Fractional coloring of triangle-free planar graphs*

Zdeněk Dvořák ${ }^{\dagger}$
Computer Science Institute of Charles University
Prague, Czech Republic
rakdver@iuuk.mff.cuni.cz
Jean-Sébastien Sereni ${ }^{\ddagger}$
Centre National de la Recherche Scientifique (LORIA)
Nancy, France
sereni@kam.mff.cuni.cz
Jan Volec ${ }^{\text {§ }}$
Mathematics Institute and DIMAP
University of Warwick
Coventry, UK
honza@ucw.cz

Submitted: Feb 22, 2014; Accepted: Oct 1, 2015; Published: Oct 16, 2015
Mathematics Subject Classifications: 05C15, 05C72

Abstract

We prove that every planar triangle-free graph on n vertices has fractional chromatic number at most $3-\frac{3}{3 n+1}$.

1 Introduction

The interest in the chromatic properties of triangle-free planar graphs originated with Grötzsch's theorem [6], stating that such graphs are 3-colorable. Since then, several simpler proofs have been given, e.g., by Thomassen [13, 14]. Algorithmic questions have also been addressed: while most proofs readily yield quadratic algorithms to 3 -color such graphs, it takes considerably more effort to obtain asymptotically faster algorithms. Kowalik [10] proposed an algorithm running in time $O(n \log n)$, which relies on the design of an

[^0]advanced data structure. More recently, Dvořák, Kawarabayashi and Thomas [2] managed to obtain a linear-time algorithm, yielding at the same time a yet simpler proof of Grötzsch's theorem.

The fact that all triangle-free planar graphs admit a 3 -coloring implies that all such graphs have an independent set containing at least one third of the vertices. Albertson, Bollobás and Tucker [1] had conjectured that there is always a larger independent set, which was confirmed by Steinberg and Tovey [12] even in a stronger sense: all triangle-free planar n-vertex graphs admit a 3 -coloring where not all color classes have the same size, and thus at least one of them forms an independent set of size at least $\frac{n+1}{3}$. This bound turns out to be tight for infinitely many triangle-free graphs, as Jones [8] showed. As an aside, let us mention that the graphs built by Jones have maximum degree 4: this is no coincidence as Heckman and Thomas later established that all triangle-free planar n-vertex graphs with maximum degree at most 3 have an independent set of order at least $\frac{3 n}{8}$, which again is a tight bound-actually attained by planar graphs of girth 5 .

All these considerations naturally lead us to investigate the fractional chromatic number χ_{f} of triangle-free planar graphs. Indeed, this invariant is known to correspond to a weighted version of the independence ratio. In addition, since $\chi_{f}(G) \leqslant \chi(G)$ for every graph G, Grötzsch's theorem implies that $\chi_{f}(G) \leqslant 3$ whenever G is triangle-free and planar. On the other hand, Jones's construction shows the existence of triangle-free planar graphs with fractional chromatic number arbitrarily close to 3 . Thus one wonders whether there exists a triangle-free planar graph with fractional chromatic number exactly 3 . Let us note that this happens for the circular chromatic number χ_{c}, which is a different relaxation of the ordinary chromatic number such that $\chi_{f}(G) \leqslant \chi_{c}(G) \leqslant \chi(G)$ for every graph G.

The purpose of this work is to answer this question. We do so by establishing the following upper bound on the fractional chromatic number of triangle-free planar n-vertex graphs, which depends on n.

Theorem 1. Every planar triangle-free graph on n vertices has fractional chromatic number at most $\frac{9 n}{3 n+1}=3-\frac{3}{3 n+1}$.

