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Abstract

The flow polytope F
G̃

is the set of nonnegative unit flows on the graph G̃. The
subdivision algebra of flow polytopes prescribes a way to dissect a flow polytope F

G̃
into simplices. Such a dissection is encoded by the terms of the so called reduced
form of the monomial

∏
(i,j)∈E(G) xij . We prove that we can use the subdivision

algebra of flow polytopes to construct not only dissections, but also regular flag
triangulations of flow polytopes. We prove that reduced forms in the subdivision
algebra are generalizations of h-polynomials of the triangulations of flow polytopes.
We deduce several corollaries of the above results, most notably proving certain
cases of a conjecture of Kirillov about the nonnegativity of reduced forms in the
noncommutative quasi-classical Yang-Baxter algebra.

Keywords: flow polytope; subdivision algebra; reduced form; triangulation; h-
polynomial; nonnegativity; quasi-classical Yang-Baxter algebra.

1 Introduction

Nonnegativity properties abound in mathematics, and whenever one arises, the most sat-
isfying explanation of integer nonnegativity is to demonstrate what a certain nonnegative
quantity counts. The present paper is written in this spirit and explains nonnegativity
properties of polynomials using geometric interpretations for their coefficients.

We study dissections of flow polytopes via the subdivision algebra, and show that we
can construct regular flag triangulations of flow polytopes using the subdivision algebra.
This in turn empowers us to prove several interesting corollaries, one in particular partially
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proving a nonnegativity conjecture of Kirillov [6, Conjecture 2] of certain polynomials
called reduced forms in the quasi-classical Yang-Baxter algebra.

With our geometric methods we can study reduced forms in the subdivision algebra
and the quasi-classical Yang-Baxter algebra. The latter algebra was introduced by A.N.
Kirillov [5, 6, 7] with Schubert calculus in mind and it is closely related to the Fomin-
Kirillov algebra [4]. The subdivision algebra has been considered by the present author
under this name, as its relations encode ways to subdivide root and flow polytopes [9, 8,
11]. It has also been considered by Kirillov [5, 6, 7] since it is the abelianization of the
quasi-classical Yang-Baxter algebra (and this is how he refers to it). The polynomials of
interest in this paper arise as reduced forms in the above algebras; the reduced form of a
monomial in an algebra is obtained via substitution rules dictated by the relations of the
algebra.

The essence of the subdivision algebra is that the reduced form of a monomial in it can
naturally be seen as a dissection of a flow polytope corresponding to the monomial into
simplices. We show that among these dissections that the reduced form can encode are also
unimodular, regular and flag triangulations of flow polytopes, see Theorem 10. Using the
connection of reduced forms to dissections we show that reduced forms are multivariate
generalizations of h-polynomials, see Theorem 16. Recall that the h-polynomial of a
simplicial complex is a way of encoding the number of faces of each dimension. We prove
that if we set certain variables of reduced forms to 1 in the subdivision algebra we obtain
the (shifted) h-polynomials of regular triangulations of flow polytopes. This result opens a
new avenue for understanding reduced forms of monomials in the subdivision and related
algebras. We prove nonnegativity results in the subdivision algebra as a consequence of
the specialized reduced form equaling the shifted h-polynomial, see Theorem 21. As a
corollary we establish a special case of Conjecture 2 of Kirillov appearing in [6] about the
nonnegativity of reduced forms in the quasi-classical Yang-Baxter algebra, see Theorem
23. We also express specialized reduced forms in terms of Ehrhart series of flow polytopes,
which in turn can be seen in terms of Kostant partition functions, see Theorem 18 and
Lemma 24.

Our methods in this paper are largely geometric. In [10] we study reduced forms from
the point of view of the structure of reduction trees, leaving the geometry behind.

The paper is organized as follows. In Section 2 we define flow polytopes. Next we
explain how to subdivide flow polytopes and how we can encode the subdivisions with a
reduction tree. Then we define the subdivision algebra and show that the reduced form
can be read off from the leaves of the reduction tree. In Section 3 we show that we can use
the subdivision algebra and arrive not only at a dissection of a flow polytope, but also to a
triangulation of the flow polytope, in the sense of a simplicial complex. To do this we use
a particular reduction order σ. The triangulation we obtain is regular and flag. In Section
4 we prove that the reduced form of a monomial in the subdivision algebra specialized at
certain variables is equal to the shifted h-polynomial of the aforementioned triangulation
of the flow polytope of the associated to the monomial. In Section 5 we describe the
full set of leaves of the reduction tree in order σ, or equivalently, the monomials in the
reduced form of a monomial. In Section 6 we use the regularity of the triangulation we
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constructed to prove and interpret the nonnegativity of the coefficients of the reduced
form of a monomial in the subdivision algebra as well as a special case of Conjecture 2 of
Kirillov appearing in [6]. In Section 7 we relate reduced forms to Ehrhart series of flow
polytopes, and thus obtain a generalization of [6, Theorem 3.10]. We also relate reduced
forms to Kostant partition functions.

