it is enough to note that S(Tα) must be the same
for each α ∈ [µ]; that each filled cell (r, c) was filled differently in each Tα, α ∈ [µ]; and
that each row (resp. column) contains setwise the same symbols, each of which are clear
from the construction. Then the µ arrays Tα form a µ-way Latin trade of order v.

We are left to show T is (v + n −
∑n

i=1 di − d∞)-homogeneous. To show that there
are v+ n−

∑n
i=1 di− d∞ filled cells in each row, observe that for each symbol r and each

resolution class Ri, there is precisely one block bi such that r ∈ bi ∈ Ri, for each i with
1 6 i 6 n or i = ∞. Then any filled cells in row r are in the cells bi × bi for some i
with 1 6 i 6 n or i = ∞. There are |bi| − di filled cells in the intersection of row r
and the block of cells bi × bi, for 1 6 i 6 n and i = ∞, showing row r has a total of∑n

i=1(|bi|−di)+(|b∞|−d∞) = v+n−
∑n

i=1 di−d∞ filled cells. The proof is analogous for
the number of filled cells per column and for the number of occurrences of each symbol.
This shows T is a µ-way Latin trade of order v that is (v+n−

∑n
i=1 di−d∞)-homogeneous,

so we are done.

Theorem 33. Suppose there exists a RPBD(v,M, 1, n+1), (V,B) with resolution classes
R1, . . . , Rn and R∞. Suppose there exists integers di > 1, 1 6 i 6 n, such that for each
b ∈ Ri there exists an idempotent (µ, |b| − di, |b|)-Latin trade and integer d∞ > 1 such
that for each b ∈ R∞ there exists an idempotent (µ, |b| − d∞, |b|)-Latin trade. Then there
exists an idempotent (µ, v + n−

∑n
i=1 di − d∞, v)-Latin trade.

Proof. Consider the µ v× v arrays T = (T1, . . . , Tµ) from Construction 32 using idempo-
tent (µ, |b| − di, |b|)-Latin trades to fill in the squares b× b, for blocks b ∈ R∞.

The proof of Theorem 31 shows T is a (µ, v+n−
∑n

i=1 di−d∞, v)-Latin trade. We show
that T is idempotent. Assume for the sake of contradiction that T is not idempotent.
Then there exists a (r, c, e) ∈ Tα with at least two of the three indices r, c, e the same.
This only occurs when the block x with {r, c, e} ⊆ x and x ∈ Ri was used along with a
non-idempotent (µ, k, |x|)-Latin trade to construct the cell (r, c, e) ∈ Tα. But there is no
such x as each of the (µ, k, |x|)-Latin trades are idempotent. Then T is idempotent.

We wish to choose an RPBD(v,M, 1, n + 1) with resolution classes R1, . . . , Rn and
R∞ such that there will exist idempotent (µ, |b| − di, |b|)-Latin trades for each b ∈ Ri, for
some di > 1 and i ∈ {1, . . . , n,∞}. By making M contain as few values as possible, we
can limit the number of idempotent (µ, k,m)-Latin trades that are required to exist, as
|b| ∈M . A resolvable transversal design is a RPBD(αn, {α, n}, 1, n+1), and so suits our
purposes as |M | 6 2. We are able to modify the resolvable transversal design by removing
elements in order to yield RPBD(v,M, 1, n+ 1) such that v can be any positive integer,
while M contains as few values as possible.

Definition 34. A transversal design TD(α, n) of order n and block size α, is a triple
(V,G,B) such that:
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1. V is a set of αn elements;

2. G is a partition of V into α subsets (called the groups), each of size n;

3. B is a collection of subsets of V (called the blocks), each of size α ; and

4. every unordered pair of elements of V appears in precisely one block of B, or one
group of G, but not both.

Definition 35. A resolvable transversal design RTD(α, n) of order n and block size α,
is a triple (V,G,B) such that B can be partitioned into n resolution classes R1, . . . , Rn,
such that each Ri is a partition of V into n classes.

The following two lemmata are well known (See III.3.2 and III.3.3 in [11]).

Lemma 36. A RTD(α, n) is equivalent to a TD(α + 1, n).

Lemma 37. For n a prime power and α 6 n, there exists a TD(α+1, n) and hence there
exists a RTD(α, n).