A consequence of Theorem 1 is that no (finite) triangle-free planar graph has fractional chromatic number equal to 3 . How much is it possible to improve the bound of Theorem 1? The aforementioned construction of Jones [8] yields, for each $n \geqslant 2$ such that $n \equiv 2$ $(\bmod 3)$, a triangle-free planar graph G_{n} with $\alpha\left(G_{n}\right)=\frac{n+1}{3}$. Consequently, $\chi_{f}\left(G_{n}\right) \geqslant$ $\frac{3 n}{n+1}=3-\frac{3}{n+1}$. Therefore, the bound of form $3-\frac{c}{n}$ for some c in Theorem 1 is qualitatively the best possible.

The bound can be improved for triangle-free planar graphs with maximum degree at most four, giving an exact result for such graphs.

Theorem 2. Every planar triangle-free n-vertex graph of maximum degree at most four has fractional chromatic number at most $\frac{3 n}{n+1}$.

Furthermore, the graphs of Jones's construction contain a large number of separating 4cycles (actually, all their faces have length five). We show that planar triangle-free graphs
of maximum degree 4 and without separating 4 -cycles cannot have fractional chromatic number arbitrarily close to 3 .

Theorem 3. There exists $\delta>0$ such that every planar triangle-free graph of maximum degree at most four and without separating 4-cycles has fractional chromatic number at most $3-\delta$.

Dvořák and Mnich [5] proved that there exists $\beta>0$ such that all planar triangle-free n-vertex graphs without separating 4 -cycles contain an independent set of size at least $n /(3-\beta)$. This gives evidence that the restriction on the maximum degree in Theorem 3 might not be necessary.

Conjecture 4. There exists $\delta>0$ such that every planar triangle-free graph without separating 4 -cycles has fractional chromatic number at most $3-\delta$.

Faces of length four are usually easy to deal with in the proofs by collapsing; thus the following seemingly simpler variant of Conjecture 4 is likely to be equivalent to it.
Conjecture 5 (Dvořák and Mnich [5]). There exists $\delta>0$ such that every planar graph of girth at least five has fractional chromatic number at most $3-\delta$.

2 Notation and auxiliary results

Consider a graph G. For an integer $a \geqslant 1$, let $[a]=\{1, \ldots, a\}$. An a-fractional coloring of G is a function φ assigning to each vertex of G a subset of $[a]$, such that $\varphi(u) \cap \varphi(v)=\emptyset$ for all edges $u v$ of G. Let $f: V(G) \rightarrow[a]$ be any function. If the a-fractional coloring φ satisfies $|\varphi(v)| \geqslant f(v)$ for every $v \in V(G)$, then φ is an (a, f)-coloring of G. If $|\varphi(v)|=f(v)$ for every $v \in V(G)$, then the (a, f)-coloring φ is tight. Note that if G has an (a, f)-coloring, then it also has a tight one. If f is the constant function assigning to each vertex of G the value $b \in[a]$, then an (a, f)-coloring is said to be an $(a: b)$-coloring. An a-coloring is an ($a: 1$)-coloring.

Let $f_{1}: V(G) \rightarrow\left[a_{1}\right]$ and $f_{2}: V(G) \rightarrow\left[a_{2}\right]$ be arbitrary functions, and let $f: V(G) \rightarrow$ $\left[a_{1}+a_{2}\right]$ be defined by $f(v)=f_{1}(v)+f_{2}(v)$ for all $v \in V(G)$. Suppose that φ_{i} is an $\left(a_{i}, f_{i}\right)$ coloring of G for $i \in\{1,2\}$. Let φ be defined by setting $\varphi(v)=\varphi_{1}(v) \cup\left\{a_{1}+c: c \in \varphi_{2}(v)\right\}$ for every $v \in V(G)$. Then φ is an $\left(a_{1}+a_{2}, f\right)$-coloring of G, and we write $\varphi=\varphi_{1}+\varphi_{2}$. For an integer $k \geqslant 1$, we define $k \varphi$ to be $\underbrace{\varphi+\cdots+\varphi}_{k \text { times }}$.