2 Definitions and more of the story

2.1 Flow polytopes and their subdivisions

Given a loopless graph G on the vertex set [n], let in(e) denote the smallest (initial) vertex
of edge e and fin(e) the biggest (final) vertex of edge e. Let E(G) = {{e1, . . . , el}} be the
multiset of edges of G. We correspond variables xei , i ∈ [l], to the edges of G, of which we
think as flows. The flow polytope FG is naturally embedded into Rl, where xei , i ∈ [l],
are thought of as the coordinates. FG is defined by

xei > 0, i ∈ [l],

1 =
∑

e∈E(G),in(e)=1

xe =
∑

e∈E(G),fin(e)=n

xe,

and for 2 6 i 6 n ∑
e∈E(G),fin(e)=i

xe =
∑

e∈E(G),in(e)=i

xe.

The flow polytope FKn+1 , where Kn+1 is the complete graph on n+ 1 vertices, can be
thought of as the Chan-Robbins-Yuen polytope [2], and has received a lot of attention,
since its volume is equal to

∏n−2
k=0 Cat(k), where Cat(k) = 1

k+1

(
2k
k

)
is the kth Catalan

number. There is no combinatorial proof of the aforementioned result; Zeilberger [19]
provided an analytical proof. For more of the story see [13].

Flow polytopes lend themselves to subdivisions via reductions, as explained below. A
similar property of root polytopes was studied in [8, 9].

Definition 1. Given a graph G on the vertex set [n] containing edges (i, j) and (j, k),
i < j < k, performing the reduction on these edges of G yields three graphs on the
vertex set [n]:

E(G1) = E(G)\{(j, k)} ∪ {(i, k)},
E(G2) = E(G)\{(i, j)} ∪ {(i, k)},
E(G3) = E(G)\{(i, j), (j, k)} ∪ {(i, k)}. (1)

When performing a reduction on the edges (i, j), (j, k) we say that the edge (i, j) is
dropped if we go towards G2 or G3 as in (1) and (i, j) is kept if we go towards G1.
Similarly, edge (j, k) is dropped if we go towards G1 or G3 as in (1) and (j, k) is kept if
we go towards G2.
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Figure 1: A reduction tree of G = ([4], {(1, 2), (2, 3), (3, 4)}). The edges on which the
reductions are performed are in bold.

Definition 2. A reduction tree RG of a graph G is a tree with nodes labeled by graphs
and such that all non-leaf nodes of RG have three children. The root is labeled by G. If
there are two edges (i, j), (j, k) ∈ E(G), i < j < k, on which we choose to do a reduction,
then the children of the root are labeled by G1, G2 and G3 as in (1). Next, continue
this way by constructing reduction trees for G1, G2 and G3. If some graph has no edges
(i, j), (j, k), i < j < k, then it is its own reduction tree. Note that the reduction tree
RG is not unique; it depends on our choice of edges to reduce. However, the number
of leaves (referring to the graph labeling a leaf) of all reduction trees of G with a given
number of edges is the same as Lemma 4 states below. We choose a particular embedding
of the reduction tree in the plane for convenience: we root it at G with the tree growing
downwards, and such that the left child is G1, the middle child is G3 and the right child is
G2; see Figure 1. The leaves which have the same number of edges at the root are called
full dimensional.

Definition 3. Let the edges of G be e1, . . . , ek, where we distinguish multiple edges. If a
reduction involving edges a = (i, j) and b = (j, k) of G is performed, then the new edge
(i, k) appearing in all three graphs as in (1) is formally thought of as a+ b(= b+ a). The
other edges stay unchanged. To get to nodes G1 and G2 of RG we iterate this process,
thereby expressing the edges of any node as a sum of edges of the graph being the root
of the reduction tree. Two edges c and d in the graphs G1 and G2, respectively, are
the same, if they are the sum of exactly the same edges of G. The intersection of two
graphs G1 and G2 in a reduction tree RG is G1 ∩G2 = (V (G), E(G1) ∩ E(G2)), where if
e ∈ E(G1) ∩ E(G2) then as explained above e is the sum of the same edges of G in both
G1 and G2. See Figure 2 for an illustration.

Lemma 4. [8] Given two distinct reduction trees of G, let r1
k and r2

k be the number of
leaves with k edges is them, respectively. Then, r1

k = r2
k.
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Figure 2: The edges of the nodes of a reduction tree of G are considered as formal sums
of the edges of G.