Construction 38. Consider a RTD(α, n) (V,G,B) with resolution classes R1, . . . , Rn,
and let G = {G1, . . . , Gα}. We take 0 6 x 6 n, 0 6 γ 6 α and 0 6 u 6 n − x. We
will form a RPBD(v,M, 1, n+ 1), (V̂ , B̂), by deleting a set of (n− x)γ + u points, which
we label as V̄ . The points V̄ that we delete will be n− x points from Gi for each i with
α − γ + 1 6 i 6 α, and u points of Gα−γ. Each point that was removed from a group is

also removed from any block that contains it. This gives point set V̂ = V \ V̄ , block set
B̂ = {b \ V̄ | b ∈ G ∪B}, and n+ 1 resolution classes R̂i = {b \ V̄ | b ∈ Ri} for 1 6 i 6 n
and R̂∞ = {b \ V̄ | b ∈ G}.

This results in a RPBD(nα−nγ+xγ−u,M, 1, n+1) with M = {α−(γ+1), . . . , α}∪
{x, n− u, n}.

It will be useful to summarize the results of this section, which yield the following
lemma:

Lemma 39. Take n a prime power and positive integers α, x, γ, and u such that α 6 n,
0 6 x 6 n, 0 6 γ 6 α, and 0 6 u 6 n − x. Suppose there exists integers di > 1,
1 6 i 6 n and d∞ > 1, such that for each b with α − (γ + 1) 6 b 6 α there exists
an idempotent (3, b − di, b)-Latin trade when 1 6 i 6 n, and for each b ∈ {x, n − u, n}
there exists an idempotent (3, b − d∞, b)-Latin trade. Then there exists an idempotent
(3, v + n−

∑n
i=1 di − d∞, v)-Latin trade, where v = nα− nγ + xγ − u.

Proof. For these values of n, α, x, γ, and u, Lemma 37 gives us a RTD(α, n), which we
can use in Construction 38 to yield a resolvable pairwise balanced design that can be used
in Theorem 33 along with the given idempotent (3, b− di, b)-Latin trades that have been
assumed to exist, for i ∈ {1, . . . , n,∞}, to yield the result.
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5 Result when µ = 3

We will develop an inductive proof for the existence of idempotent (3, k,m)-Latin trades
for m > 194, however we will require the knowledge of the existence of a great deal of base
cases. To this end, we will use a computer program to combine the results so far stated
in this paper to deduce the spectrum IS3

m for m 6 218. We will create two computer
programs, Program A and Program B, which are implemented in C++ [15].

We begin by finding the spectrum IS3
m for m 6 5618 using Program A. The value

5618 = 2 · 532 was chosen as there was some difficulty filling in the spectrum IS3
5618 later

on, stemming from the fact that not enough is known about IS3
2·53, and so Lemma 23

cannot be used to fill in the spectrum IS3
5618. We split the computation into four parts.

Parts 1, 2, and 4 are straightforward to program, but there is some complications with
Part 3. We begin with a (5618 + 1) × (5618 + 1) array of booleans A = [ak,m], where
we set ak,m = false for each 0 6 k,m 6 5618. When we find that there does exist an
idempotent (3, k,m)-Latin trade, we set ak,m = true.

PART 1: As there trivially exists an idempotent (3, 0,m)-Latin trade, we set a0,m =
true for each 0 6 m 6 5618. As the existence of idempotent (3, k,m)-Latin trades in
Theorem 16, Theorem 21, Theorem 22, and Theorem 28 do not depend on the existence
of smaller idempotent (3, k′,m′)-Latin trades, we set ak,m = true for these values.

We can use the idempotent (2, k1, 2m
′+1)-Latin trades of Theorem 20 when 3 6 k1 <

2m′ + 1, 2m′ + 1 > 5, and (k, 2m′ + 1) 6= (3, 5), along with the (2, k2,m2)-Latin trades of
Theorem 10 for 2 6 k2 6 m2, with ki = 2 only if mi is even, with Theorem 13 to yield
an idempotent (3, k1k2, (2m

′ + 1)m2)-Latin trade. This does not depend on the existence
of smaller idempotent (3, k,m)-Latin trades, so we set ak1k2,(2m′+1)m2 = true under these
conditions.

PART 2: Theorem 12 and Theorem 14 each require the knowledge of the existence of
smaller idempotent (3, k,m)-Latin trades, however we can gather this information from
what we have stored inA. Theorem 14 also uses the existence of non-idempotent (3,m,m)-
Latin trades, and a non-idempotent (3, 5, 6)-Latin trade (an example of a (3, 5, 6)-Latin
trade is shown in the next section).

