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Abstract

We consider the problem whether a permutation of a finite set is uniquely deter-
mined by its identification minors. While there exist non-reconstructible permuta-
tions of every set with two, three, or four elements, we show that every permutation
of a finite set with at least five elements is reconstructible from its identification
minors. Moreover, we provide an algorithm for recovering a permutation from its
deck. We also discuss a generalization of this reconstruction problem, as well as the
related set-reconstruction problem.
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1 Introduction

Reconstruction problems are a general class of mathematical problems that concern
whether a mathematical object is uniquely determined by pieces of partial information
about the object. In this paper, we will discuss reconstruction problems that fall into a
general framework that was elegantly formalized by Couceiro, Schölzel, and the current
author in [4, Section 2.2]. Roughly speaking, a reconstruction problem comprises a set
O of objects, a way of forming from each object O ∈ O certain derived objects called the
cards of O, and an equivalence relation on O. Once this data is specified, we may ask
whether, or to what extent, an object is uniquely determined, up to equivalence, by its
deck, i.e., the collection of (the equivalence classes of) its cards.

Note that a given object may give rise to the same derived object, up to equivalence,
in many different ways, and it is important to keep track of the number of times each
card appears in the deck. In other words, by a “collection of cards” we mean a multiset
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of cards. Ignoring the multiplicities, taking “collection” to mean a set, we are dealing
with a somewhat different yet related problem, often referred to as a set-reconstruction
problem.

Perhaps one of the most renowned reconstruction problem comes from graph theory.
Is every graph with at least three vertices uniquely determined, up to isomorphism, by
the collection of its one-vertex-deleted subgraphs? It was conjectured by Kelly [7] and
Ulam [15] that the answer to this question is positive, but this still remains as an open
problem that has received considerable attention over the years.

Analogous reconstruction problems have been formulated for many other types of
mathematical objects, such as directed graphs, hypergraphs, relations, posets, functions,
matrices, matroids, integer partitions, and so on. The main topic of this paper is recon-
struction problems the objects of which are permutations.

Evidently, there are many possibilities for defining how the cards of a permutation
are formed, and various reconstruction problems involving permutations have accordingly
been formalized in the literature. For instance, Ginsburg [6], Raykova [13], and Smith [14]
have studied the reconstruction problem where, for a fixed parameter k ∈ N+, the cards
of a permutation π = π1π2 . . . πn are the so-called (n− k)-minors of π, i.e., the patterns
of the subsequences of π of length n− k. For example, the patterns of the subsequences
of length 3 of the permutation 31524 are 213, 312, 213, 231, 132, 213, 132, 132, 123, 312.

Monks [11] considered the variant in which the cards of a permutation π are the so-
called cycle minors of π. The cycle minors of a permutation π ∈ Σn are formed by first
deleting an entry i ∈ [n] from the representation of π as a product of disjoint cycles, and
then subtracting 1 from every number greater than i. For example, the cycle minors of
(134)(25) are (23)(14), (13)(24), (13)(24), (123)(4), (134)(2).

In this paper, we study yet another reconstruction problem of permutations. In this
variant, the cards of a permutation are its identification minors. The identification minors
of π = π1π2 . . . πn are formed, for each two-element subset {i, j} (i < j) of {1, . . . , n}, by
replacing the entry j by i, deleting the second occurrence of i, and taking the pattern of
the resulting sequence. For example, the identification minors of 31524 are 1423, 3124,
2143, 3142, 3124, 2143, 3142, 3124, 3142, 3142.

The identification minors of permutations are in a complete analogy to the identifi-
cation minors of functions of several arguments. The formation of minors is a way of
deriving new functions from a given one that has great significance in universal algebra.
A function f : An → B is said to be a minor of another function g : Am → B, if f can
be obtained from g through a combination of the following operations: introduction of
inessential arguments, deletion of inessential arguments, identification of arguments, and
permutation of arguments. In the special case when f is obtained from g through the
identification of a single pair of arguments, f is called an identification minor of g. Exam-
ples of recent work on minors of functions include the papers by Couceiro and Foldes [1],
Couceiro, Schölzel, and the current author [2], Ekin, Foldes, Hammer, and Hellerstein [5],
Pippenger [12], Wang [16], Willard [17], and Zverovich [18].

