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Abstract

We investigate the orientable genus of Gn, the cartesian product of n triangles,
with a particular attention paid to the two smallest unsolved cases n = 4 and 5.
Using a lifting method we present a general construction of a low-genus embedding of
Gn using a low-genus embedding of Gn−1. Combining this method with a computer
search and a careful analysis of face structure we show that 30 6 γ(G4) 6 37 and
133 6 γ(G5) 6 190. Moreover, our computer search resulted in more than 1300 non-
isomorphic minimum-genus embeddings of G3. We also introduce genus range of a
group and (strong) symmetric genus range of a Cayley graph and of a group. The
(strong) symmetric genus range of irredundant Cayley graphs of Zn

p is calculated
for all odd primes p.

Keywords: graph, cartesian product, genus, embedding, triangle, symmetric em-
bedding, Cayley graph, Cayley map, genus range, group

1 Introduction

Finding the minimum genus of a graph is a very difficult problem from both practical
and algorithmic perspective. In general, it is NP-hard to determine the minimum genus
even in the class of cubic graphs, see [23], respectively [24]. While the minimum genus
of various specific families of graphs has been calculated in the past, the well-known
instance of determining the minimum genus of complete graphs [22] indicates the level
of difficulty that can be encountered. The genera of hypercubes have been computed by
G. Ringel [21] and by Beineke and Harary [1]. Generalizations of these methods were
used by A. T. White to calculate the genus of the cartesian products of even cycles [25],
and later by T. Pisanski for cartesian products of more general graph classes [15, 16].
Eventually, these techniques have been used to determine the genus of most abelian and
hamiltonian groups and non-orientable genus of some metacyclic groups [17, 18, 19]. In
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most cases, the developed methods can be adopted to the products where some factors are
odd cycles of length at least five. A canonical decomposition theorem for abelian groups
states that every abelian group is a direct product Zn1 × · · · ×Znk

, where ni divides ni+1

for all i < k. If the canonical decomposition of an abelian group Γ does not contain a Z3

factor and if the number of factors of the decomposition is at least 4, then the minimum
genus of a Cayley graph of Γ can be precisely determined, see [10] for details. On the
other hand, the determination of the genus of cartesian products involving triangular
factors resisted almost all attempts, with the notable exceptions being the Cayley graphs
of Z3 × Z3 × Z3 [13, 5] and semi-direct product Z3 o Z9 [4]. The Cayley graphs of these
groups are perhaps the most intriguing being the last groups of order less than 32 whose
genus was determined. Therefore, it is not very surprising that the determination of the
smallest genus of a Cayley graph for an abelian group containing a Z3 factor is considered
to be extremely difficult, see [9, Chapter 6] or [2, Chapter 11]. The aim of this paper is
to obtain lower and upper bounds on the minimum among genera of Cayley graphs for
Zn

3 with a particular attention paid to the smallest unsolved cases n = 4 and 5. It can be
easily seen that every generating set of Zn

3 contains at least n elements and each Cayley
graph of Zn

3 generated by precisely n elements is isomorphic to Gn, the cartesian product
of n triangles. Our main result is the following theorem.

Theorem 1.1. The lower bound L(n) and the upper bound U(n) for the genus of Gn are
given by Table 1. In particular, 30 6 γ(G4) 6 37 and 133 6 γ(G5) 6 190.

n 1 2 3 4 5 n > 5
L(n) 0 1 7 30 133 1 + d3n−1(5n− 12)/8e
U(n) 0 1 7 37 190 1 + 3n−2(3n− 8)

Table 1: Lower and upper bounds on the genus of Gn.

We assume that the reader is familiar with basics of topological graph theory as covered
by, for instance, chapters 2 and 3 of [9] or chapters 5, 6, and 10 of [27]. In particular,
we assume that the reader is familiar with (regular) voltage graphs. We use standard
terminology consistent with [9] and consider only cellular embeddings into orientable
surfaces.

The paper consists of two main parts, namely Section 2, where we treat lower bounds,
and Section 3, where we investigate upper bounds using several different methods. Ac-
cording to the used techniques, Section 3 is additionally divided into three parts as follows.
In the first part we introduce new parameters genus range and (strong) symmetric genus
range of a group and (strong) symmetric genus range of a Cayley graph. We calculate
the irredundant (strong) symmetric genus range of Zn

p , thus obtaining an upper bound
on the genus of Gn. The second part of Section 3 contains a summary of our computer
search for low-genus embeddings of Gn. In particular, we present some statistics on genus
distribution and face distribution of Gn for n = 2, 3, 4, and a rotation scheme of an em-
bedding of G4 in the surface of genus 37, which is the current record holder for n = 4.

the electronic journal of combinatorics 22(4) (2015), #P4.2 2



The third part of Section 3 presents a recursive construction of a low-genus embedding
of Gn using a low-genus embedding of Gn−1. Repeatedly using this construction starting
with an embedding of G4 with genus 37 yields embeddings of Gn with the smallest known
genus for all n > 5. Consequently, any improvement of the upper bounds on the genus of
Gn for any n > 4 immediately yields an improvement of the upper bounds on the genus
of Gm for all m > n.

2 Lower bounds

By Gn we denote the cartesian product of n triangles, that is,

Gn = K3�K3� · · ·�K3︸ ︷︷ ︸
n-times

.

For a prime p, by Zn
p we denote the direct product of n copies of the cyclic group Zp;

clearly, Gn is a Cayley graph of Zn
3 . For the number of vertices and edges of Gn we have

|V (Gn)| = 3n and |E(Gn)| = n3n, respectively. The total number of triangles of Gn is
denoted by T (Gn); clearly, T (Gn) = n3n−1. For an embedding of Gn, the number of
faces with length i of the embedding is denoted by fi. For instance, f3 is the number
of triangular faces of the embedding. Faces of length three are called triangles, faces
of length four are called quadrangular, or rectangles, and faces of length five are called
pentagons. For an embedding Π of Gn, by FΠ we denote the number of faces of Π. An
easy counting shows that if Gn would have an embedding with all faces being triangles,
then the number of faces would be 2n3n−1, implying γ(Gn) > 1 + d3n−1(n − 3)/2e. For
n = 3 and 4 the last inequality implies γ(G3) > 1 and γ(G4) > 15.

To refine the lower bound, we use the fact that for each n > 1, each edge of Gn lies
in precisely one triangle. Since the faces of any embedding together traverse each edge
precisely twice, the total number of faces cannot be larger than it would be in the case
where each edge is traversed once by a face of length 3 and once by a face of length
4. We call an embedding of Gn such that every triangle bounds a face and every other
face is quadrangular a triangle-quadrangular embedding. Clearly, a triangle-quadrangular
embedding may exist only if n is congruent to 4 (mod 8) and the genus of such embedding
of Gn would be 1 + 3n−1(5n − 12)/8. While in Theorem 2.7 we prove that G4 does not
have a triangle-quadrangular embedding, for all n > 8 with n ≡ 4 (mod 8) it is an open
problem whether such an embedding of Gn exists. This discussion can be summarized by
the following proposition and two open problems.

