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Abstract
We prove that every planar triangle-free graph on n vertices has fractional chro-

matic number at most 3− 3
3n+1 .

1 Introduction

The interest in the chromatic properties of triangle-free planar graphs originated with
Grötzsch’s theorem [6], stating that such graphs are 3-colorable. Since then, several sim-
pler proofs have been given, e.g., by Thomassen [13, 14]. Algorithmic questions have
also been addressed: while most proofs readily yield quadratic algorithms to 3-color such
graphs, it takes considerably more effort to obtain asymptotically faster algorithms. Kowa-
lik [10] proposed an algorithm running in time O(n log n), which relies on the design of an
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advanced data structure. More recently, Dvořák, Kawarabayashi and Thomas [2] man-
aged to obtain a linear-time algorithm, yielding at the same time a yet simpler proof of
Grötzsch’s theorem.

The fact that all triangle-free planar graphs admit a 3-coloring implies that all such
graphs have an independent set containing at least one third of the vertices. Albertson,
Bollobás and Tucker [1] had conjectured that there is always a larger independent set,
which was confirmed by Steinberg and Tovey [12] even in a stronger sense: all triangle-free
planar n-vertex graphs admit a 3-coloring where not all color classes have the same size,
and thus at least one of them forms an independent set of size at least n+1

3 . This bound
turns out to be tight for infinitely many triangle-free graphs, as Jones [8] showed. As
an aside, let us mention that the graphs built by Jones have maximum degree 4: this
is no coincidence as Heckman and Thomas later established that all triangle-free planar
n-vertex graphs with maximum degree at most 3 have an independent set of order at least
3n
8 , which again is a tight bound—actually attained by planar graphs of girth 5.

All these considerations naturally lead us to investigate the fractional chromatic num-
ber χf of triangle-free planar graphs. Indeed, this invariant is known to correspond to a
weighted version of the independence ratio. In addition, since χf (G) 6 χ(G) for every
graph G, Grötzsch’s theorem implies that χf (G) 6 3 whenever G is triangle-free and pla-
nar. On the other hand, Jones’s construction shows the existence of triangle-free planar
graphs with fractional chromatic number arbitrarily close to 3. Thus one wonders whether
there exists a triangle-free planar graph with fractional chromatic number exactly 3. Let
us note that this happens for the circular chromatic number χc, which is a different re-
laxation of the ordinary chromatic number such that χf (G) 6 χc(G) 6 χ(G) for every
graph G.

The purpose of this work is to answer this question. We do so by establishing the
following upper bound on the fractional chromatic number of triangle-free planar n-vertex
graphs, which depends on n.

Theorem 1. Every planar triangle-free graph on n vertices has fractional chromatic num-
ber at most 9n

3n+1 = 3− 3
3n+1 .

A consequence of Theorem 1 is that no (finite) triangle-free planar graph has fractional
chromatic number equal to 3. How much is it possible to improve the bound of Theorem 1?
The aforementioned construction of Jones [8] yields, for each n > 2 such that n ≡ 2
(mod 3), a triangle-free planar graph Gn with α(Gn) = n+1

3 . Consequently, χf (Gn) >
3n

n+1 = 3− 3
n+1 . Therefore, the bound of form 3− c

n
for some c in Theorem 1 is qualitatively

the best possible.
The bound can be improved for triangle-free planar graphs with maximum degree at

most four, giving an exact result for such graphs.

Theorem 2. Every planar triangle-free n-vertex graph of maximum degree at most four
has fractional chromatic number at most 3n

n+1 .

Furthermore, the graphs of Jones’s construction contain a large number of separating 4-
cycles (actually, all their faces have length five). We show that planar triangle-free graphs
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of maximum degree 4 and without separating 4-cycles cannot have fractional chromatic
number arbitrarily close to 3.
Theorem 3. There exists δ > 0 such that every planar triangle-free graph of maximum
degree at most four and without separating 4-cycles has fractional chromatic number at
most 3− δ.

Dvořák and Mnich [5] proved that there exists β > 0 such that all planar triangle-free
n-vertex graphs without separating 4-cycles contain an independent set of size at least
n/(3− β). This gives evidence that the restriction on the maximum degree in Theorem 3
might not be necessary.
Conjecture 4. There exists δ > 0 such that every planar triangle-free graph without
separating 4-cycles has fractional chromatic number at most 3− δ.