A reconstruction problem for functions and identification minors was formulated in [8]:
the objects are functions An → B, the cards of a function f : An → B are its identification
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minors, and two n-ary functions are considered equivalent if each one can be obtained
from the other through permutation of arguments. Several results, both positive and
negative, concerning this reconstruction problem were obtained by the current author,
partly in collaboration with Couceiro and Schölzel in [3, 4, 8, 9, 10].

Certain quotient-like structures of permutations, called “permutations arising from
a permutation via partitions”, arose as a crucial tool in [10], where the current author
studied the reconstructibility of functions determined by the order of first occurrence.
(We will discuss this in a bit more detail in Section 6.) The identification minors of
permutations, as defined above, constitute an important special case of permutations
arising from a permutation via partitions. Against this background, it looks very natural
to investigate the reconstruction problem of permutations and identification minors that
is the topic of this paper.

This paper is organized as follows. In Section 2, we provide the necessary definitions
and we make the immediate observation that if 2 6 n 6 4, then there are permutations
of {1, . . . , n} that are not reconstructible from identification minor. In fact, if n = 2
or n = 3, then every permutation of {1, . . . , n} is non-reconstructible. In Section 3, we
then prove the main result of this paper: for n > 5, every permutation of {1, . . . , n} is
reconstructible from its identification minors (Theorem 3.7). In fact, the proof provides an
effective algorithm for actually recovering a permutation from its deck; this is explained
in Section 4. In Section 5, we discuss the related set-reconstruction problem and observe
that not every permutation of {1, . . . , n} is set-reconstructible, for all n > 2, i.e., if the
multiplicities of cards are ignored, then reconstruction is no longer possible in general,
no matter how large n is. Finally, in Section 6, we make some conclusive remarks and
suggest a natural generalization of the reconstruction problem discussed in this paper.
Analysis of this generalization remains a topic of further research.

2 Identification minors of permutations

2.1 Notation

We will first introduce some general notation which we will use throughout the paper.
The set of positive integers is denoted by N+. For n ∈ N+, the set {1, . . . , n} is denoted by
[n]. The symmetric group of [n] is denoted by Σn. Any permutation π ∈ Σn corresponds
to the sequence (or word) π1π2 . . . πn, where πi = π(i) for every i ∈ [n]. If π(i) = j, then
we say that j is the location of i in π, or that i is at the j-th position in π. We write
i <π j to denote the fact that i is located to the left of j in the sequence π1π2 . . . πn, i.e.,
π−1(i) < π−1(j). The pattern of a sequence a1a2 . . . a` of integers with no repeated entries
is the unique permutation π = π1π2 . . . π` ∈ Σ` such that a1a2 . . . a` is order-isomorphic
to π1π2 . . . π`, i.e., the relative order of elements is the same in both sequences.

The set of all 2-element subsets of [n] is denoted by
(

[n]
2

)
. For a permutation π ∈ Σn

and a 2-element set I = {i, j} ∈
(

[n]
2

)
with i < j, let πI be the permutation of [n− 1] that

is obtained from the sequence π1π2 . . . πn by performing the following steps:

1. Replace j by i and delete the rightmost occurrence of i in the resulting sequence.
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(Equivalently, if j <π i then swap i and j. Delete j from the resulting sequence.)

2. Decrease any number greater than j in the resulting sequence by 1. (Equivalently,
take the pattern of the resulting sequence.)

The permutations of the form πI for some I ∈
(

[n]
2

)
are called identification minors of π.