Proposition 2.1. For any n > 1, the maximum number of faces in an embedding of
Gn is at most b|E(Gn)|/3 + |E(Gn)|/4c. Consequently γ(Gn) > 1 + d3n−1(5n − 12)/8e.
Furthermore, γ(Gn) = 1 + 3n−1(5n− 12)/8 if and only if Gn has a triangle-quadrangular
embedding. �

For n = 3, 4, and 5, Proposition 2.1 gives γ(G3) > 5, γ(G4) > 28, and γ(G5) > 133.
Currently, Proposition 2.1 gives the best known lower bound on the genus of Gn for every
n > 4.
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Problem 1. Determine all integers n such that Gn has a triangle-quadrangular embed-
ding. In particular, is there an integer n > 1 such that Gn has a triangle-quadrangular
embedding?

Of a certain interest might be also quadrangular embeddings ofGn, that is, embeddings
in which every face has length 4. Note that the well-known genus embedding of G2 in the
torus is quadrangular.

Problem 2. Is there an integer n > 2 such that Gn has a quadrangular embedding?

Our main result concerning lower bounds is Theorem 2.7 below, which asserts that
γ(G4) > 30. The proof is based on a method used by Brin and Squier in [5] to prove that
γ(G3) > 6. While the analysis used in [5] to prove that γ(G3) > 7 is quite involved, its use
may lead to a better lower bound on the genus of G4. We start with necessary definitions.
A plane is a subgraph of Gn obtained from Gn by fixing all but two coordinates. Clearly,
a plane is isomorphic to G2 and therefore every plane contains 9 vertices and 18 edges.
It is easy to see that any face of length 3 or 4 in any embedding of Gn lies in some plane
of Gn. A cycle of G is called present if it bounds a face, otherwise it is called absent.
For a fixed embedding of Gn, let a denote the total number of absent triangles, that is
a = T (Gn) − f3. Let ai denote the number of planes with precisely i absent triangles.
The following two results can be proved by an easy counting.

Proposition 2.2. Every triangle of Gn lies in n−1 planes of Gn. In particular, (n−1)a =∑6
i=0 iai.

Proposition 2.3. The graph Gn contains precisely
(
n
2

)
· 3n−2 planes.

The following result is Proposition 3 in [5].

Lemma 2.4. Let P be a plane of Gn for some n > 3. If P has i absent triangles, then it
has at most mi present rectangles, where the values of mi are in Table 2.

i 0 1 2 3 4 5 6
mi 1 2 2 3 4 5 6

Table 2: The values of mi.

Proposition 2.5. The graph G4 does not have a triangle-quadrangular embedding.

Proof. First note that every rectangle lies in precisely one plane of Gn. Suppose that Π
is a triangle-quadrangular embedding of G4, in which case Π has 81 rectangles. As all
triangles are present in Π, by Lemma 2.4 every plane has at most one present rectangle.
By Proposition 2.3 the embedding contains at most 54 rectangles, which is a contradiction.
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A calculation analogous to the proof of Proposition 2.5 does not exclude the possible
existence of a triangle-quadrangular embedding of Gn for any n > 8 with n ≡ 4 (mod 8).

It was observed in [5, Proposition 2] that minimum-genus embeddings of Gn with
the maximum number of present triangles do not contain faces of length 5. The next
proposition is a slight extension of this result.

Proposition 2.6. For any integer g such that g > γ(Gn) there is an embedding of Gn in
an orientable surface of genus at most g without faces of length 5.

Proof. Let g′ = min{g, γM(G)}, where γM(G) is the maximum genus of G. Let Π be
any embedding of Gn in the orientable surface of genus g′; by Interpolation theorem for
orientable surfaces (see [8]) and the choice of g′ such an embedding exists. If f5 = 0, then
there is nothing to prove. Suppose that f5 > 0 and that F is a face of length 5. It is easy
to see that any pentagon has the form aabab−1 for some generators a and b of Gn ; denote
by v the vertex of F incident with two occurrences of a. It follows that Π does not contain
the triangle T of the form aaa incident with v. Let e be the edge of T not contained in
F . Moving e into the interior of F splits F into a triangular face bounded by T and a
rectangle; denote the resulting embedding by Π′. Since the move of e can be replaced
by removing e from Π and then adding it back in a different position and a removal of
an edge changes the number of faces by at most one, the genus of Π′ is not larger than
the genus of Π. If the genera of Π and Π′ are equal, then e lies on the boundary of two
distinct faces of Π. The removal of e merges these two faces into a pentagon in Π′ if and
only if one of them is triangle and the other is rectangle in Π. Observe that e lies in
precisely one triangle, the triangle T , which is absent in Π. Therefore, e does not lie in
a face of length 3 in Π and the removal of e cannot merge two faces into a pentagon. It
follows that Π′ has either a smaller genus or a smaller number of pentagons than Π and
repeating the process yields the desired embedding of Gn.

Theorem 2.7. The genus of G4 is at least 30.

Proof. Let Π be an embedding of G4. Since the union of face boundaries includes every
edge precisely twice and every face that is not triangular has length at least four, we have

648 = 2|E(G4)| =
∞∑
i=0

ifi > 3f3 + 4(FΠ − f3). (1)

Let χ denote the Euler characteristic of the underlying surface. Euler formula implies
FΠ = χ+ |E(G4)| − |V (G4)|. Substituting the last equality into (1) and manipulating we
get

648 > 3f3 + 4(FΠ − f3)

f3 > 4FΠ − 648 = 4χ+ 4|E(G4)| − 4|V (G4)| − 648

= 4χ+ 4 · 324− 4 · 81− 648 = 4χ+ 324.
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Consequently,
f3 > 4χ+ 324. (2)

By Proposition 2.6 we can assume that f5 = 0. It follows that

648 = 2|E(G4)| =
∞∑
i=0

ifi > 3f3 + 4f4 + 6(FΠ − (f3 + f4)).

and after manipulation we get

3f3 + 2f4 > 6χ+ 810. (3)

Lemma 2.4 implies

f4 6
6∑

i=0

miai = a0 + a1 +
6∑

i=0

iai. (4)

Using Proposition 2.2 for n = 4 on (4) we obtain

f4 6 a0 + a1 + 3a. (5)

Note that for any n we have a = T (Gn)− f3, substituting this equality into (5) yields

3f3 + f4 6 a0 + a1 + 3 · 108.