Definition 5. The augmented graph G̃ of G = ([n], E) is G̃ = ([n] ∪ {s, t}, Ẽ), where

s (source) is the smallest, t (target/sink) is the biggest vertex of [n] ∪ {s, t}, and Ẽ =

E ∪ {(s, i), (i, t)|i ∈ [n]}. Denote by P(G̃) the set of all maximal paths in G̃, referred to

as routes. It is well known that the unit flows sent along the routes in P(G̃) are the

vertices of F(G̃) [15, Section 13.1a].

Definition 6. Consider a node G1 of the reduction tree RG, where each edge of G1 is con-
sidered as a sum of the edges of G. The map m : E(G1)→ P(G̃) takes an edge (v1, v2) =
e = ei1 + · · ·+ eil , e ∈ G1, eij ∈ E(G), j ∈ [l], to the route (s, v1), ei1 , . . . , eil , (v2, t). Then
the vertices of FG̃1

with respect to G are the unit flows along the the routes that are in
the image of m and the routes of the form (s, v), (v, t), where v is any vertex of G. In case
G1 is not a node of the reduction tree RG, but it is an intersection of nodes of RG, so that
each edge of G1 can still be considered as a sum of the edges of G, we still define FG̃1

as
above. This definition of FG̃1

is of course with respect to G, and this is understood from
the context. For an example see Figure 3

Using the above definitions the proof of the following lemma is an easy exercise.

Lemma 7. [11, Proposition 1],[13, Proposition 4.1], [14, 18] Given a graph G on the
vertex set [n] and (i, j), (j, k) ∈ E(G), for some i < j < k, and G1, G2, G3 as in (1) and
FG̃i

, i ∈ [3], as in Definition 6 we have

FG̃ = FG̃1

⋃
FG̃2

,FG̃1

⋂
FG̃2

= FG̃3
and F◦

G̃1

⋂
F◦
G̃2

= ∅,

where FG̃, FG̃1
, FG̃2

are of the same dimension d− 1, FG̃3
is d− 2 dimensional, and P◦

denotes the interior of P.
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Figure 3: The graph G1 is a node of the reduction tree give in Figure 2. The flow polytope
corresponding to this node of the reduction tree is the convex hull of the points given by
the unit flows on the bold routes as well as unit flows given along routes of the form
(s, v), (v, t), where v ∈ [4]. This flow polytope is part of a dissection of the flow polytope
of the graph labeling the root, as explained in Lemma 7.

The essence of Lemma 7 is that when we replace G by the three graphs G1, G2, G3 we
dissected FG̃ into polytopes FG̃1

and FG̃2
and they intersect along FG̃3

. Iterating this,
we obtain that the flow polytopes corresponding to the leaves of a reduction tree of G as
defined in Definition 6 are the interior simplices of a dissection of the flow polytope FG̃.

2.2 Encoding subdivisions by relations

Note that the reduction of graphs given in (1) can be encoded as the following relation:

xijxjk = xikxij + xjkxik + βxik, for 1 6 i < j < k 6 n. (2)

Namely, interpreting the double indices of the variables xij as edges, the monomial
xijxjk picks out two edges (i, j), (j, k), i < j < k, and replaces it with three monomi-
als, corresponding to operation on graphs (1). The variable β is simply a placeholder,
indicating that the number of edges in the third graph is one less than in the other graphs

These relations give rise to what we call the subdivision algebra.

Definition 8. The associative subdivision algebra, denoted by S(β), is an associative
algebra, over the ring of polynomials Z[β], generated by the set of elements {xij : 1 6 i <
j 6 n}, subject to the relations:

(a) xijxkl = xklxij, if i < j, k < l,
(b) xijxjk = xikxij + xjkxik + βxik, if 1 6 i < j < k 6 n.

The algebra S(β) has been studied in the context of root polytopes [8].

Definition 9. Given a monomial M in S(β), its reduced form is defined as follows.
Starting with p0 = M , produce a sequence of polynomials p0, p1, . . . , pm in the following
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fashion. To obtain pr+1 from pr, choose a monomial of pr which is divisible by xijxjk, for
some i, j, k, and replace the factor xijxjk in this monomial with xikxij+xjkxik+βxik. Note
that pr+1 has two more monomials than pr. Continue this process until a polynomial pm
is obtained, in which no monomial is divisible by xijxjk, for any i, j, k. Such a polynomial
pm is a reduced form of M . Note that we allow the use of the commutation relations
in this process.

