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Abstract

A distinguishing colouring of a graph is a colouring of the vertex set such that no
non-trivial automorphism preserves the colouring. Tucker conjectured that if every
non-trivial automorphism of a locally finite graph moves infinitely many vertices,
then there is a distinguishing 2-colouring.

We show that the requirement of local finiteness is necessary by giving a non-
locally finite graph for which no finite number of colours suffices.

1 Introduction

A colouring of the vertices of a graph G is called distinguishing if no non-trivial auto-
morphism of G preserves the colouring. This notion was first studied by Albertson and
Collins [1], motivated by a recreational mathematics problem posed Rubin [9].

While a distinguishing colouring clearly exists for every graph (simply colour every ver-
tex with a different colour), finding a distinguishing colouring with the minimum number
of colours can be challenging.

For infinite graphs one of the most intriguing questions is whether or not the following
conjecture of Tucker [12] is true.

Conjecture 1. Let G be an infinite, connected, locally finite graph with infinite motion.
Then there is a distinguishing 2-colouring of G.

This conjecture can be viewed as a generalisation of a result on finite graphs due to
Russell and Sundaram [I0]. It is known to be true for many classes of infinite graphs
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including trees [13], tree-like graphs [4], and graphs with countable automorphism group
[5]. In [II] it is shown that graphs satisfying the so-called distinct spheres condition
have infinite motion as well as distinguishing number two. Examples for such graphs
include leafless trees, graphs with infinite diameter and primitive automorphism group,
vertex-transitive graphs of connectivity 1, and Cartesian products of graphs where at least
two factors have infinite diameter. It is also known that Conjecture (1| is true for graphs
fulfilling certain growth conditions [7]. In [8] it is shown that for locally finite graphs
random colourings have a good chance of being distinguishing.

Many of the above results also hold for non-locally finite graphs which raises the
question, whether the condition of local finiteness in Tucker’s conjecture can be dropped.

A first indication, that local finiteness may be necessary has been given in the setting
of permutation groups acting on countable sets. Here, instead of considering the auto-
morphism group of a graph acting on the vertex set, we consider (faithful) group actions.
A generalization of Conjecture [1|to this setting has been given by Imrich et al. [5].

Conjecture 2. Let I' be a closed, subdegree finite permutation group on a set .S. Then
there is a distinguishing 2-colouring of S.

For this generalization subdegree finiteness (which plays the role of local finiteness) is
known to be necessary [6].

In this short note we show that local finiteness is also necessary in the graph case.
More precisely we give a non-locally finite, arc transitive graph with infinite motion which
does not admit a distinguishing colouring with any finite number of colours.

2 Preliminaries

Throughout this paper we will use Greek letters for group related variables while the
Latin alphabet will be reserved for sets on which the group acts.

Let S be a countable set and let I' be a group acting faithfully (i.e. the identity is the
only group element which acts trivially) on S from the left. The image of a point s € S
under an element v € I' is denoted by ~vs.

The stabilizer of s in IT" is defined as the subgroup I'y = {y € I' | yvs = s}. We say that
I is subdegree finite if for every s € S all orbits of I'; are finite.

The motion of an element v € I' is the number (possibly infinite) of elements of S
which are not fixed by . The motion of the group I' is the minimal motion of a non-trivial
element of I". Notice that the motion is not necessarily finite, in fact all groups considered
in this paper have infinite motion. The motion of a graph G is the motion of Aut G acting
on the vertex set.

Let C' be a (usually finite) set. A C-colouring of S is a map ¢: S — C. Given a
colouring ¢ and v € T we say that v preserves c if ¢(ys) = ¢(s) for every s € S. Call a
colouring distinguishing if no non-trivial group element preserves the colouring.
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Figure 1: An induced subgraph of the graph in Theorem [d] Note that edges only go from
top left to bottom right. By the definition of the graph all such edges are present and
every edge is of this type.

3 The example

The construction that we use relies on the following result from [6] which also shows that
there are permutation groups on a countable sets whose distinguishing number is infinite.
The proof uses a standard back-and-forth argument, see for example [2, Sections 9.1 and
9.2] and [3], Sections 2.8 and 5.2].

Theorem 3 (Laflamme et al. [6]). Let I" be the group of order automorphisms of Q (i.e.
bijective, order preserving functions v: Q — Q). Then I' has infinite motion but no
distinguishing colouring with finitely many colours. O

Clearly the group I' of the above theorem is the full automorphism group of the
following directed graph: take Q as vertex set and draw an edge from ¢ to r if ¢ < r.
The underlying undirected graph is the complete countable graph which also has infinite
distinguishing number but finite motion.

Theorem 4. There is a countable, connected, arc transitive graph with infinite motion
which has no distinguishing colouring with a finite number of colours.

Proof. Let QT and Q™ be two disjoint copies of Q. Denote the elements corresponding
to ¢ € Q in these copies by ¢* and ¢, respectively. Consider the (undirected) graph
G = (V,E) where V = QT UQ™ and ¢*r~ € E whenever ¢ < r. Figure [1| shows a small
subgraph of this graph to give an idea of what it looks like. Clearly G is countable and
connected.

Note that G is bipartite with bipartition QT U Q™. Hence every automorphism ~ of
G either fixes Q1 and Q™ set-wise, or swaps the two sets. Furthermore if y¢™ = r* then
~vq~ =1~ because ¢~ is the unique vertex with the property N(¢~) = ﬂUNqu N@)\{q"}.
A similar argument shows that if y¢™ = r~ then v¢~ = r*. So the action on Q" uniquely
determines an automorphism of G.
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Now, we define a family of automorphisms of G (we will later show that these are
in fact all the automorphisms of GG). For every order automorphism v of Q, define the
functions 4 and vy, as follows:

e 7; applies v to both copies of Q, i.e. %+(¢") = (v(¢))", »(¢7) = (v(q)) s

e ~, first applies 7y to both copies, then reverses the order on each of them and swaps
them, i.e. v,(¢") = (=7(q))", and v(¢7) = (=v(q)) ™"

It is straightforward to check that these maps are indeed automorphisms of the graph G.
To see that G is arc transitive, notice that the arc 071~ can be mapped to any arc of
the form ¢*r~ by the automorphism 74 where

() =q+ (r—q)z.

The map ~ is an order automorphism of Q since ¢*r~ € E implies that ¢ < r. By
analogous arguments, the arc 0t1~ can be mapped to any arc of the form ¢~ r* by the
automorphism 7| where

Y(z) =—q+ (¢ — 1)z

Every map of the type 4 and v, moves infinitely many vertices. Thus, to show that
G has infinite motion, it suffices to prove that the automorphisms of the form ~ and
as defined above are the only automorphisms of G.

It is not hard to see that ¢ > r if and only if N(¢7) C N(rT). This implies that
N(é(g")) € N(¢p(rt)) for every automorphism ¢ of G. If ¢ fixes QT set-wise we conclude
that ¢ preserves the order on Q% hence it is equal to 4 for a suitable order automorphism
7. An analogous argument shows that if ¢ swaps QT and Q~, then ¢ = v, for an order
automorphism v of Q.

Finally, assume that there is a distinguishing colouring ¢ of G with n < oo colours.
In particular this colouring would break every automorphism of the form 74. Hence the
map ¢ — (c(qT),c(q™)) would be a distinguishing colouring of Q with n? < co colours, a
contradiction to Theorem [ O
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