The fractional chromatic number of a graph can be expressed in various equivalent ways, see [11] for details. In this paper, we use the following definition. The fractional chromatic number of G is

$$
\chi_{f}(G)=\inf \left\{\frac{a}{b}: G \text { has an }(a: b) \text {-coloring }\right\} .
$$

We need several results related to Grötzsch's theorem. The following lemma was proved for vertices of degree at most three by Steinberg and Tovey [12]. The proof for vertices of degree four follows from the results of Dvořák and Lidický [4], as observed by Dvořák, Král' and Thomas [3].

Lemma 6. If G is a triangle-free planar graph and v is a vertex of G of degree at most four, then there exists a 3-coloring of G such that all neighbors of v have the same color.

In fact, Dvořák, Král' and Thomas [3] proved the following stronger statement.
Lemma 7. There exists an integer $D \geqslant 4$ with the following property. Let G be a trianglefree planar graph without separating 4 -cycles and let X be a set of vertices of G of degree at most four. If the distance between every two vertices in X is at least D, then there exists a 3-coloring of G such that all neighbors of vertices of X have the same color.

Let G be a triangle-free plane graph. A 5 -face $f=v_{1} v_{2} v_{3} v_{4} v_{5}$ of G is safe if v_{1}, v_{2}, v_{3} and v_{4} have degree exactly three, their neighbors x_{1}, \ldots, x_{4} (respectively) not incident with f are pairwise distinct and non-adjacent, and

- the distance between x_{2} and v_{5} in $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is at least four, and
- $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ contains no path of length exactly three between x_{3} and x_{4}.

Lemma 8 (Dvořák, Kawarabayashi and Thomas [2, Lemma 2.2]). If G is a plane trianglefree graph of minimum degree at least three and all faces of G have length five, then G has a safe face.

Finally, let us recall the folding lemma, which is frequently used in the coloring theory of planar graphs.

Lemma 9 (Klostermeyer and Zhang [9]). Let G be a planar graph with odd-girth at least $g>3$. If $C=v_{0} v_{1} \ldots v_{r-1}$ is a facial circuit of G with $r \neq g$, then there is an integer $i \in\{0, \ldots, r-1\}$ such that the graph G^{\prime} obtained from G by identifying v_{i-1} and v_{i+1} (where indices are taken modulo r) is also of odd-girth at least g.

3 Proofs

First, let us show a lemma based on the idea of Hilton et al. [7].
Lemma 10. Let G be a planar triangle-free graph. For a vertex $v \in V(G)$, let $f_{v}: V(G) \rightarrow$ [3] be defined by $f_{v}(v)=2$ and $f_{v}(w)=1$ for $w \in V(G) \backslash\{v\}$. If v has degree at most 4 , then G has a $\left(3, f_{v}\right)$-coloring.

Proof. Lemma 6 implies that there exists a 3 -coloring of G such that all neighbors of v have the same color, without loss of generality the color $\{1\}$. Hence, we can color v by the set $\{2,3\}$.

Theorem 2 now readily follows.
Proof of Theorem 2. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. For $i \in\{1, \ldots, n\}$, let $f_{v_{i}}: V(G) \rightarrow[3]$ be defined as in Lemma 10, and let φ_{i} be a $\left(3, f_{v_{i}}\right)$-coloring of G. Then $\varphi_{1}+\cdots+\varphi_{n}$ is a $(3 n: n+1)$-coloring of G.

Similarly, Lemma 7 implies Theorem 3.
Proof of Theorem 3. Let D be the constant of Lemma 7, let $m=4^{D}$ and let $\delta=\frac{3}{m+1}$. We show that every planar triangle-free graph G of maximum degree at most four and without separating 4-cycles has a ($3 m: m+1$)-coloring, and thus $\chi_{f}(G) \leqslant \frac{3 m}{m+1}=3-\delta$.