2.2 Reconstruction problem

Now we can formulate a reconstruction problem for permutations and identification mi-
nors. The objects are permutations π ∈ Σn for some n ∈ N+. The cards of π ∈ Σn are the(
n
2

)
identification minors πI of π (I ∈

(
[n]
2

)
). The equivalence relation on Σn is the equality

relation. The deck of π is the multiset {πI : I ∈
(

[n]
2

)
} of the identification minors of π,

and it is denoted by deck π. If τ ∈ Σn and deckπ = deck τ , then τ is a reconstruction of
π. If every reconstruction of π is equal to π, then π is reconstructible.

If 2 6 n 6 4, then not all permutations of [n] are reconstructible. For n = 2, this
is obvious, because there are two permutations of {1, 2} but only one permutation of
{1}; hence both permutations of {1, 2} necessarily have the same deck. For n = 3, a
simple counting argument shows that there must exist permutations with the same deck:
there are 3! = 6 permutations of {1, 2, 3}, each has

(
3
2

)
= 3 cards that are permutations

of {1, 2}. The number of permutations of {1, 2} is 2! = 2. The number of 3-element
multisets over a 2-element set is 4. Therefore, the number of possible decks is less than the
number of permutations of {1, 2, 3}, so the non-reconstructibility of some permutations is
unavoidable. Unfortunately, the same counting argument will not work when n > 4, so we
need to take a different approach. The case n = 4 is still quite easy to work out by hand.
Indeed, in Table 1, we have enumerated all permutations of [n] and their identification
minors, for 2 6 n 6 4. Permutations with identical decks are marked with ∗ and †. It
can be read off from the table that the permutations 1342 and 1423 have the same deck.
The table also reveals the fact that, in fact, no permutation of {1, 2, 3} is reconstructible.

These observations raise the question whether permutations of sets with at least five
elements are reconstructible or not. We will address this question in the remainder of this
paper.

3 Reconstructibility of permutations

In this section, we are going to establish the main result of this paper: every permu-
tation of a finite set with at least five elements is reconstructible from its identification
minors (Theorem 3.7). First, we need to introduce some notation and establish some
auxiliary results. It is an easy exercise to verify the following identities involving binomial
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n = 2

π π12

∗ 12 1
∗ 21 1

n = 3

π π12 π13 π23

∗ 123 12 12 12
∗ 132 12 12 12
† 213 12 21 21
† 231 12 21 21
† 312 21 12 21
† 321 21 12 21

n = 4

π π12 π13 π14 π23 π24 π34

1234 123 123 123 123 123 123
1243 132 123 123 123 123 123
1324 123 123 132 123 132 132

∗ 1342 123 132 132 123 132 132
∗ 1423 132 132 123 132 123 132

1432 132 132 132 132 123 132
2134 123 213 213 213 213 213
2143 132 213 213 213 213 213
2314 123 213 231 213 231 231
2341 123 213 231 231 231 231
2413 132 231 213 231 213 231
2431 132 231 213 231 231 231
3124 213 123 312 213 312 312
3142 213 132 312 213 312 312
3214 213 123 321 213 321 321
3241 213 123 321 231 321 321
3412 231 132 312 231 321 312
3421 231 132 312 231 321 321
4123 312 312 123 312 213 312
4132 312 312 132 312 213 312
4213 312 321 123 321 213 321
4231 312 321 123 321 231 321
4312 321 312 132 321 231 312
4321 321 312 132 321 231 321

Table 1: The identification minors of all permutations π ∈ Σn with 2 6 n 6 4. Identical
decks are indicated with ∗ and †.

coefficients, which will be used frequently in the sequel:(
a

2

)
+ a =

(
a+ 1

2

)
, (1)(

a

2

)
−
(
b

2

)
=

(
a− b

2

)
+ b(a− b). (2)

Let π ∈ Σn, i ∈ [n− 1], and ` ∈ [n− 1]. Denote by N(π, `, i) the total number of
times the element ` occurs at the i-th position in the cards of π, i.e.,

N(π, `, i) := |{I ∈
(

[n]
2

)
: πI(i) = `}|.

It is clear that
∑

i∈[n−1]N(π, `, i) =
(
n
2

)
=
∑

`∈[n−1]N(π, `, i).
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For k ∈ [n], let

Lπ(k) := {i ∈ [n] : i <π k},
Hπ(k) := {i ∈ [n] : i > k and i <π k},
hπ(k) := |Hπ(k)|.