A possible sequence of reductions in algebra S(β) yielding a reduced form of x12x23x34

is given by

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x24x13x12 + x24x23x13 + βx24x13 + x34x14x12 + x34x24x14

+βx34x14 + βx14x12 + βx24x14 + β2x14

→ x13x14x12 + x13x24x14 + βx13x14 + x24x23x13 + βx24x13

+x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+β2x14 (3)

where the pair of variables on which the reductions are performed is in boldface. The
reductions are performed on each monomial separately.

Given a monomial M we can encode it by a graph GM , simply by letting the edges
of GM be the given by the indices of the variables in M . Denote a reduced form of M
in S(β) by Q

S(β)
GM

(x; β). Note that the reduced form of M is not unique, so if we wanted
to specify the reduced form exactly, we would also need to specify a reduction tree for G.
When writing Q

S(β)
GM

(x; β) we pick an arbitrary reduced form at hand. If in the reduced

forms we set x = (1, . . . , 1), then in the notation we omit x: Q
S(β)
GM

(β). We will show later

that Q
S(β)
GM

(β) is independent of the choice of reduction tree, thus Q
S(β)
GM

(β) is well-defined
as is.

It is easy to see that by definition, a reduced form of a monomial in the subdivision
algebra can be read off from the leaves of the reduction tree of the corresponding graph.
With this and Lemma 7 in mind, it is no surprise that we can prove results about reduced
forms of monomials in the algebras using flow polytopes.

Recall that a reduced form of a monomial in S(β) is not necessarily unique, which
could be a desirable property. Amazingly, there is a noncommutative algebra, denoted

ÃCY Bn(β), which is much like S(β), yet in which the reduced forms are unique. The

latter statement was proved in [8]. It was A.N. Kirillov [6, 7] who introduced ÃCY Bn(β)
and shed the first light on its rich combinatorial structure. The paper [10] addresses more

of the story of subdivision algebras as well as the story of ÃCY Bn(β).

3 Triangulating flow polytopes

In this section we prove that we can use the subdivision algebra to obtain triangulations of
every flow polytope FG̃. A priori this is far from clear – we are only guaranteed dissections
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Figure 4: The ordering of the incoming and outgoing edges at each vertex from topmost
to bottom.

of flow polytopes, but not the simplicial complex structure. Moreover, the triangulation
we obtain is flag and regular, and thus shellable. We construct our special triangulation
by picking a specific reduction order σ on our graph G and utilizing the properties of σ
to prove properties about the leaves of the reduction tree Rσ

G obtained using σ. We then
note that there is a whole class of orders for which our arguments work, but for clarity
we lay out the argument for σ first.

3.1 A family of orders F(σ)

Given an arbitrary graph G on the vertex set [n], put a total order on the set of incoming
and as well as a total order set of outgoing edges at each vertex 1 < v < n (thus we
consider each edge twice here, once as an incoming edge and once as an outgoing edge).
Do the reductions in G proceeding from the smallest vertex towards the greatest in order.
Look for the smallest vertex v which is nonalternating, that is that has both an edge
(a, v) and an edge (v, b) incident to it, with a < v < b. (Two edges (a, v) and (v, b) are
non-alternating if a < v < b.) Look at the incoming and outgoing edges at v, (a, v) and
(v, b), which are smallest in the ordering of the incoming and outgoing edges, respectively.
Do the reduction on (a, v) and (v, b). In the three obtained graphs the relative ordering of
the edges stays the same, with the new edge (a, b) either taking the place of (a, v) or (v, b)
if these were dropped, or directly preceeding them when they are kept. Continue in this
fashion on each leaf of the partial reduction tree ultimately arriving to the reduction tree
RG with all leaves alternating graphs, that is all of their vertices are alternating. Let σ
be the order where the initial ordering of the incoming and outgoing edges at each vertex
is such that the topmost is the smallest, then the next topmost, etc. See Figure 4 for an
example of this ordering. All results of this paper generalize for any order in F(σ), but
for simplicity we state and prove them for σ only.

The main result of this section is:

Theorem 10. The simplices corresponding to the full dimensional leaves of Rσ
G yield the

top dimensional simplices in a regular and flag triangulation of FG̃. Moreover, lower
dimensional simplices of this triangulation which are not contained in the boundary of FG̃
are obtained from the (not full dimensional) leaves of Rσ

G.

Proof. The proof follows from Theorem 11, Lemma 12 and Proposition 13.