Faces of length four are usually easy to deal with in the proofs by collapsing; thus the
following seemingly simpler variant of Conjecture 4 is likely to be equivalent to it.
Conjecture 5 (Dvořák and Mnich [5]). There exists δ > 0 such that every planar graph
of girth at least five has fractional chromatic number at most 3− δ.

2 Notation and auxiliary results

Consider a graph G. For an integer a > 1, let [a] = {1, . . . , a}. An a-fractional coloring of
G is a function ϕ assigning to each vertex of G a subset of [a], such that ϕ(u)∩ ϕ(v) = ∅
for all edges uv of G. Let f : V (G) → [a] be any function. If the a-fractional coloring
ϕ satisfies |ϕ(v)| > f(v) for every v ∈ V (G), then ϕ is an (a, f)-coloring of G. If
|ϕ(v)| = f(v) for every v ∈ V (G), then the (a, f)-coloring ϕ is tight. Note that if G has
an (a, f)-coloring, then it also has a tight one. If f is the constant function assigning to
each vertex of G the value b ∈ [a], then an (a, f)-coloring is said to be an (a : b)-coloring.
An a-coloring is an (a : 1)-coloring.

Let f1 : V (G)→ [a1] and f2 : V (G)→ [a2] be arbitrary functions, and let f : V (G)→
[a1 +a2] be defined by f(v) = f1(v)+f2(v) for all v ∈ V (G). Suppose that ϕi is an (ai, fi)-
coloring ofG for i ∈ {1, 2}. Let ϕ be defined by setting ϕ(v) = ϕ1(v)∪{a1 + c : c ∈ ϕ2(v)}
for every v ∈ V (G). Then ϕ is an (a1 + a2, f)-coloring of G, and we write ϕ = ϕ1 + ϕ2.
For an integer k > 1, we define kϕ to be ϕ+ · · ·+ ϕ︸ ︷︷ ︸

k times

.

The fractional chromatic number of a graph can be expressed in various equivalent
ways, see [11] for details. In this paper, we use the following definition. The fractional
chromatic number of G is

χf (G) = inf
{
a

b
: G has an (a : b)-coloring

}
.

We need several results related to Grötzsch’s theorem. The following lemma was
proved for vertices of degree at most three by Steinberg and Tovey [12]. The proof for
vertices of degree four follows from the results of Dvořák and Lidický [4], as observed by
Dvořák, Král’ and Thomas [3].
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Lemma 6. If G is a triangle-free planar graph and v is a vertex of G of degree at most
four, then there exists a 3-coloring of G such that all neighbors of v have the same color.

In fact, Dvořák, Král’ and Thomas [3] proved the following stronger statement.

Lemma 7. There exists an integer D > 4 with the following property. Let G be a triangle-
free planar graph without separating 4-cycles and let X be a set of vertices of G of degree
at most four. If the distance between every two vertices in X is at least D, then there
exists a 3-coloring of G such that all neighbors of vertices of X have the same color.

Let G be a triangle-free plane graph. A 5-face f = v1v2v3v4v5 of G is safe if v1, v2,
v3 and v4 have degree exactly three, their neighbors x1, . . . , x4 (respectively) not incident
with f are pairwise distinct and non-adjacent, and

• the distance between x2 and v5 in G− {v1, v2, v3, v4} is at least four, and

• G− {v1, v2, v3, v4} contains no path of length exactly three between x3 and x4.

Lemma 8 (Dvořák, Kawarabayashi and Thomas [2, Lemma 2.2]). If G is a plane triangle-
free graph of minimum degree at least three and all faces of G have length five, then G
has a safe face.

Finally, let us recall the folding lemma, which is frequently used in the coloring theory
of planar graphs.

Lemma 9 (Klostermeyer and Zhang [9]). Let G be a planar graph with odd-girth at least
g > 3. If C = v0v1 . . . vr−1 is a facial circuit of G with r 6= g, then there is an integer
i ∈ {0, . . . , r − 1} such that the graph G′ obtained from G by identifying vi−1 and vi+1
(where indices are taken modulo r) is also of odd-girth at least g.

3 Proofs

First, let us show a lemma based on the idea of Hilton et al. [7].