Let G^{\prime} be the graph obtained from G by adding edges between all pairs of vertices at distance at most $D-1$. The maximum degree of G^{\prime} is less than $4^{D}=m$, and thus G^{\prime} has a coloring by at most m colors. Let C_{1}, \ldots, C_{m} be the color classes of this coloring (some may be empty). For $i \in[m]$, let f_{i} be the function defined by $f_{i}(v)=2$ for $v \in C_{i}$ and $f_{i}(v)=1$ for $v \in V(G) \backslash C_{i}$. Note that the distance in G between any distinct vertices in C_{i} is at least D, and thus Lemma 7 ensures that G has a $\left(3, f_{i}\right)$-coloring φ_{i}. Then $\varphi_{1}+\cdots+\varphi_{m}$ is a $(3 m: m+1)$-coloring of G.

The proof of Theorem 1 is somewhat more involved. Let G be a plane triangle-free graph. We say that G is a counterexample if there exists an integer $n \geqslant|V(G)|$ such that G does not have a $(9 n: 3 n+1)$-coloring. We say that G is a minimal counterexample if G is a counterexample and no plane triangle-free graph with fewer than $|V(G)|$ vertices is a counterexample. Observe that every minimal counterexample is connected.

Lemma 11. If G is a minimal counterexample, then G is 2-connected. Consequently, the minimum degree of G is at least two.

Proof. Let $n \geqslant|V(G)|$ be an integer such that G does not have a $(9 n: 3 n+1)$-coloring. Since $9 n>2(3 n+1)$, it follows that G has at least three vertices. Hence, it suffices to prove that G is 2 -connected, and the bound on the minimum degree will follow.

Suppose for a contradiction that G is not 2-connected, and let G_{1} and G_{2} be subgraphs of G such that $G=G_{1} \cup G_{2}$, the graph G_{1} intersects G_{2} in exactly one vertex v, and $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|<|V(G)|$. By the minimality of G, neither G_{1} nor G_{2} is a counterexample, and thus for $i \in\{1,2\}$, there exists a $(9 n: 3 n+1)$-coloring φ_{i} of G_{i}. By permuting the colors, we can assume that $\varphi_{1}(v)=\varphi_{2}(v)$. Hence, $\varphi_{1} \cup \varphi_{2}$ is a $(9 n: 3 n+1)$-coloring of G, which is a contradiction.

Lemma 12. If G is a minimal counterexample, then every face of G has length exactly 5.
Proof. Let $n \geqslant|V(G)|$ be an integer such that G does not have a $(9 n: 3 n+1)$-coloring. Suppose for a contradiction that G has a face f of length other than 5 . Since G is triangle-free, it has odd girth at least five, and by Lemma 9 , there exists a path $v_{1} v_{2} v_{3}$ in the boundary of f such that the graph G^{\prime} obtained by identifying v_{1} with v_{3} to a single vertex z has odd girth at least five as well. It follows that G^{\prime} is triangle-free. Since G is a minimal counterexample, G^{\prime} has a $(9 n: 3 n+1)$-coloring, and by giving both v_{1} and v_{3} the color of z, we obtain a $(9 n: 3 n+1)$-coloring of G. This is a contradiction.

Lemma 13. If G is a minimal counterexample, then G has minimum degree at least three.
Proof. Let $n \geqslant|V(G)|$ be an integer such that G does not have a $(9 n: 3 n+1)$-coloring. By Lemma 11, the graph G has minimum degree at least two. Suppose for a contradiction
that $v \in V(G)$ has degree two. Let f_{v} be defined as in Lemma 10 and let φ_{1} be a $\left(3, f_{v}\right)$ coloring of G.

Since G is a minimal counterexample and $|V(G-v)| \leqslant n-1$, there exists a tight ($9 n-9: 3 n-2$)-coloring φ_{2} of $G-v$. Let $f(x)=3 n-2$ for $x \in V(G-v)$ and $f(v)=3 n-5$. Since both neighbors of v are assigned sets of $3 n-2$ colors, there are at least $(9 n-9)-2(3 n-2)=3 n-5$ colors not appearing at any neighbor of v, and thus φ_{2} can be extended to a ($9 n: f$)-coloring of G.