Next we explain Theorem 11 and prove Proposition 13.
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3.2 Coherent routes, cliques and triangulation of flow polytopes

Given a graph G on the vertex set [n] with edges oriented from smaller to bigger vertices,
the vertices of the flow polytope FG correspond to integer flows of size one on maximal
directed paths from the source (1) to the sink (n). Following [3] we call such maximal
paths routes. The following definitions follow [3]. Fix a framing at each inner vertex v
(that is a vertex that is not a source or a sink) of G, which is the linear ordering ≺in(v) on
the set of incoming edges in(v) to v and the linear ordering ≺out(v) on the set of outgoing
edges out(v) from v. We call a graph with a framing at each inner vertex framed. For
a framed graph G and an inner vertex v we denote by In(v) and by Out(v) the set of
maximal paths ending in v and the set of maximal paths starting at v, respectively. We
define the order ≺In(v) on the paths in In(v) as follows. If P,Q ∈ In(v) then let w be the
largest vertex after which P and Q coincide and before which they differ. Let eP be the
edge of P entering w and eQ be the edge of Q entering w. Then P ≺In(v) Q if and only if
eP ≺in(w) eQ. The linear order ≺Out(v) on Out(v) is defined analogously.

Given a route P with an inner vertex v denote by Pv the maximal subpath of P
entering v and by vP the maximal subpath of P leaving v. We say that the routes P and
Q are coherent at a vertex v which is an inner vertex of both P and Q if the paths
Pv,Qv are ordered the same way as vP, vQ; e.g., if Pv ≺In(v) Qv and vP ≺Out(v) vQ. We
say that routes P and Q are coherent if they are coherent at each common inner vertex.
We call a set of mutually coherent routes a clique. The following theorem is a special
case of [3, Theorems 1 & 2].

Theorem 11. [3, Theorems 1 & 2] Given a framed graph G, taking the convex hulls
of the vertices corresponding to the routes in maximal cliques yield the top dimensional
simplices in a regular triangulation of FG. Moreover, lower dimensional simplices of this
triangulation are obtained as convex hulls of the vertices corresponding to the routes in
(not maximal) cliques.

Lemma 12. The triangulation described in Theorem 11 is flag.

Proof. Consider a non-face N of the triangulation that is of cardinality greater than 2.
By Theorem 11 the vertices of N are routes that are not coherent; in particular there
are two routes P and Q which yield vertices of N and are not coherent. Since P and
Q are not coherent, they constitute a non-face. Therefore, all minimal non-faces of the
triangulation described in Theorem 11 are of size 2, and therefore the triangulation is
flag.

Now we are ready to prove the proposition which together with Theorem 11 and
Lemma 12 implies Theorem 10. We define the framing σ̃ on G̃ as the ordering σ on the
edges of G, that is, the incoming edges are ordered top to bottom and the outgoing edges
are also ordered top to bottom, and the edges of the form (s, i) and (i, t), for i ∈ [n], are
always last in the orderings. See Figure 5 for an example.

Proposition 13. The set of vertices of the simplices corresponding to the leaves of Rσ
G

form a clique of mutually coherent paths in G̃ with the framing σ̃.
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Figure 5: Framing σ̃ on G̃ with G = ([4], {{(1, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}}).

Proof. Suppose that to the contrary, there are two vertices of a simplex corresponding
to a leaf of Rσ

G, which correspond to non-coherent routes P and Q in G̃. Suppose that
P and Q are not coherent at the common inner vertex v. Suppose that the smallest
vertex after which Pv and Qv agree is w1 and the largest vertex before which vP and
vQ agree is w2. Let the edges incoming to w1 be e1

P and e1
Q for P and Q, respectively,

and let the edges outgoing from w2 be e2
P and e2

Q for P and Q, respectively. Since P
and Q are not coherent at v, this implies that either e1

P ≺in(w1) e
1
Q and e2

Q ≺out(w2) e
2
P or

e1
Q ≺in(w1) e

1
P and e2

P ≺out(w2) e
2
Q. We also have that the segments of P and Q between

w1 and w2 coincide. Note that since the edges of the form (s, i) and (i, t), i ∈ [n], are
last in the linear orderings of the incoming and outgoing edges, it follows that at most
one of the edges e1

P and e2
P and at most one of the edges e1

Q and e2
Q could be incident to

s or t. We consider several cases based on whether any of e1
P , e

2
P , e

1
Q, e

2
Q are incident to

s or t. Denote by p the sum of edges between w1 and w2 on P . If none of e1
P , e

2
P , e

1
Q, e

2
Q

are incident to s or t, then after a certain number of reductions executed according to σ
we are about the perform the reduction (∗(e1

Z̄
+ p), e2

Z), where ∗(e1
Z̄

+ p) denotes the sum
of edges left of w1 that are edges in Z̄ not incident to s (including e1

Z̄
in particular) and

p, {Z̄, Z} = {P,Q}. Note, however, that after executing this reduction we have to drop
either the edge ∗(e1