Lemma 10. Let G be a planar triangle-free graph. For a vertex v ∈ V (G), let fv : V (G)→
[3] be defined by fv(v) = 2 and fv(w) = 1 for w ∈ V (G) \ {v}. If v has degree at most 4,
then G has a (3, fv)-coloring.

Proof. Lemma 6 implies that there exists a 3-coloring of G such that all neighbors of v
have the same color, without loss of generality the color {1}. Hence, we can color v by
the set {2, 3}.

Theorem 2 now readily follows.

Proof of Theorem 2. Let V (G) = {v1, . . . , vn}. For i ∈ {1, . . . , n}, let fvi
: V (G)→ [3] be

defined as in Lemma 10, and let ϕi be a (3, fvi
)-coloring of G. Then ϕ1 + · · · + ϕn is a

(3n : n+ 1)-coloring of G.
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Similarly, Lemma 7 implies Theorem 3.

Proof of Theorem 3. Let D be the constant of Lemma 7, let m = 4D and let δ = 3
m+1 .

We show that every planar triangle-free graph G of maximum degree at most four and
without separating 4-cycles has a (3m : m+ 1)-coloring, and thus χf (G) 6 3m

m+1 = 3− δ.
Let G′ be the graph obtained from G by adding edges between all pairs of vertices at

distance at most D− 1. The maximum degree of G′ is less than 4D = m, and thus G′ has
a coloring by at most m colors. Let C1, . . . , Cm be the color classes of this coloring (some
may be empty). For i ∈ [m], let fi be the function defined by fi(v) = 2 for v ∈ Ci and
fi(v) = 1 for v ∈ V (G) \ Ci. Note that the distance in G between any distinct vertices
in Ci is at least D, and thus Lemma 7 ensures that G has a (3, fi)-coloring ϕi. Then
ϕ1 + · · ·+ ϕm is a (3m : m+ 1)-coloring of G.

The proof of Theorem 1 is somewhat more involved. Let G be a plane triangle-free
graph. We say that G is a counterexample if there exists an integer n > |V (G)| such that
G does not have a (9n : 3n + 1)-coloring. We say that G is a minimal counterexample if
G is a counterexample and no plane triangle-free graph with fewer than |V (G)| vertices
is a counterexample. Observe that every minimal counterexample is connected.

Lemma 11. If G is a minimal counterexample, then G is 2-connected. Consequently, the
minimum degree of G is at least two.

Proof. Let n > |V (G)| be an integer such that G does not have a (9n : 3n + 1)-coloring.
Since 9n > 2(3n + 1), it follows that G has at least three vertices. Hence, it suffices to
prove that G is 2-connected, and the bound on the minimum degree will follow.

Suppose for a contradiction that G is not 2-connected, and let G1 and G2 be subgraphs
of G such that G = G1 ∪ G2, the graph G1 intersects G2 in exactly one vertex v, and
|V (G1)|, |V (G2)| < |V (G)|. By the minimality of G, neither G1 nor G2 is a counterexam-
ple, and thus for i ∈ {1, 2}, there exists a (9n : 3n + 1)-coloring ϕi of Gi. By permuting
the colors, we can assume that ϕ1(v) = ϕ2(v). Hence, ϕ1 ∪ ϕ2 is a (9n : 3n + 1)-coloring
of G, which is a contradiction.

Lemma 12. If G is a minimal counterexample, then every face of G has length exactly 5.

Proof. Let n > |V (G)| be an integer such that G does not have a (9n : 3n + 1)-coloring.
Suppose for a contradiction that G has a face f of length other than 5. Since G is
triangle-free, it has odd girth at least five, and by Lemma 9, there exists a path v1v2v3 in
the boundary of f such that the graph G′ obtained by identifying v1 with v3 to a single
vertex z has odd girth at least five as well. It follows that G′ is triangle-free. Since G is
a minimal counterexample, G′ has a (9n : 3n+ 1)-coloring, and by giving both v1 and v3
the color of z, we obtain a (9n : 3n+ 1)-coloring of G. This is a contradiction.

Lemma 13. If G is a minimal counterexample, then G has minimum degree at least three.

Proof. Let n > |V (G)| be an integer such that G does not have a (9n : 3n + 1)-coloring.
By Lemma 11, the graph G has minimum degree at least two. Suppose for a contradiction
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that v ∈ V (G) has degree two. Let fv be defined as in Lemma 10 and let ϕ1 be a (3, fv)-
coloring of G.