Combining the last inequality with Proposition 2.3 for n = 4 we get

3f3 + f4 6 54 + 3 · 108. (6)

Two times (6) gives an upper bound on 6f3 + 2f4, while adding three times (2) to (3)
bounds 6f3 + 2f4 from below. Combining these inequalities gives

18χ+ 810 + 3 · 324 6 2 · (54 + 3 · 108)

18χ 6 −1026

χ 6 −57.

Relating χ 6 −57 with the genus of G4 gives γ(G4) > 30.

Using the method from the proof of Theorem 2.7 for bounding the genus of G5 gives
γ(G5) > 133, which is the same as the bound from Proposition 2.1.

3 Upper bounds

In this section we tackle upper bounds on the genus of Gn using three different tech-
niques. In general, the determination of the genus of Gn seems to be a very difficult
problem. Rather surprisingly, when we concentrate only on symmetric embeddings of Gn,
it is possible to determine not only the symmetric genus, but also the complete set of
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genera of surfaces upon which Gn admits a symmetric embedding. This fact is our moti-
vation for discussing, in Subsection 3.1, several natural variants of genus range for groups
and Cayley graphs which were not investigated before. In Subsection 3.2 we present
results of our computational search for low-genus embeddings of G4 and discuss several
related problems. Finally, Subsection 3.3 contains a recursive construction of a low-genus
embedding of Gn+1 from an embedding of Gn using voltage graphs.

3.1 Genus range and symmetric genus range of groups and Cayley graphs

We start by defining symmetric and strongly symmetric embedding of a Cayley graph. We
follow [2, Chapter 11] to call an embedding of a Cayley graph G of a group Γ symmetric
if the natural action of Γ by left-multiplication on the vertices of G can be extended to
an action on the underlying surface. An embedding of a Cayley graph is called strongly
symmetric if it is symmetric and the extended action preserves orientation of the surface.
We introduce the symmetric genus range of a Cayley graph G as the set of genera of
surfaces upon which G admits a symmetric embedding and strong symmetric genus range
of G as the set of all genera of surfaces upon which G has a strong symmetric embedding.
Note that the symmetric genus range and strong symmetric genus range parameters are
analogous to the genus range parameter, thus extending the correspondence between
symmetric and all embeddings beyond the well-known (strong) symmetric genus of a
Cayley graph.

Our main result in this subsection is Theorem 3.3 that completely determines strong
symmetric genus range and symmetric genus range of Gn. A particular consequence of the
theorem is that, unlike the genus range, the (strong) symmetric genus range can contain
arbitrarily large gaps.

For a set X of elements of a group, denote by X̃ the union of elements of X and
their inverses. Recall that a Cayley map of a Cayley graph G with a generating set X is
an embedding of G in which all local rotations induce the same cyclic order of X̃. The
proof of Theorem 3.3 is based on the following correspondence between Cayley maps and
symmetric embeddings. An embedding of a Cayley graph G is strongly symmetric if and
only if it is a Cayley map of G. An embedding of a Cayley graph of a group Γ with
generating set X is symmetric, but not strongly symmetric, if and only if there is an
index-two subgroup Γ′ of Γ such that the local rotations of all vertices corresponding to
Γ′ induce the same cyclic order of X̃ and the local rotations of all vertices corresponding
to Γ− Γ′ induce the reverse cyclic order. For more details about this correspondence see
Chapters 10 (Theorem 4.1) and 11 of [2]. We conclude that the problem of determining
the strong symmetric genus range of Gn is equivalent with the problem of determining the
genera of all Cayley maps of Gn. Moreover, if Γ does not have an index-two subgroup,
then every symmetric embedding of G is strongly symmetric. Consequently, the fact
that Zn

3 does not have an index-two subgroup for any nonnegative integer n implies that
symmetric genus range and strong symmetric genus range of Gn coincide.

Recall that a generating set X of a group Γ is irredundant if no proper subset of X
generates Γ. We call a Cayley graph irredundant if it is generated by an irredundant
generating set of the group. Let Bn denote the bouquet of n circles; that is, a single
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vertex incident with n loops. It is well known that every Cayley graph of a group Γ with
generating set not containing involutions is the derived graph of Bn for some integer n
and a (regular) voltage assignment in Γ, see [9]. The derived embedding is a Cayley map
and each Cayley map of the graph arises as the derived embedding of an embedding of
Bn and some voltage assignment. The genera of the derived embeddings were determined
by [3]. In the case of irredundant Cayley graphs of Zn

p , the genus is given by formula

γ(Π′) = 1 +
|Zn

p |
2

(
n− 1−

t∑
i=1

1

mi

)
, (7)

where t is the number of faces of Π and mi, the period of the i-th face of Π, is the group
order of the sum of group elements (voltages) assigned to the edges on the boundary of
the face. Note that all non-zero elements of the voltage group Zn

p have order p.
Our first aim is to prove Lemma 3.2, which characterises the possible periods of an

embedding of Bn with voltages in Zn
p such that the derived graph is an irredundant Cayley

graph of Zn
p . To this end, we need the following proposition asserting that each face of

an arbitrary embedding with at least two faces traverses some edge only once.

Proposition 3.1. Let Π be an embedding of a connected graph. If Π has at least two
faces, then for each face F of Π there is an edge that is traversed precisely once by F .

Proof. Assume that F is a face of an embedding Π and that there is no edge traversed
by F exactly once. Since altogether the faces of Π traverse each edge precisely twice, it
follows that each edge on the boundary of F is traversed twice by F . Let v be a vertex
on the boundary of F . First observe that if e is an edge incident with v such that e
is traversed twice by F , then F must traverse both the edge preceding e and the edge
following e in the rotation at v. Since F traverses each edge on its boundary twice, an
easy inductive argument shows that F traverses all edges incident with v. Consequently,
the vertex v does not lie on a boundary of any other face. The fact that the choice of v
was arbitrary implies that the vertices on the boundary of F form a connected component
of the graph and in particular, F is the only face of Π.

Lemma 3.2. Let Π be an embedding of Bn with a voltage assignment from Zn
p such that

the derived graph is an irredundant Cayley graph of Zn
p , where p is an odd prime and n

is a positive integer If Π has one face, then the period of the face is 1. If Π has at least
two faces, then the period of each face of Π is p.

Proof. Since the generating set is irredundant, the order of every voltage is strictly greater
than 1 and the voltages are pairwise independent. As the order of every element of Zn

p is
p, it follows that the order of every voltage is exactly p. Clearly, if Π has precisely one
face, then every edge is traversed twice by the face, once in each direction, implying that
the period is the group identity. Assume that Π has at least two faces. If F is a face of
Π, then the boundary of F contains an edge e that is traversed precisely once by F by
Proposition 3.1. The voltage assigned to e has order p and is independent from all other
voltages assigned to the edges of F , thus the period of F is at least p. The fact that Zn

p
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does not contain elements of order strictly greater than p implies that the period of F is
exactly p.