PART 3: Programming Lemma 39 is not completely straightforward, as the time
required can be quite large if not done with due care. We implement Lemma 39 twice.
The first implementation uses d∞ = 1, and the second implementation uses γ = 0. Both of
these restrictions speed up the computation immensely, and the values not covered by one
are covered by the other. By first looping over α and γ, we can store the values of di such
that there exists an idempotent (3, b−di, b)-Latin trade for each b with α−γ−1 6 b 6 α.
Then we are able to find the possible values of

∑n
i=1 di without much extra computation

as we increase n, by storing the previously computed values of
∑n−1

i=1 di.
PART 4: We once again apply the procedure for Theorem 12, which fills in a couple

of gaps in the spectrum introduced incidentally in Part 3.
Performing this computation gives the following lemma:

Lemma 40. For 14 6 m 6 5618, there exists idempotent (3, k,m)-Latin trades for 5 6
k 6 m except, perhaps, for those values in Table 1.
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We need to extend the base results further, which we achieve by way of another
computer program, Program B. We begin with an array of 218 + 1 booleans B = [bm],
where we set bm = false for each 0 6 m 6 218. When we find that there exists idempotent
(3, k,m)-Latin trades for every 5 6 k 6 m, we set bm = true. We begin by setting the
values of bm to be true when the values ak,m each are true for 5 6 k 6 m. Then Lemma
23 with y = 5 tells us that we can set bnm to be true whenever m > 10, bm is true, n > 3,
and if n = 6 then m > 20.

In the case that m is a prime or twice a prime, we can apply Theorem 22 and Theorem
28 to yield idempotent (3, k,m)-Latin trades for 5 6 k 6 l1, and we can apply Lemma 39
with x = 7 to yield idempotent (3, k,m)-Latin trades for l2 6 k 6 m, for some integers
l1, l2. To save computation, we only consider Lemma 39 with γ ∈ {0, 1} and d∞ = 1. Note
that this means (3, b−d∞, b)-Latin trades always exist for b > 7, as stated in Theorem 16.
Our program checks if bα−2 = bα−1 = bα = true for each α > 16 and n > α. In this case,
we assume di 6 α−7. Then the conditions of a (3, α−(γ+1)−di, α−(γ+1))-Latin trade
existing hold independently of whether γ = 0 or γ = 1. Then it will be more convenient
to write u′ = γ(n − 7) + u. If so, for each m = nα − u′ with n > α, 0 6 u′ 6 2(n − 7),
and m a prime or twice a prime, we know that there exists an idempotent (3, k,m)-Latin
trade for each k with m+n−n(α−7)−1 = 8n−u′−1 6 k 6 m−1. To find the existence
of idempotent (3, k,m)-Latin trades with 5 6 k < 8n − u′ − 1, we find the greatest λ
with m = λ(λ + a) + b, a > b, gcd(m,λ) = 1, and λ > 5. Then Theorem 28 yields the
existence of idempotent (3, k,m)-Latin trades with 18 6 k 6 λ2. There exists idempotent
(3, k,m)-Latin trades for 5 6 k 6 17 by Theorem 22. If 8n−u′−1 6 λ2, then there exists
an idempotent (3, k,m)-Latin trade for 5 6 k 6 m− 1, and so we set bm to be true.

Performing this computation gives the following lemma:

Lemma 41. For 14 6 m 6 218, there exists idempotent (3, k,m)-Latin trades for 5 6
k 6 m except, perhaps, for those values in Table 1.

We have been able to apply Lemma 39 in this computation as we have been able to
run a procedure to check which integers n are prime powers. In order to create a theoretic
construction, we restrict the prime powers that we use, so that n is of the form 2p, for an
integer p. We are then able to show, despite this restriction, that Lemma 39 can yield a
large portion of the spectrum of (3, k,m)-Latin trades for all m > 218.

Lemma 42. Take p > 10. Suppose there exists idempotent (3, k′,m′)-Latin trades for
5 6 k′ 6 m′ − 1 and 2p−2 − 6 6 m′ 6 2p. Then there exists idempotent (3, k,m)-Latin
trades for 14 · 2p 6 k 6 m and 22p−2 < m 6 22p.