Z̄
+ p) or the edge e2

Z . However, if the former were true, it would make
it impossible for ∗(e1

Z̄
+ p) + e2

Z̄
to be a subsum in an edge of the leaf we are considering,

which it has to be in order for Z̄ to be a route giving a vertex of the simplex we are
considering. The latter on the other hand would make it impossible for ∗(e1

Z + p) + e2
Z to

be a subsum in an edge of the leaf we are considering, where ∗(e1
Z +p) denotes the sum of

edges left of w1 that are edges in Z not incident to s. However then Z cannot be a route
giving a vertex of the simplex we are considering. Thus we see that Z and Z̄, aka, P and
Q, cannot be incoherent in this way. It follows that we need to consider the possibilities
where some of e1

P , e
2
P , e

1
Q, e

2
Q are incident to s or t. One can construct similar arguments

to the above in all those cases.

4 Reduced forms are h-polynomials

In this section we show that for a graph G the reduced form of the monomial m[G] =∏
(i,j)∈E(G) xij can be seen as the shifted h-polynomial of a unimodular triangulation of

the flow polytope FG̃.
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Definition 14. Let C be a d− 1 dimensional simplicial complex. The f-vector of C is

f(C) = (f−1, f0, . . . , fd−1),

where fi = fi(C) be the number of i-dimensional simplices in C. By convention, f−1 = 1
unless C = ∅, in which case f−1 = 0. The h-vector of C is h(C) = (h0, h1, . . . , hd), defined
by

d∑
i=0

fi−1(x− 1)d−i =
d∑
i=0

hix
d−i. (4)

Define the h-polynomial of a simplicial complex C to be

h(C,x) =
d∑
i=0

hix
i. (5)

Lemma 15. [16] For a simplicial complex C we have:

h(C,x) =
∑
F∈C

x#F (1− x)d−#F . (6)

The main result of this section is the following theorem.

Theorem 16. We have
Q
S(β)
G (β) = h(C, β + 1), (7)

where C is any unimodular triangulation of FG̃.

We illustrate the theorem on an example in Figure 6.
To prove Theorem 16, we use the following lemma, which is implicit in [16]. For

completeness, we include a proof of it.

Lemma 17. Let C be a (d − 1)-dimensional simplicial complex homeomorphic to a ball
and f ◦i be the number of interior faces of C of dimension i. Then

h(C, β + 1) =
d−1∑
i=0

f ◦i β
d−1−i (8)

Proof. We have that

h(C, β + 1) =
∑
F∈C

(β + 1)#F (−β)d−#F =
d−1∑
i=−1

fi(β + 1)i(−β)d−i−1.

Thus, (8) is equivalent to

d−1∑
i=−1

fi(β + 1)i(−β)d−i−1 =
d−1∑
i=0

f ◦i β
d−1−i, (9)
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1 2 3

1 2 3 1 2 31 2 3

x12x23

x12x13 βx13 x13x23

Q
S(β)
G (x; β) = x12x13 + βx13 + x13x23

setting x to 1 we get

Q
S(β)
G (β) = 2 + β

The triangulation C corresponding

to the above reduction tree consists of two

4-dimensional simplices ∆1 and ∆2 and

their faces; ∆1 and ∆2 attach to each

other on a 3-dimensional face.

h(C, β + 1) = 2 + β

Figure 6: On the left is a reduction tree of G = ([2], {(1, 2), (2, 3)}) with the monomials
corresponding to the graphs noted and a description of the corresponding triangulation
C. On the right is the reduced form corresponding to the reduction tree and the (shifted)

h-polynomial of C. As in Theorem 16 we get Q
S(β)
G (β) = h(C, β + 1).

which is what we proceed to prove now. For brevity, denote the left hand side of (9) by
LHS and the right hand side by RHS. Then we see that

[βd]LHS = (−1)d +
d−1∑
i=0

fi(−1)d−i−1

(
i+ 1

0

)
.

For j ∈ [d] we have that

[βd−j]LHS =
d−1∑
i=j−1

fi(−1)d−i−1

(
i+ 1

j

)
.

On the other hand, [βd]RHS = 0 and for j ∈ [d] we have [βd−j]RHS = f ◦j−1. Thus,
(9) is equivalent to

(−1)d +
d−1∑
i=0

fi(−1)d−i−1

(
i+ 1

0

)
= 0 (10)

and for j ∈ [d]

d−1∑
i=j−1

fi(−1)d−i−1

(
i+ 1

j

)
= f ◦j−1. (11)

Note that (10) is the familiar Euler characteristic expression of a simplicial complex
that is homeomorphic to a ball. To prove (11) we interpret its left hand side as an
inclusion exclusion formula for f ◦j−1. Indeed, fd−1

(
d
j

)
is the number of (j − 1)-faces of the

fd−1 top dimensional simplices in C, with overcounting. To correct for the overcounting
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we substract fd−2

(
d−1
j

)
, which is the number of (j − 1)-faces of the fd−2 (d− 2)-simplices

of C. Note that here we therefore also take out all (j − 1)-faces that are on the boundary
of C. Again, we have oversubstracted, so we add back fd−3

(
d−2
j

)
, etc., to arrive to f ◦j−1.