Theorem 3.3. Let G be an irredundant Cayley graph of Zn
p for some odd prime p and

a positive integer n. Then the symmetric genus range and the strong symmetric genus
range of G coincide and are given by

{1 + pn−1[(n− 1)(p− 1)− 2]/2 + gpn−1; g is an integer such that 0 6 g < bn/2c}

∪ {1 + pn(n− 2)/2; if n is even}.

Proof. It is not difficult to see that any Cayley map of G is the derived embedding of an
embedding of Bn with voltages from Zn

p (see [9, Section 6.2.1]). Clearly, Bn is a planar
graph, the maximum genus of Bn is bn/2c, and Interpolation theorem for orientable
surfaces implies that Bn has a cellular embedding in the orientable surface of genus g if
and only if 0 6 g 6 bn/2c. Assume that an embedding Π of Bn has at least two faces. By
Lemma 3.2 the period of each face is p and therefore the genus of the derived embedding is
determined by the number of faces of the base embedding alone. To calculate the genus of
the derived embedding Π′, we can substitute f/p for the sum in (7), where f is the number
of faces of Π. Additionally, expressing f from the Euler formula for Π we get f = n+1−2g
and again substituting gives γ(Π′) = 1+pn−1[(n−1)(p−1)−2+2g)]/2. A straightforward
calculation shows that if the embedding of Bn has one face (and necessarily n is even),
then the genus of the derived embedding is 1 + pn(n− 2)/2.

The lowest genus of Cayley maps of Gn calculated in Theorem 3.3 gives the following
upper bound on γ(Gn).

Theorem 3.4. Let n be a nonnegative integer. Then γ(Gn) 6 1 + 3n−1(n− 2).

For n = 3, 4, and 5, Theorem 3.4 gives γ(G3) 6 10, γ(G4) 6 55, and γ(G5) 6 244.
Concerning the genera of (strong) symmetric embeddings of Cayley graphs, a large

part of the existing results deal with determination of the genus – the minimum integer in
the symmetric genus range. For symmetric genus, the focus is usually on a specific group
or a family of groups, or a specific surface, see for example [7] and [12]. Another important
direction in the study of symmetric embeddings of Cayley graphs is aimed at regular maps
arising from Cayley graphs, see for example [20]. The following problem offers a slightly
different perspective on symmetric embeddings of Cayley graphs. Theorem 3.3 indicates
that this problem may be approachable in the case of irredundant Cayley graphs of groups
with relatively simple structure such as Zn

p .

Problem 3. For a given Cayley graph G, determine the symmetric genus range and the
strong symmetric genus range of G.

The genus range of a graph G is the set of integers g such that G admits a cellular
embedding in the orientable surface of genus g; the largest integer in the genus range of
G is called the maximum genus of G and it is denoted by γM(G). By the Interpolation
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theorem for orientable surfaces ([8]), an integer g lies in the genus range of G if and only
if γ(G) 6 g 6 γM(G), that is, the genus range is always a contiguous interval. On the
other hand, as a consequence of Theorem 3.3 we get that the (strong) symmetric genus
range of a Cayley graph can contain arbitrarily large gaps.

The minimum genus of a group Γ was defined in [26] as the minimum among genera
of all Cayley graphs of Γ. For a group Γ, we introduce the genus range of Γ as the set
of all integers g such that there is an irredundant Cayley graph of Γ having a cellular
embedding in the orientable surface of genus g. Rather surprisingly, the concept of the
the genus range of a group was not investigated before. Theorem 3.3 suggests that the
problem of determining the genus range of a group may have different characteristics
and a more algebraic flavour when restricted to symmetric embeddings of Cayley graphs
of the group. Due to this expected different behaviour, we introduce also the symmetric
variants of the genus range of a group. The (strong) symmetric genus range of Γ is the set
of integers g such that there is a Cayley graph for Γ having a (strong) symmetric cellular
embedding in the orientable surface of genus g, where we may or may not require the
Cayley graphs to be irredundant. Nonorientable variants of the genus range parameters
of a group may be introduced analogously.

The restriction to irredundant generating sets in the calculations of the genus of a
group is justified by the following observation: if X and X ′ are generating sets of a
group Γ such that X ⊆ X ′, then the Cayley graph G of Γ generated by X is a subgraph
of the Cayley graph G′ generated by X ′ and thus γ(G) 6 γ(G′). Let γM(Γ) denote
the the maximum integer in the genus range of a group Γ; we say that γM(Γ) is the
maximum genus of Γ. While the value of the minimum genus of a group does not depend
on the precise definition of the arising Cayley graphs, the value of maximum genus can
be affected by the treatment of the involutions (elements of order 2) in the generating
sets. It is customary to define the (standard) Cayley graph as having cycles of length 2
corresponding to involutions, and to define the reduced (or alternative) Cayley graph in
which each cycle of length two corresponding to an involution is replaced by a single edge,
see for instance [9]. Recall that a graph G is called upper-embeddable if its maximum
genus reaches the natural upper bound bβ(G)/2c, where β(G) is the cycle rank of G.
Equivalently, G is upper-embeddable if and only if it has an embedding with one face
(if its cycle rank is even), respectively with two faces (if its cycle rank is odd). Nedela
and Škoviera [14] proved that every Cayley graph is upper-embeddable and that every
reduced Cayley graph G is upper-embeddable unless the generating set consists of two
elements r and s such that r2 = s3 = 1 and |V (G)| > 18, in which case the graph is
cubic and its the maximum genus equals |V (G)|/6 + 1 (where |V (G)| is always divisible
by 6). It follows that the maximum genus of a group Γ is essentially determined by
the maximum degree of a Cayley graph of Γ, that is, it reduces to a question about
generating sets of Γ. If we would not require the Cayley graphs to be irredundant, then
all elements of Γ could be taken as a generating set, yielding a graph with the maximum
genus among all Cayley graphs of Γ, rendering the problem trivial. Since we consider
irredundant Cayley graphs, we cannot take Γ as the generating set and the determination
of the maximum genus of a group Γ splits into two cases according to the treatment of
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involutions. (Note that the degree, and hence also the maximum genus, of the Cayley
graph generated by Γ also depends on whether we consider standard or alternative Cayley
graphs.) For standard Cayley graphs, establishing the maximum genus of Γ is equivalent
with finding an irredundant generating set of Γ with the maximum number of elements.
For alternative Cayley graphs, establishing the maximum genus of Γ is equivalent with
determining a generating set X of Γ such that 2|X| − iX is maximized, where iX is the
number of involutions in X. In this context it might be interesting to know all groups Γ
whose maximum genus is attained by non-upper-embeddable Cayley graph.

Since Zn
p have essentially only one irredundant generating set and do not contain

involutions, we get the next results.

Theorem 3.5. For any odd prime p, the maximum genus of Zn
p is given by

γM(Zn
p ) = b((n− 1)pn − 1)/2c.