Proof. Take α = n = 2p, p > 10, 0 6 γ 6 γmax, γmax = 2p − 2p−2 + 5, x = 7, and
0 6 u 6 n − 7. We assume the existence of idempotent (3, k′,m′)-Latin trades when
5 6 k′ 6 m′ − 1 and α − (γmax + 1) 6 m′ 6 α, noting that α − (γmax + 1) = 2p−2 − 6.
There exists a (3,m′−1,m′)-Latin trade for m′ ∈ {7, n−u, n} by Theorem 16, as m′ > 7.

Then Lemma 39 with these idempotent (3, k′,m′)-Latin trades yields an idempotent
(3,m + n −

∑n
i=1 di − d∞,m)-Latin trade with m = nα − γ(n − 7) − u, where 1 6 di 6

α − (γ + 1) − 5 for 1 6 i 6 n, and d∞ = 1. Taking di 6 α − (γ + 1) − 5 assures
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us that m′ − di > 5 for each m′ with α − (γ + 1) 6 m′ 6 α, and so an idempotent
(3,m′ − di,m′)-Latin trade exists by our assumptions.

Then this procedure yields an idempotent (3, k,m)-Latin trade for each k ∈ {m+n−
n(α − (γ + 1)− 5)− 1, . . . ,m− 1} = {7γ + 7n− u− 1, . . . ,m− 1} ⊇ {14n, . . . ,m− 1},
which holds for each m = nα − γ(n − 7) − u within nα − (γmax + 1)(n − 7) 6 m 6 nα.
In particular, it holds that nα − (γmax + 1)(n − 7) = 22p − (2p − 2p−2 + 6)(2p − 7) =
2p−2 − 3 · 2p−2 + 42 6 22p−2 and so there exists an idempotent (3, k,m)-Latin trade for
22p−2 6 m 6 22p and 14 · 2p 6 k 6 m− 1, showing the result.

Theorem 43. For m > 5, there exists an idempotent (3, k,m)-Latin trade for 5 6 k 6
m−1 except possibly for those values in Table 1 and when (k,m) ∈ {(5, 6), (5, 10), (5, 13)}.

Proof. Define P (r) to be the statement “There exists idempotent (3, k,m)-Latin trades
for each 5 6 k 6 m− 1 and 2r−1 − 6 6 m 6 2r”.

Lemma 41 shows P (r) is true for 9 6 r 6 18. Assume for the sake of strong induction
that P (r) is true for 9 6 r < R, with R > 19. Then P (dR

2
e − 1) and P (dR

2
e) are true, as

9 6 dR
2
e − 1 < R. This makes the premise of Lemma 42 with p = dR

2
e true, and so there

exists an idempotent (3, k,m)-Latin trade for 14 · 2dR2 e 6 k 6 m− 1 and 2R−1 6 m 6 2R,

as 22dR
2
e−2 6 2R−1 and 2R 6 22dR

2
e. As P (R − 1) is true, we can apply Theorem 15 with

k′ = 2R−2 and for each k ∈ {5, . . . , 2R−2 − 1}, which yields idempotent (3, k,m)-Latin

trade for 5 6 k 6 2R−2− 1 and 2R−1 6 m 6 2R. As 14 · 2dR2 e 6 2R−2− 1, this shows there
exists an idempotent (3, k,m)-Latin trade for 5 6 k 6 m − 1 and 2R−1 6 m 6 2R, and
so P (R) is true. By strong induction, P (r) is true for r > 9. Theorem 22 and Lemma 41
complete the result when 5 6 m < 28 − 6.

6 Results

As ISµm ⊆ Sµm, the results of Theorem 43 also yield the existence of (3, k,m)-Latin trades
for identical values of k and m. There are a few more non-idempotent (3, k,m)-Latin
trades that we can find.