We used that C is a pure simplicial complex when we assumed that all (j − 1)-faces are
a face of a (d− 1)-face.

Proof of Theorem 16. Note that, by definition, the reduced form Q
S(β)
G (β) read off from

the reduction tree Rσ
G, which yields the unimodular triangulation Cσ, can be written as

Q
S(β)
G (β) =

d−1∑
i=1

f ◦i β
d−1−i, (12)

where Cσ is d−1 dimensional and f ◦i is the number of leaves ofRσ
G yielding an i-dimensional

simplex. The notation f ◦i signifies that the union of the open simplices corresponding to
the leaves of a reduction tree yield the open polytope FG̃. By Lemma 17 we have that

d−1∑
i=1

f ◦i β
d−1−i = h(Cσ, β + 1). (13)

Since by Lemma 4 we know that Q
S(β)
G (β) does not depend on the particular reduction

tree, we are done.

5 A description of the leaves of Rσ
G

In this section we describe all the leaves of the reduction tree Rσ
G in terms of shellings

of the triangulation obtained from Rσ
G as in Theorem 10. Since we know that these

triangulations are regular, it follows that they are also shellable.

Theorem 18. Let FF̃1
, . . . ,FF̃l

be a shelling order of the simplicial complex arising from
Rσ
G. Let

Pi := {{Qi
1, . . . , Q

i
f(i)}} = {{Fi ∩ Fj | 1 6 j < i, |E(Fi ∩ Fj)| = |E(Fi)| − 1}}.

Then
l∑

i=1

f(i)∏
j=1

(Fi +Qi
j) (14)

is the formal sum of the set of the leaves of Rσ
G, where the product of graphs is their

intersection. If f(i) = 0 we define
∏f(i)

j=1(Fi +Qi
j) = Fi.

Before proving Theorem 18, we record a few properties of flow polytopes that easily
follow from the above considerations and from the fact that the dimension of FG is
|E(G)| − |V (G)| + 1 [1]. In both lemmas the meanings of FH̃ for a node H of Rσ

G or
intersection of such nodes is as in Definition 6, which is the key to the proofs that are left
to the interested reader.
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Lemma 19. Let G1 and G2 be two leaves of Rσ
G. Then

FG̃1
∩ FG̃2

= F
G̃1∩G2

. (15)

Moreover, G1∩G2 is a leaf of Rσ
G if and only if FG̃1

∩FG̃2
is not contained in the boundary

of FG̃.

Lemma 20. Let G1 and G2 be two leaves of Rσ
G. The dimension of F

G̃1∩G2
is |E(G1 ∩

G2)|+ |V (G1 ∩G2)| − 1.

Proof of Theorem 18. By Lemmas 19 and 20 we see that if FF̃1
, . . . ,FF̃l

is a shelling
order, then the set of facets on which FF̃i

attaches to FF̃1
, . . . ,FF̃i−1

is {FQ̃ | Q ∈ Pi}.
Moreover, since the intersection of two top dimensional simplices of a triangulation of FG̃
is not contained in the boundary of FG̃, it follows that every element of Pi, i ∈ [l], appears
in Rσ

G by the second part of Lemma 19 (and it is a leaf since it is the intersection of two
alternating graphs, so it is alternating itself). Using this same argument repeatedly and
the fact that we can built up the polytope piece by piece by following the shelling, we
obtain Theorem 18.

6 Nonnegativity results about reduced forms

This section is devoted to two nonnegativity results, which are consequences of the above
considerations.

Theorem 21. The polynomial Q
S(β)
G (β − 1) is a polynomial in β with nonnegative coef-

ficients.

Proof. Recall that by Theorem 16 we have that

Q
S(β)
G (β − 1) = h(C, β), (16)

where C is a unimodular triangulation of FG̃. Let C be the abstract simplicial complex
obtained from Rσ

G, as in Theorem 10. Since by Theorem 10 this triangulation is regular,
and therefore it is shellable, we get that hi is equal to the number of top dimensional
simplices which attach on i facets to the union of previous simplices in a shelling order.

A nice example of the polynomial h(C, β) is in the case when we let C be a unimodular
triangulation of FP̃n

, where Pn = ([n], {(i, i+ 1)|i ∈ [n− 1]}). In this case the coefficients
of h(C, β) are given by the Narayana numbers, which can be seen via the results [12,
Theorem 4.4] and [17, Exercise 6.31b].