Theorem 3.6. For any odd prime p, the symmetric genus range and the strong symmetric
genus range of Zn

p coincide and are given by

{1 + pn−1[(n− 1)(p− 1)− 2]/2 + gpn−1; g is an integer such that 0 6 g < bn/2c}

∪ {1 + pn(n− 2)/2; if n is even}.

It follows that the genus range of Z3, Z2
3 , and Z3

3 is equal to {0}, {1, 2, 3, 4}, and
{7, . . . , 26}, respectively.

The definition of genus range of a group leads to the following problem.

Problem 4. For a given group Γ, determine the genus range and the (strong) symmetric
genus range of Γ.

In spite of the Interpolation theorem for orientable surfaces and Theorem 3.3, it is
natural to ask whether the genus range and the (strong) symmetric genus range of a
group can contain gaps.

Finally, note that while the case of Gn is probably among the most difficult in de-
termining the (non-symmetric) genus among the Cayley graphs of abelian groups, most
likely it is one of the easiest for the (strong) symmetric genus.

3.2 Computer search

The first author wrote a series of computer programs for experimenting with the embed-
dings of Gn. The second author wrote an independent program for checking the validity
of results. The data are available at the E-JC webpage accompanying the paper and this
section briefly summarizes the main results.

We start by introducing the invariant used to distinguish nonisomorphic embeddings
of a graph. A face distribution of an embedding Π is the sequence {fi}, where fi is the
number of faces of Π with length i. The concept of face distribution appears as region
distribution in [27], where all possible face distributions of K5 are presented. A face of an
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embedding is called repetitive if it contain some vertex more than once. An extended face
distribution of an embedding Π is the face distribution of Π together with the sequence
{ri}, where ri is the number of repetitive faces of length i. Clearly, if two embeddings of
the same graph have different extended face distribution, then they are nonisomorphic.

Theorem 3.7. For the genus of G4 we have γ(G4) 6 37. Moreover, there are more
than 10 000 nonisomorphic embeddings of G4 into the orientable surface of genus 37 with
pairwise distinct extended face distributions.

An embedding of G4 in the orientable surface of genus 37 was obtained by computer
search; the extended face distribution of the embedding is presented in Table 4. The
rotation schemes for more than 10 000 nonisomorphic embeddings of G4 in the orientable
surface of genus 37 and their extended face distributions can be found on the web pages
containing the supplementary material. For the sake of completeness we present the
rotation scheme of one such embedding in Table 3 and the extended face distribution of
the embedding in Table 4.

0000: 0200, 0100, 0001, 0002, 0020, 1000, 2000, 0010
1000: 1010, 1020, 1200, 1100, 2000, 0000, 1002, 1001
2000: 1000, 2100, 2200, 2002, 2001, 2020, 2010, 0000
0100: 0110, 0120, 1100, 0102, 0101, 0000, 0200, 2100
1100: 1102, 2100, 1000, 1200, 0100, 1120, 1110, 1101
2100: 2120, 2110, 0100, 2200, 2000, 1100, 2102, 2101
0200: 0000, 0210, 0220, 0202, 0201, 1200, 2200, 0100
1200: 1201, 1202, 1100, 1000, 1220, 1210, 2200, 0200
2200: 2000, 2100, 0200, 1200, 2210, 2201, 2202, 2220
0010: 0011, 0110, 0210, 0000, 2010, 1010, 0020, 0012
1010: 1000, 1012, 1020, 0010, 2010, 1011, 1210, 1110
2010: 2012, 2011, 1010, 0010, 2000, 2020, 2110, 2210
0110: 0010, 0112, 0111, 0120, 0100, 2110, 1110, 0210
1110: 2110, 1111, 1100, 1120, 1112, 1010, 1210, 0110
2110: 2112, 2111, 1110, 0110, 2100, 2120, 2210, 2010
0210: 0200, 0010, 0110, 1210, 0212, 0211, 2210, 0220
1210: 1211, 2210, 1200, 1220, 1212, 0210, 1110, 1010
2210: 2211, 2212, 2010, 2110, 0210, 2220, 2200, 1210
0020: 0220, 0120, 0010, 1020, 2020, 0000, 0022, 0021
1020: 1022, 1021, 1120, 1220, 1000, 2020, 0020, 1010
2020: 2220, 2120, 0020, 1020, 2010, 2000, 2021, 2022
0120: 0110, 0121, 0122, 0020, 0220, 2120, 1120, 0100
1120: 0120, 2120, 1220, 1020, 1121, 1122, 1110, 1100
2120: 2121, 2122, 2020, 2220, 1120, 0120, 2110, 2100
0220: 0020, 2220, 1220, 0221, 0222, 0200, 0210, 0120
1220: 1222, 1210, 1200, 1020, 1120, 2220, 0220, 1221
2220: 0220, 1220, 2120, 2020, 2200, 2222, 2221, 2210
0001: 0201, 0021, 0011, 2001, 1001, 0002, 0000, 0101
1001: 1000, 1002, 0001, 2001, 1201, 1101, 1021, 1011
2001: 2201, 1001, 0001, 2011, 2021, 2000, 2002, 2101
0101: 1101, 0201, 0001, 0100, 0102, 0121, 0111, 2101
1101: 2101, 1102, 1100, 1111, 1121, 1001, 1201, 0101
2101: 2100, 2102, 2201, 2001, 1101, 0101, 2111, 2121
0201: 2201, 0211, 0221, 0001, 0101, 1201, 0200, 0202
1201: 1101, 1001, 2201, 1202, 1221, 1211, 1200, 0201
2201: 0201, 1201, 2001, 2101, 2202, 2200, 2221, 2211
0011: 2011, 0001, 0021, 0111, 0211, 0010, 0012, 1011
1011: 0011, 1012, 1001, 1021, 1111, 1211, 1010, 2011
2011: 2021, 2001, 0011, 1011, 2010, 2012, 2111, 2211
0111: 0121, 0110, 0112, 1111, 2111, 0101, 0211, 0011
1111: 1112, 1211, 1011, 1121, 1101, 1110, 2111, 0111