There does not exist a large set of idempotent Latin squares of order n = 6, however
there does exist a (4, 5, 6)-Latin trade given by:

(2, 3, 4, 5) • (1, 4, 5, 3) (5, 2, 1, 4) (3, 5, 2, 1) (4, 1, 3, 2)
• (3, 2, 5, 4) (6, 3, 4, 5) (4, 5, 2, 6) (5, 6, 3, 2) (2, 4, 6, 3)

(1, 4, 5, 3) (4, 5, 3, 6) (5, 1, 6, 4) • (6, 3, 1, 5) (3, 6, 4, 1)
(4, 5, 2, 1) (5, 6, 4, 2) • (1, 4, 6, 5) (2, 1, 5, 6) (6, 2, 1, 4)
(5, 1, 3, 2) (6, 3, 2, 5) (3, 5, 1, 6) (2, 6, 5, 1) (1, 2, 6, 3) •
(3, 2, 1, 4) (2, 4, 6, 3) (4, 6, 3, 1) (6, 1, 4, 2) • (1, 3, 2, 6)

Here, the partial Latin squares have been concatenated, so that cell (r, c) has been
filled with the ordered 4-tuple given by (t1(r, c), t2(r, c), t3(r, c), t4(r, c)), where the four
partial Latin squares Ti = [ti(r, c)], 1 6 i 6 4, form the (4, 5, 6)-Latin trade. Then this
yields a non-idempotent (3, 5, 6)-Latin trade.
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Applying Theorem 7 of [2] to the combination of a (3, 5, 6)-Latin trade and a (3, 5, 7)-
Latin trade yields a (3, 5, 13)-Latin trade. There exists a (3,m,m)-Latin trade for m > 3
by Theorem 11, and a (3,m, 2m)-Latin trade by applying Theorem 7 of [2] to the com-
bination of two (3,m,m)-Latin trades. Then the primary result of this paper, combined
with previous results [2], can be written as the following theorem:

Theorem 44. For m > 4 there exists a (3, k,m)-Latin trade for 4 6 k 6 m except,
perhaps, for those unstared values in Table 1 and for (k,m) = (4, 11), and except for
those values with (k,m) ∈ {(4, 6), (4, 7)}. For m > 3, there exists a (3, 3,m)-Latin trade
only when 3|m.

This leaves us with 194 exceptions for which we do not know if a (3, k,m)-Latin trade
exists, and 2 exceptions when we know that there does not exist a (3, k,m)-Latin trade.

7 Future work

Given the relative success of finding base rows from Theorem 22, where the program
terminated rather early within the search space, it seems reasonable that (3, k,m)-Latin
trades with values in Table 1 could exist, and we can use this as evidence towards a
conjecture:

Conjecture 45. There exists a (3, k,m)-Latin trade exactly when k = 3 and 3|m, and
when 4 6 k 6 m, except in the cases that (k,m) ∈ {(4, 6), (4, 7), (4, 11)}.

It also seems that similar techniques used in this paper could be used to fill in the
spectrum of (4, k,m)-Latin trades. In addition, it may be of interest to investigate the
spectrum of circulant (µ, k,m)-Latin trades.

A µ-way Latin trade (Q1, . . . , Qµ) can be said to be primary if there is no µ-way Latin
trade (R1, . . . , Rµ) such that Rα ( Qα. A µ-way Latin trade is said to be minimal if there
is no partial Latin square R ( Q1 such that there exists a 2-way trade (R,R′). Primary
(2, k,m)-Latin trades were conjectured to exist for 3 6 k 6 m in [8]. It would be of
interest to investigate primary and minimal (µ, k,m)-Latin trades in the future.
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m k
22 19
23 19, 20, 21
26 19, 21, 23
29 19, 20, 21, 22, 23, 24, 25, 26, 27
31 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
34 19, 21, 23, 25, 27, 29, 31
37 33, 34, 35
38 19∗, 21, 23, 25, 27, 29, 31, 33, 35
41 35, 36, 37, 38, 39
43 36, 37, 38, 39, 40, 41
46 27, 29, 31, 33, 35, 37, 39, 41, 43
53 50, 51
58 29∗, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55
59 55, 56, 57
62 31∗, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59
74 35, 37∗, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71
82 41∗, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65
86 51, 53, 55, 57, 59, 61, 63, 65, 67, 69
94 51, 53, 55, 57, 59, 61, 63, 65
106 53∗, 55, 57, 59, 61, 63, 65, 67, 69
122 59, 61, 63, 65, 67, 69, 71, 73, 75, 77
134 67∗, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93
146 83, 85, 87, 89, 91, 93, 95, 97, 99, 101
158 83, 85, 87, 89, 91
194 97∗, 99, 101

Table 1: Values where no idempotent (3, k,m)-Latin trade is known to exist with 6 6
k 6 m − 1. The starred values indicate when a non-idempotent (3, k,m)-Latin trade is
known to exist.
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