However, $3 \varphi_{1}+\varphi_{2}$ is a $(9 n: 3 n+1)$-coloring of G, which is a contradiction.
Lemma 14. No minimal counterexample contains a safe 5-face.
Proof. Let G be a minimal counterexample. Let $n \geqslant|V(G)|$ be an integer such that G does not have a $(9 n: 3 n+1)$-coloring. Suppose for a contradiction that f contains a safe 5 -face $f=v_{1} v_{2} v_{3} v_{4} v_{5}$, and let x_{1}, \ldots, x_{4} be the neighbors of v_{1}, \ldots, v_{4} that are not incident with f, respectively. For $i \in\{1, \ldots, 4\}$, let $f_{v_{i}}$ be defined as in Lemma 10 and let φ_{i} be a $\left(3, f_{v_{i}}\right)$-coloring of G.

Let G^{\prime} be the plane graph obtained from $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ by identifying x_{2} with v_{5} into a new vertex u_{1}, and x_{3} with x_{4} into a new vertex u_{2}. Since f is safe, G^{\prime} is trianglefree. Let $N=9 n-54$. Since G is a minimal counterexample and $\left|V\left(G^{\prime}\right)\right| \leqslant n-6$, we conclude that G^{\prime} has a tight ($N: 3 n-17$)-coloring φ_{5}. Let $f(x)=3 n-17$ for $x \in V\left(G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)$ and $f\left(v_{i}\right)=3 n-20$ for $i \in\{1, \ldots, 4\}$. We extend φ_{5} to an (N, f)-coloring of G as follows.

Let $\varphi_{5}\left(x_{2}\right)=\varphi_{5}\left(v_{5}\right)=\varphi_{5}\left(u_{1}\right)$ and $\varphi_{5}\left(x_{3}\right)=\varphi_{5}\left(x_{4}\right)=\varphi_{5}\left(u_{2}\right)$. Note that $\mid \varphi_{5}\left(x_{1}\right) \cup$ $\varphi_{5}\left(v_{5}\right) \mid \leqslant 2(3 n-17)$, and thus we can choose $\varphi_{5}\left(v_{1}\right)$ as a subset of $[N] \backslash\left(\varphi_{5}\left(x_{1}\right) \cup \varphi_{5}\left(v_{5}\right)\right)$ of size $3 n-20$. Similarly, choose $\varphi_{5}\left(v_{2}\right)$ as a subset of $[N] \backslash\left(\varphi_{5}\left(x_{2}\right) \cup \varphi_{5}\left(v_{1}\right)\right)$ of size $3 n-20$. Let $M_{3}=[N] \backslash\left(\varphi_{5}\left(v_{2}\right) \cup \varphi_{5}\left(x_{3}\right)\right)$ and $M_{4}=[N] \backslash\left(\varphi_{5}\left(v_{5}\right) \cup \varphi_{5}\left(x_{4}\right)\right)$. Note that $\left|M_{3}\right| \geqslant 3 n-20$ and $\left|M_{4}\right| \geqslant 3 n-20$. Furthermore, since $\varphi_{5}\left(x_{3}\right)=\varphi_{5}\left(x_{4}\right)$ and $\varphi_{5}\left(v_{2}\right) \cap \varphi_{5}\left(v_{5}\right)=\varphi_{5}\left(v_{2}\right) \cap \varphi_{5}\left(x_{2}\right)=\emptyset$, we have $\left|M_{3} \cup M_{4}\right|=N-\left|\varphi_{5}\left(x_{3}\right)\right|=N-(3 n-17)>$ $2(3 n-20)$. Let $\varphi_{5}\left(v_{3}\right) \subseteq M_{3}$ be a set of size $3 n-20$ chosen so that $\left|\varphi_{5}\left(v_{3}\right) \cap M_{4}\right|$ is minimum. Observe that $\left|M_{4} \backslash \varphi_{5}\left(v_{3}\right)\right| \geqslant 3 n-20$, and thus we can choose a set $\varphi_{5}\left(v_{4}\right) \subseteq M_{4} \backslash \varphi_{5}\left(v_{3}\right)$ of size $3 n-20$. This gives an (N, f)-coloring of G.