2111: 2112, 2211, 2011, 2121, 2101, 0111, 1111, 2110
0211: 1211, 0210, 0212, 0011, 0111, 0221, 0201, 2211
1211: 2211, 1210, 1011, 1111, 1212, 1201, 1221, 0211
2211: 2011, 2111, 2212, 2210, 1211, 0211, 2201, 2221
0021: 0011, 0001, 0221, 0020, 0022, 2021, 1021, 0121
1021: 0021, 2021, 1121, 1020, 1022, 1221, 1011, 1001
2021: 2020, 2001, 2011, 2221, 2121, 1021, 0021, 2022
0121: 0101, 0122, 0120, 0111, 0021, 1121, 2121, 0221
1121: 1021, 2121, 0121, 1101, 1111, 1221, 1122, 1120
2121: 2120, 2101, 0121, 1121, 2021, 2221, 2111, 2122
0221: 0222, 0220, 0021, 0201, 0211, 0121, 2221, 1221
1221: 2221, 1222, 1121, 1021, 1220, 1211, 1201, 0221
2221: 2220, 2222, 1221, 0221, 2121, 2021, 2211, 2201
0002: 0000, 0001, 1002, 2002, 0012, 0102, 0202, 0022
1002: 0002, 1001, 1000, 1022, 1012, 1102, 1202, 2002
2002: 2022, 2012, 0002, 1002, 2202, 2102, 2001, 2000
0102: 2102, 0202, 0002, 0112, 0122, 0101, 0100, 1102
1102: 1202, 1002, 1112, 1122, 1100, 1101, 2102, 0102
2102: 2202, 2101, 2100, 2122, 2112, 0102, 1102, 2002
0202: 1202, 0201, 0200, 0222, 0002, 0102, 0212, 2202
1202: 1002, 1102, 1200, 1212, 1222, 1201, 0202, 2202
2202: 2200, 2201, 2102, 2002, 1202, 0202, 2212, 2222
0012: 1012, 0011, 0010, 0022, 0212, 0112, 0002, 2012
1012: 0012, 2012, 1212, 1112, 1002, 1022, 1010, 1011
2012: 0012, 2002, 2022, 2112, 2011, 2010, 2212, 1012
0112: 0012, 0212, 2112, 1112, 0111, 0110, 0122, 0102
1112: 1102, 1012, 1212, 1111, 0112, 2112, 1110, 1122
2112: 2012, 2212, 2111, 2110, 1112, 0112, 2102, 2122
0212: 0012, 0222, 0211, 0210, 1212, 2212, 0202, 0112
1212: 1211, 1112, 1012, 2212, 0212, 1210, 1222, 1202
2212: 1212, 2012, 2210, 2211, 2112, 2222, 2202, 0212
0022: 1022, 2022, 0021, 0020, 0002, 0222, 0012, 0122
1022: 1012, 1002, 2022, 0022, 1122, 1222, 1021, 1020
2022: 0022, 1022, 2122, 2222, 2012, 2002, 2020, 2021
0122: 0222, 2122, 1122, 0022, 0120, 0121, 0102, 0112
1122: 1112, 1120, 1121, 1222, 1022, 0122, 2122, 1102
2122: 2120, 2121, 2112, 2102, 1122, 0122, 2222, 2022
0222: 0212, 0022, 0202, 0220, 0221, 1222, 2222, 0122
1222: 2222, 0222, 1202, 1212, 1220, 1022, 1122, 1221
2222: 0222, 1222, 2221, 2220, 2202, 2212, 2022, 2122

Table 3: Rotation scheme for an embedding of G4 with genus 37.

The problem of determining the complete genus distribution of a graph G asks for the
number of embeddings of G in every surface, where two embeddings are considered to be
different if their rotation schemes differ. Therefore, the following theorem does not take
into account any symmetries of G2 or the embedding.
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length of the face 3 4 5 6 7 8 9
number of faces 88 59 8 10 2 2 2
number of repetitive faces 0 0 0 0 2 0 0

Table 4: Extended face distribution of an embedding of G4 with genus 37 presented in
Table 3.

Theorem 3.8. The embedding range of G2 is [1, 5], that is, G2 admits a cellular embedding
into the surfaces of genus 1, 2, 3, 4, and 5, and the complete genus distribution of G2 is
given in Table 5. In particular, there are 330 genus embeddings into torus with only 7
distinct extended face distributions, presented in Table 6, and 46 908 embeddings in the
double torus with 146 distinct extended face distribution.

genus 0 1 2 3 4 5 6
] embeddings 0 330 46 908 1 385 214 6 516 564 2 128 680 0

Table 5: Complete genus distribution of G2.

On the web pages containing the supplementary material we list the rotations schemes
and extended face distributions of all embeddings of G2 with genus at most two. Further-
more, to indicate the rate of growth of the number of non-isomorphic low-genus embed-
dings of Gn, we provide also all distinct face distributions and the corresponding rotation
schemes for embeddings of G2 with genus at most two. Perhaps surprisingly, G2 embedded
in the torus admits only 7 distinct extended face distributions, they are listed in Table 6
along with the number of such embeddings. Three of these distributions contain exactly
one repetitive face and four of them do not contain a repetitive face. Finally, note that
the two embeddings with 9 quadrangles are mirror images of each other.

length of the face 3 4 5 6 length of the repetitive face frequency

number of faces 6 2 0 0 10 36
number of faces 5 2 1 0 8 144
number of faces 4 2 2 1 6 72
number of faces 4 3 0 2 – 36
number of faces 4 1 4 0 – 36
number of faces 6 0 0 3 – 4
number of faces 0 9 0 0 – 2

Table 6: All distinct extended face distributions of G2 embedded in the torus.

Moving from G2 to G3, we observe that the number of genus embeddings with pairwise
distinct extended face distributions grows rapidly, as evidenced by the following theorem.
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Although at present we do not know whether 37 is the actual value of γ(G4), the change
between G2 and G3 indicates that the actual number of genus embeddings with pairwise
distinct extended face distributions of G4 may be significantly larger than the number
10 000 presented in Theorem 3.7.

Theorem 3.9. There are at least 1319 genus embeddings of G3 with pairwise distinct
extended face distributions.

The rotation schemes of the nonisomorphic genus embeddings of G3 from Theorem 3.9
can be found on the web pages containing the supplementary material. Table 7 contains
several particularly interesting face distributions of genus embeddings of G3; the corre-
sponding embeddings can be also found as a separate part of the supplementary material.
Although all these embeddings have all faces nonrepetitive, it is interesting that for all of
them except the first two, there is also an embedding with the same face distribution and
one of the longest faces repetitive. Note also that the last embedding in Table 7 has the
same face distribution as the embedding constructed in [13] to show that γ(G3) 6 7.

length of the face 3 4 5 6 length of the remaining face

number of faces 22 12 0 8 –
number of faces 24 7 4 7 –
number of faces 24 9 0 9 –
number of faces 26 9 0 6 12
number of faces 27 6 0 8 9
number of faces 27 8 0 6 13
number of faces 27 9 0 5 15

Table 7: Face distributions of some of the 1319 genus embeddings of G3 from Theorem
3.9.

In general, Gn has
∏

v∈V (Gn)(deg(v)−1)! = [(2n−1)!]3
n

rotation schemes. In particular,

G3 and G4 have 12027 ≈ 1056, respectively 504081 ≈ 10299, rotation schemes, which makes
exhaustive search infeasible even for G3.