It is clear that |Lπ(k)| = π−1(k)− 1.
For π ∈ Σn and k ∈ [n− 1], let

Sπ,k1 := {I ∈
(

[n]
2

)
: I ⊆ [k] and I ⊆ Lπ(k + 1)},

Sπ,k2 := {I ∈
(

[n]
2

)
: I ⊆ [k] and I * Lπ(k + 1)},

Sπ,k3 := {I ∈
(

[n]
2

)
: I * [k] and k ∈ I and I ∩ Lπ(k) 6= ∅},

Sπ,k4 := {I ∈
(

[n]
2

)
: I * [k] and k ∈ I and I ∩ Lπ(k) = ∅},

Sπ,k5 := {I ∈
(

[n]
2

)
: I * [k] and k /∈ I and I ⊆ Lπ(k)},

Sπ,k6 := {I ∈
(

[n]
2

)
: I * [k] and k /∈ I and I * Lπ(k)}.

It is clear from the definition that the nonempty sets among Sπ,k1 , . . . , Sπ,k6 constitute a
partition of

(
[n]
2

)
. The motivation for defining this partition is that the location of k in πI

depends on the block Sπ,ki to which I belongs, as described by the following lemma.

Lemma 3.1. Let π ∈ Σn and k ∈ [n− 1], and write α := π−1(k) and β := π−1(k + 1).

(i) If I ∈ Sπ,k1 , then (πI)−1(k) = β − 1.

(ii) If I ∈ Sπ,k2 , then (πI)−1(k) = β.

(iii) If I ∈ Sπ,k3 with I = {k, `}, then (πI)−1(k) = π−1(`). (Note that ` <π k.)

(iv) If I ∈ Sπ,k4 , then (πI)−1(k) = α.

(v) If I ∈ Sπ,k5 , then (πI)−1(k) = α− 1.

(vi) If I ∈ Sπ,k6 , then (πI)−1(k) = α.

Proof. Assume first that I ∈ Sπ,k1 ∪ Sπ,k2 . Then I ⊆ [k], so the element k + 1 at position
β is decreased by 1 (so that it becomes k) upon formation of the minor πI . If I ∈ Sπ,k1 ,
then I ⊆ Lπ(k + 1), so the element that gets deleted upon formation of the minor πI is
located to the left from position β, and we conclude that (πI)−1(k) = β − 1 whenever
I ∈ Sπ,k1 . Otherwise (i.e., if I ∈ Sπ,k2 ) the element that gets deleted is to the right from
position β, and we conclude that (πI)−1(k) = β whenever I ∈ Sπ,k2 .

Assume then that I ∈ Sπ,k3 ∪ Sπ,k4 . Then I * [k] and k ∈ I, that is, I = {k, `} for
some ` ∈ [n] \ [k]. Consequently, the element k at position α is not decreased nor does
it get deleted upon formation of the minor πI , but it may be swapped with ` before `
gets deleted. If ` <π k (i.e., if I ∈ Sπ,k3 ), then k and ` are first swapped before deleting
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`, and we conclude that (πI)−1(k) = π−1(`) whenever I = {k, `} ∈ Sπ,k3 . If k <π ` (i.e., if
I ∈ Sπ,k4 ), then k remains at its place at position α and ` gets deleted, and we conclude
that (πI)−1(k) = α whenever I ∈ Sπ,k4 .

Assume then that I ∈ Sπ,k5 ∪ Sπ,k6 . Then I * [k] and k /∈ I. This implies that I
contains an element strictly greater than k. Therefore the element k at position α is
not decreased by 1 upon formation of the minor πI . If I ∈ Sπ,k5 , then the element that
gets deleted upon formation of the minor πI is located to the left from position α, and
we conclude that (πI)−1(k) = α − 1. Otherwise (i.e., if I ∈ Sπ,k6 ) the element that gets
deleted is to the right from position α, and we conclude that (πI)−1(k) = α whenever
I ∈ Sπ,k6 .