Using Theorem 21 we are ready to prove a special case of Kirillov’s [6, Conjecture 2].

Conjecture 22. [6, Conjecture 2] Let k1, . . . , kn−1 be a sequence of nonnegative integers

and let M = xk112x
k2
23 · · ·xkn−1

n−1,n. Then the reduced form of M evaluated at x = (1, . . . , 1)

and β − 1 in ÃCY Bn(β) is a polynomial in β with nonnegative coefficients.
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Theorem 23. [6, cf. Conjecture 2]. The reduced form of x12x23 · · ·xn−1,n evaluated at

x = (1, . . . , 1) and β−1 in ÃCY Bn(β) is a polynomial in β with nonnegative coefficients.

Proof. In [8] it is proved that the monomial x12x23 · · ·xn−1,n can be reduced in ÃCY Bn(β)
so that the resulting monomials in the reduced form have no variables of the form xijxjk,
i < j < k. Thus, reduced form of x12x23 · · ·xn−1,n evaluated at x = (1, . . . , 1) and β − 1

in ÃCY Bn(β) is equal to the reduced form of x12x23 · · ·xn−1,n evaluated at x = (1, . . . , 1)
and β − 1 in S(β). Therefore we can apply Theorem 21 to obtain this result.

7 Reduced forms and Ehrhart series

In this section we connect the h-polynomials of triangulations of flow polytopes to the
Ehrhart series of flow polytopes, and using Theorem 16 we tie this in with reduced forms
in the subdivision algebra. As a corollary to our results, we generalize [6, Theorem 3.10].

Recall that for a polytope P ⊂ RN , the tth dilate of P is tP = {(tx1, . . . , txN) |
(x1, . . . , xN) ∈ P}. The number of lattice points of tP , where t is a nonnegative integer
and P is a convex polytope, is given by the Ehrhart function i(P , t). If P has integral
vertices then i(P , t) is a polynomial.

The following is a well-known result specialized to FG̃.

Lemma 24. Let C be a unimodular triangulation of FG̃. Then

h(C, β) =
∑
m>0

(i(FG̃,m)βm)(1− β)dim(F
G̃

)+1. (17)

Corollary 25. We have

Q
S(β)
G (β − 1) =

∑
m>0

(i(FG̃,m)βm)(1− β)dim(F
G̃

)+1. (18)

Proof. Follows directly from Theorem 16 and Lemma 24.

Corollary 26. [6, Theorem 3.10]

Q
S(β)
Kn

(β − 1) =
∑
m>0

(i(CRYn+1,m)βm)(1− β)(
n+1
2 ). (19)

Proof. The result follows from Corollary 25 for G = Kn, since dim(FK̃n
) =

(
n+1

2

)
− 1 and

i(CRYn+1,m) = i(FK̃n
,m), as explained in [11].

To state our final result, also a corollary of Corollary 25, relating the reduced forms
to Kostant partition functions, we remind the reader of the following definition.

The Kostant partition function KG evaluated at the vector v ∈ Zn+1 is defined as

KG(v) = #{(bk)k∈[N ] |
∑
k∈[N ]

bkαk = v and bk ∈ Z>0}, (20)
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where [N ] = {1, 2, . . . , N} and {{α1, . . . , αN}} is the multiset of vectors corresponding
to the multiset of edges of G under the correspondence which associates an edge (i, j),
i < j, of G with a positive type An root ei − ej, where ei is the ith standard basis vector
in Rn+1. In other words, KG(v) is the number of ways to write the vector v as a N-linear
combination of the positive type An roots (with possible multiplicities) corresponding to
the edges of G, without regard to order.

Corollary 27. For any graph G we have

Q
S(β)
G (β − 1) =

∑
m>0

(KG̃(m, 0, . . . , 0,−m)βm)(1− β)#E(G)+#V (G), (21)

where KG̃ is the Kostant partition function for G̃.

Proof. Follows from Corollary 25 since i(FG̃,m) = KG̃(m, 0, . . . , 0,−m) is a simple corol-

lary of the definitions of these objects and dim(FG̃) = #E(G̃)−#V (G̃) + 1 = #E(G) +
#V (G)− 1. For detailed explanations of both of these and related results see [13].
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[8] Karola Mészáros. Root polytopes, triangulations, and the subdivision algebra, I.
Trans. Amer. Math. Soc., vol. 363, no. 8, 4359–4382, 2011.

the electronic journal of combinatorics 22(4) (2015), #P4.18 16

http://arxiv.org/abs/math/9912094
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[10] Karola Mészáros. h-polynomials of reduction trees. http://arxiv.org/abs/1407.

2684, 2014.
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