3.3 Recursive construction

Let G′n denote Gn with a loop attached to every vertex. Clearly, Gn+1 is the derived graph
of G′n with respect to Z3, where a non-zero element of Z3 is assigned to an edge e if and
only if e is a loop. The idea to obtain an embedding of G3 as a lift of the quadrilateral
embedding of G2 appears in [27]. In this subsection we explore the possibilities to use lifts
of G′n to bound the genus of Gn+1 in the general case. Our main result, Theorem 3.15,
shows that any minimum-genus embedding of Gn can be lifted in such a way that the
resulting embedding of Gn+1 has low genus.

First observe that if a loop bounds a face (of length 1) and the voltage assigned to the
loop has order 3, then the face lifts to a triangle. Therefore, if every loop bounds a face

the electronic journal of combinatorics 22(4) (2015), #P4.2 14



and a non-zero element of Z3 is assigned to every loop, then the derived embedding has
at least |V (G′n)| triangles. The main idea of the proof of Theorem 3.11 is that if we can
embed the loops inside faces of an embedding Π in such a way that every face contains
either zero or at least two loops, then there is a voltage assignment to loops such that
every face of Π with length at least 2 lifts to three faces. The fact that the loops can be
distributed appropriately is captured by the following definition.

Definition 3.10. Let Π be an embedding of a graph G. A face-covered partition of Π is
a partition of the vertex set V (G) into sets Pi, i = 1, . . . , k, satisfying the following two
conditions:

(i) for each i ∈ {1, . . . , k}, the set Pi contains at least two vertices of G; and

(ii) for each i ∈ {1, . . . , k}, there is a face of Π whose boundary contains Pi.

Our method does not rely on the fact that the base graph is Gn and we state the result
in a more general form.

Theorem 3.11. Let Π be an embedding of a graph G in an orientable surface S. Let G′

denote G with a loop attached to every vertex. If Π admits a face-covered partition, then
there is an embedding of G′ in S and a voltage assignment from Z3 to G′ such that the
derived graph is G�K3 embedded with 3FΠ + |V (G)| faces.

Proof. Let P = {P1, . . . , Pk} be a face-covered partition of Π and let Fi be a face of Π
that covers Pi for i ∈ {1, . . . , n}. We arbitrarily choose a preferred direction for each loop
e and denote it by e; the opposite direction is denoted by e−1. For each vertex v ∈ P ,
embed the loop e based at v into Fi in such a way that the rotation at v is (ee−1 . . .).
Denote the resulting embedding by Π′. Denote by L the set of loops added to G and
by FL the set of faces of length 1 bounded by a loop from L. We say that a face F of
Π′ contains a loop l if the boundary of F traverses l. Our goal is to prescribe a voltage
assignment ζ from the arcs of G′ to the elements of Z3 such that the derived embedding
has 3FΠ + |V (G)| faces. To achieve this property, we choose ζ such that the period of
each face in FL is 3 and the period of each face of Π′ not in FL is 1.

First note that any loop e from L lies on the boundary of two distinct faces in Π′, one
of them is a face of length 1 bounded by e, and the other is a face of length at least 2.
For any arc a of G not contained in G′ let ζ(a) = 0. Let F be a face of Π′ not in FL and
containing a loop. The choice of P and Π′ implies that F contains at least two loops. If
F contains two loops e and f , let ζ(e) = 1 and ζ(f) = 2. If F contains three loops e, f ,
and g, let ζ(e) = ζ(f) = ζ(g) = 1. Finally, if F contains at least four loops, define the
value of ζ for loops in F as follows. Repeatedly choose two loops e and f which had so
far not been assigned a value of ζ and let ζ(e) = 1 and ζ(f) = 2. This assigns the value
ζ for all loops contained in F , and consequently for all arcs of G′.

Now we show that the periods of all faces of Π′ under ζ have the required values. The
boundary of any face of FL contains precisely one arc a corresponding to a loop in L and
ζ(a) = 1 or ζ(a) = 2. In both cases the period of the face in Z3 is 3. If F is a face of Π′
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which is not in FL and which does not contain a loop, then all arcs on the boundary of
F are assigned 0 by ζ and the period of F is 1. If F is a face of Π′ which is not in FL

and which contains two or three loops, then clearly the period of the face is 1. The fact
that the period of F is 0 if F contains at least four loops follows from a straightforward
inductive argument, which is omitted.

Clearly, the derived graph of G′ under ζ in Z3 is G�K3. The embedding Π′ has
FΠ + |V (G)| faces, FΠ of them with period 3 and |V (G)| of them with period 1. Therefore,
the derived embedding of Π′ under ζ in Z3 has FΠ + |V (G)| faces, which completes the
proof.

Note that in the previous theorem each new triangle of G�K3 is a face of the derived
embedding and that it is possible to calculate the lengths of all faces of the derived embed-
ding using the lengths of the faces of Π and the face-covered partition of G. Moreover, the
derived embedding admits a face-covered partition consisting from the new triangles of
G�K3. Our next aim is a more general statement that every minimum-genus embedding
of Gn admits a face-covered partition. The main idea is that for any embedding and any
matching, each pair of matched vertices is covered by some face. As Gn − v contains a
perfect matching for any vertex v, the problem reduces to covering the exceptional vertex
v. To cover this vertex we then use the fact that the embedding has a face of length
at most 5. In the proofs of the following two auxiliary results we use the fact that the
vertices of Gn can be bijectively identified with words of length n over {0, 1, 2} with two
vertices being adjacent if and only if their representations differ at exactly one position.

Lemma 3.12. Let S be a set of three pairwise adjacent vertices of Gn, where n > 1.
Then Gn − S has a perfect matching. Consequently, Gn − v has a perfect matching for
any vertex v.

Proof. First observe that if Gn − S has a perfect matching for each triangle S, then
Gn − v has a perfect matching for each vertex v since every vertex lies in some triangle.
To show that Gn − S indeed has a perfect matching for each triangle S we proceed by
induction on n. For n = 1 the claim is obvious. For n > 2 we show how to construct
the desired matching. From the fact that S forms a triangle it follows that there is a
unique position such that the representations of the vertices of S pairwise differ only in
this position. Restricting Gn−S to all but this one position yields three disjoint copies of
Gn−1, each of them with one vertex removed. By the induction hypothesis the copies of
Gn−1 have perfect matchings; the union of these perfect matchings is a perfect matching
of Gn − S.

Proposition 3.13. Let Π be an embedding of Gn that contains a face of length at most
5. Then Π admits a face-covered partition of G.