Also, by Grötzsch's theorem, G has a (3:1)-coloring φ_{6}. However, $3\left(\varphi_{1}+\varphi_{2}+\varphi_{3}+\right.$ $\left.\varphi_{4}\right)+\varphi_{5}+6 \varphi_{6}$ is a $(9 n: 3 n+1)$-coloring of G, which is a contradiction.

We can now establish Theorem 1.
Proof of Theorem 1. Suppose for a contradiction that there exists a planar triangle-free graph G on n vertices with fractional chromatic number greater than $3-\frac{3}{3 n+1}$. Then G has no ($9 n: 3 n+1$)-coloring, and thus G is a counterexample. Therefore, there exists a minimal counterexample G_{0}. Lemmas 13,12 and 8 imply that G_{0} has a safe 5 -face. However, that contradicts Lemma 14.

References

[1] M. Albertson, B. Bollobás, and S. Tucker. The independence ratio and the maximum degree of a graph. Congr. Numer., 17:43-50, 1976.
[2] Z. Dvořák, K. Kawarabayashi, and R. Thomas. Three-coloring triangle-free planar graphs in linear time. Trans. on Algorithms, 7:article no. 41, 2011.
[3] Z. Dvorák, D. Král', and R. Thomas. Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies. arXiv:0911.0885v2, January 2015.
[4] Z. Dvořák and B. Lidický. 3-coloring triangle-free planar graphs with a precolored 8-cycle. J. Graph Theory, forthcoming.
[5] Z. Dvořák and M. Mnich. Large independent sets in triangle-free planar graphs. arXiv:1311.2749, November 2013.
[6] H. Grötzsch. Ein Dreifarbensatz für Dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe, 8:109-120, 1958/1959.
[7] A. Hilton, R. Rado, and S. Scott. A (<5)-colour theorem for planar graphs. Bull. London Math. Soc., 5:302-306, 1973.
[8] K. F. Jones. Minimum independence graphs with maximum degree four. In Graphs and applications (Boulder, Colo., 1982), Wiley-Intersci. Publ., pages 221-230. Wiley, 1985.
[9] W. Klostermeyer and C. Q. Zhang. $(2+\epsilon)$-coloring of planar graphs with large odd-girth. J. Graph Theory, 33:109-119, 2000.
[10] Ł. Kowalik. Fast 3-coloring triangle-free planar graphs. In Susanne Albers and Tomasz Radzik, editors, ESA, volume 3221 of Lecture Notes in Computer Science, pages 436-447. Springer, 2004.
[11] E. R. Scheinerman and D. H. Ullman. Fractional Graph Theory. Dover Publications Inc., Mineola, NY, 2011.
[12] R. Steinberg and C. A. Tovey. Planar Ramsey numbers. J. Combin. Theory, Ser. B, 59(2):288-296, 1993.
[13] C. Thomassen. Grötzsch's 3-color theorem and its counterparts for the torus and the projective plane. J. Combin. Theory, Ser. B, 62:268-279, 1994.
[14] C. Thomassen. A short list color proof of Grötzsch's theorem. J. Combin. Theory, Ser. B, 88:189-192, 2003.

[^0]: *This research was supported by the Czech-French Laboratory LEA STRUCO.
 ${ }^{\dagger}$ Supported by the Center of Excellence - Inst. for Theor. Comp. Sci., Prague, project P202/12/G061 of Czech Science Foundation.
 ${ }_{\ddagger}^{\ddagger}$ This author’s work was partially supported by the French Agence Nationale de la Recherche under reference and 10 JCJC 020401.
 ${ }^{\S}$ This author's work was supported by a grant of the French Government.