Since G is a minimal counterexample and |V (G − v)| 6 n − 1, there exists a tight
(9n − 9 : 3n − 2)-coloring ϕ2 of G − v. Let f(x) = 3n − 2 for x ∈ V (G − v) and
f(v) = 3n− 5. Since both neighbors of v are assigned sets of 3n− 2 colors, there are at
least (9n− 9)− 2(3n− 2) = 3n− 5 colors not appearing at any neighbor of v, and thus
ϕ2 can be extended to a (9n : f)-coloring of G.

However, 3ϕ1 + ϕ2 is a (9n : 3n+ 1)-coloring of G, which is a contradiction.

Lemma 14. No minimal counterexample contains a safe 5-face.

Proof. Let G be a minimal counterexample. Let n > |V (G)| be an integer such that G
does not have a (9n : 3n + 1)-coloring. Suppose for a contradiction that f contains a
safe 5-face f = v1v2v3v4v5, and let x1, . . . , x4 be the neighbors of v1, . . . , v4 that are not
incident with f , respectively. For i ∈ {1, . . . , 4}, let fvi

be defined as in Lemma 10 and
let ϕi be a (3, fvi

)-coloring of G.
Let G′ be the plane graph obtained from G− {v1, v2, v3, v4} by identifying x2 with v5

into a new vertex u1, and x3 with x4 into a new vertex u2. Since f is safe, G′ is triangle-
free. Let N = 9n − 54. Since G is a minimal counterexample and |V (G′)| 6 n − 6,
we conclude that G′ has a tight (N : 3n − 17)-coloring ϕ5. Let f(x) = 3n − 17 for
x ∈ V (G − {v1, v2, v3, v4}) and f(vi) = 3n − 20 for i ∈ {1, . . . , 4}. We extend ϕ5 to an
(N, f)-coloring of G as follows.

Let ϕ5(x2) = ϕ5(v5) = ϕ5(u1) and ϕ5(x3) = ϕ5(x4) = ϕ5(u2). Note that |ϕ5(x1) ∪
ϕ5(v5)| 6 2(3n− 17), and thus we can choose ϕ5(v1) as a subset of [N ] \ (ϕ5(x1)∪ϕ5(v5))
of size 3n − 20. Similarly, choose ϕ5(v2) as a subset of [N ] \ (ϕ5(x2) ∪ ϕ5(v1)) of size
3n − 20. Let M3 = [N ] \ (ϕ5(v2) ∪ ϕ5(x3)) and M4 = [N ] \ (ϕ5(v5) ∪ ϕ5(x4)). Note
that |M3| > 3n − 20 and |M4| > 3n − 20. Furthermore, since ϕ5(x3) = ϕ5(x4) and
ϕ5(v2)∩ϕ5(v5) = ϕ5(v2)∩ϕ5(x2) = ∅, we have |M3∪M4| = N−|ϕ5(x3)| = N−(3n−17) >
2(3n−20). Let ϕ5(v3) ⊆M3 be a set of size 3n−20 chosen so that |ϕ5(v3)∩M4| is minimum.
Observe that |M4 \ϕ5(v3)| > 3n− 20, and thus we can choose a set ϕ5(v4) ⊆M4 \ϕ5(v3)
of size 3n− 20. This gives an (N, f)-coloring of G.

Also, by Grötzsch’s theorem, G has a (3 : 1)-coloring ϕ6. However, 3(ϕ1 + ϕ2 + ϕ3 +
ϕ4) + ϕ5 + 6ϕ6 is a (9n : 3n+ 1)-coloring of G, which is a contradiction.

We can now establish Theorem 1.

Proof of Theorem 1. Suppose for a contradiction that there exists a planar triangle-free
graph G on n vertices with fractional chromatic number greater than 3 − 3

3n+1 . Then G
has no (9n : 3n + 1)-coloring, and thus G is a counterexample. Therefore, there exists
a minimal counterexample G0. Lemmas 13, 12 and 8 imply that G0 has a safe 5-face.
However, that contradicts Lemma 14.
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[13] C. Thomassen. Grötzsch’s 3-color theorem and its counterparts for the torus and the
projective plane. J. Combin. Theory, Ser. B, 62:268–279, 1994.

[14] C. Thomassen. A short list color proof of Grötzsch’s theorem. J. Combin. Theory,
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