Proof. We distinguish three cases according to the length of the shortest face of Π.
i) The length of a shortest face of Π is 3. Let F be a face of length 3 and let S be the set
of vertices incident with F . By Lemma 3.12, there is a perfect matching M of Gn − S.
Denote the edges of M by m1, . . . ,mk and let Pi = {ui, vi}, where ui and vi are the
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endpoints of mi for i ∈ {1, . . . , k}. Finally, let Pk+1 = S. Since every edge mi is traversed
by some face of Π, for any i, 1 6 i 6 k, there is a face of Π that covers both vertices of
Pi. Moreover, the vertices of Pk+1 are covered by F . It follows that the system of sets Pi

for i ∈ {1, . . . , k + 1} is a face-covered partition of Π.
ii) The length of a shortest face of Π is 4. Let F be a face of length 4 in Π. Without
loss of generality suppose that the vertices of F are represented by 00x, 10x, 11x, and
01x, where x is arbitrary, but fixed word over {0, 1, 2} with length n − 2. Consider the
graph G′ = Gn − {abx; a, b ∈ {0, 1, 2}}. Restricting G′ to positions 2, . . . , n yields three
disjoint copies of Gn−1, each of them with a triangle at position 2 removed. By Lemma
3.12, each copy of Gn−1 with a triangle removed admits a perfect matching; denote by M
the union of these perfect matchings. We construct a face-covered partition of Gn using
M and a partition covering the three removed triangles. Assume that the edges of M are
u1v1, u2v2, . . . , ukvk, where k = 3n−1−3. Let Pi = {ui, vi} for each i ∈ {1, . . . , k}. Clearly,
the sets Pi cover all vertices of M . To cover the vertices of the removed triangles, let
Pk+1 = {00x, 10x, 11x}, Pk+2 = {20x, 21x}, Pk+3 = {01x, 02x}, and Pk+4 = {12x, 22x}.
Since the set Pk+1 is covered by the face F and any set Pi for i 6= k + 1 contains exactly
two vertices joined by an edge, the system of sets Pi, i ∈ {1, . . . , k + 4} forms the desired
face-covered partition.
iii) The length of a shortest face of Π is 5. Every pentagon in Gn has form aabab−1 for
some generators of Gn a and b. In particular, every pentagon contains vertices of some
triangle S. To get the desired face-covered partition it suffices to take the face-covered
partition for Π covering the vertices of S constructed in the proof of case i).

Proposition 3.14. Every embedding of Gn with genus less than 1 + b3n−1(2n − 3)/2c
contains a face of length at most 5. In particular, every minimum-genus embedding of Gn

contains a face of length at most 5.

Proof. If an embedding Π of Gn has the length of a shortest face at least 6, then Π
contains at most n3n−1 faces. Using Euler formula we get that the genus of Π is at
least 1 + d3n−1(2n − 3)/2e, which justifies the first claim. By Theorem 3.4 γ(G) 6
1 +n3n−1− 2 · 3n−1. Therefore, the inequality 1 +n3n−1− 2 · 3n−1 < 1 + d3n−1(2n− 3)/2e
proves the second claim.

Theorem 3.15. For every n > 2 we have γ(Gn+1) 6 3γ(Gn) + 3n− 2. Consequently, for
n > 5 we have

γ(Gn) 6 3n−4[γ(G4) + 27n− 109] + 1 6 3n−2[3n− 8] + 1.

Proof. Let Π be a genus embedding of Gn for some n > 2. By Proposition 3.13 and
Proposition 3.14, the embedding Π has a face-covered partition P . By Theorem 3.11
applied to Π and P , there is an embedding Π′ of Gn+1 with 3FΠ + 3n faces. Using Euler
formula on the number of faces of Π and Π′ and the number of vertices and edges of the
corresponding graphs yields the first claim. The first closed form of the second claim can
be obtained by solving the recurrence relation g4 = γ(G4) and gn+1 = 3gn + 3n − 2 for
n > 4. The second closed form follows from Theorem 3.7 as γ(G4) 6 37.
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Corollary 3.16. For the genus of G5 we have γ(G5) 6 190.

Proof. By Theorem 3.7, there is an embedding Π of G4 with genus 37. The embedding
Π contains a triangular face and therefore, by Proposition 3.13, it admits a face-covered
partition P . The result follows by applying Theorem 3.11 to Π and P .

Proof of Theorem 1.1. The lower bounds follow from Theorem 2.7 and Proposition 2.1.
The upper bounds are proved in Theorem 3.7 and Theorem 3.15.

Theorem 3.11 and Lemma 3.13 can be applied also to genus embeddings of G2 and
G3 to construct low-genus embeddings of G3 and G4, respectively. In these cases we get
that the derived embeddings have genera 10 and 46, respectively, yielding γ(G3) 6 10
and γ(G4) 6 46. Note that both these bounds have been superseded by ad-hoc and
computer-search methods of this paper.

4 Discussion

The paper improves the bounds on the genus ofGn by combining computational, recursive,
combinatorial, and to a very limited extent also group-theoretic methods. Although at
present the search for the genus of Gn seems to be intractable without new techniques,
we hope that the gap 30 6 γ(G4) 6 37 is a challenge that will attract mathematicians
and computer programmers alike. Any improvement on upper bounds for any Gn with
n > 4 immediately yields better upper bounds for all Gm with m > n by Theorem 3.15.
On the other hand, it would be very desirable to have lower bounds on the genus of Gn

that improve on the, in a sense trivial, bounds of Proposition 2.1.
Note that there are several related problems worth attacking that were not investigated

in this paper, one of them being the determination of the non-orientable genus of Gn. The
results and methods of this paper may be useful in such an investigation, for instance the
inequality χ(G4) 6 57 derived in Theorem 2.7 directly implies that the non-orientable
genus of G4 is at least 59. On the other hand, it is still not known whether the non-
orientable genus of G3 is 13 or 14, see [5].

In our computations we have not considered the fact that Gn is highly symmetric.
Therefore, some of the embeddings we have constructed in our search for low-genus em-
beddings of G4 are pairwise isomorphic. It is possible that a certain speed-up may be
achieved by considering only representatives of equivalence classes as is the case in other
applications, such as [6].
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[20] B. Richter, J. Širáň, R. Jajcay, T. Tucker, and M. Watkins. Cayley maps. J. Combin.
Theory Ser. B, 95:189–245, 2005.

[21] G. Ringel. Über drei kombinatorische Probleme am n-dimensionalen Würfel und
Würfelgitter. Abh. Math. Sem. Univ. Hamburg, 20:10–19, 1955.

[22] G. Ringel. Map Color Theorem. Springer, 1974.

[23] C. Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10:568–576,
1989.

[24] C. Thomassen. The genus problem for cubic graphs. J. Combin. Theory Ser. B,
69:52–58, 1997.

[25] A. T. White. The genus of repeated cartesian products of bipartite graphs. Trans.
Amer. Math. Soc., 151:393–404, 1970.

[26] A. T. White. On the genus of a group. Trans. Amer. Math. Soc., 173:203–214, 1972.

[27] A. T. White. Graphs of Groups on Surfaces: Interactions and Models. North Holland,
2001.

the electronic journal of combinatorics 22(4) (2015), #P4.2 20