Lemma 3.2. Let π ∈ Σn and k ∈ [n− 1], and write α := π−1(k) and β := π−1(k + 1).
Then the cardinalities of the sets Sπ,ki (1 6 i 6 6) are the following:

|Sπ,k1 | =
(
β − 1− hπ(k + 1)

2

)
,

|Sπ,k2 | =
(
k

2

)
− |Sπ,k1 |,

|Sπ,k3 | = hπ(k),

|Sπ,k4 | = n− k − |Sπ,k3 |,

|Sπ,k5 | =
(
α− 1

2

)
−
(
α− 1− hπ(k)

2

)
,

|Sπ,k6 | =
(
n− k

2

)
+ (k − 1)(n− k)− |Sπ,k5 |.

Furthermore, |Sπ,k1 | + |S
π,k
2 | =

(
k
2

)
, |Sπ,k3 | + |S

π,k
4 | = n − k, and |Sπ,k5 | + |S

π,k
6 | =

(
n−k

2

)
+

(k − 1)(n− k).

Proof. The set Sπ,k1 is the set of all 2-element subsets of [k] ∩ Lπ(k + 1). It is easy to
see that [k] ∩ Lπ(k + 1) = Lπ(k + 1) \Hπ(k + 1). Since Hπ(k + 1) ⊆ Lπ(k + 1), we have
|Lπ(k + 1) \Hπ(k + 1)| = β − 1− hπ(k + 1). The claim about |Sπ,k1 | thus follows.

Observe that Sπ,k1 ∪ Sπ,k2 = {I ∈
(

[n]
2

)
: I ⊆ [k]} =

(
[k]
2

)
. Since Sπ,k1 and Sπ,k2 are

disjoint, we have |Sπ,k1 |+ |S
π,k
2 | =

(
k
2

)
, and the claim about |Sπ,k2 | follows.

The condition I * [k] and k ∈ I is equivalent to the condition that I = {k, `} for

some ` ∈ [n] \ [k]. Therefore |Sπ,k3 | + |S
π,k
4 | = n − k. The set Sπ,k3 contains exactly those

couples I = {k, `} where ` > k and ` <π k, that is, ` ∈ Hπ(k). Thus |Sπ,k3 | = hπ(k), and
the claim about |Sπ,k4 | follows.

The set Sπ,k5 is the set of all 2-element subsets of Lπ(k) that are not subsets of [k]. We
have [k] ∩ Lπ(k) = Lπ(k) \ Hπ(k), and since Hπ(k) ⊆ Lπ(k), we have |Lπ(k) \Hπ(k)| =
α− 1− hπ(k). Consequently,

|Sπ,k5 | =
(
α− 1

2

)
−
(
α− 1− hπ(k)

2

)
.
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Finally, observe that Sπ,k5 ∪ Sπ,k6 = {I ∈
(

[n]
2

)
: I * [k] and k /∈ I}. The cardinality of

this set is
(
n−k

2

)
+(k−1)(n−k). Since Sπ,k5 and Sπ,k6 are disjoint, we have |Sπ,k5 |+ |S

π,k
6 | =(

n−k
2

)
+ (k − 1)(n− k), and the claim about |Sπ,k6 | follows.

Lemma 3.3. Let π ∈ Σn and k ∈ [n− 1]. Write α := π−1(k). Then both Sπ,k4 and Sπ,k6

are empty if and only if n = α.

Proof. Assume that Sπ,k4 = Sπ,k6 = ∅. Lemma 3.2 then implies that n − k = hπ(k) and(
n−k

2

)
+ (k − 1)(n − k) =

(
α−1

2

)
−
(
α−1−hπ(k)

2

)
. Substituting n − k for hπ(k) in the latter

identity and then applying identity (2), we obtain(
n− k

2

)
+ (k − 1)(n− k) =

(
α− 1

2

)
−
(
α− 1− n+ k

2

)
=

(
n− k

2

)
+ (α− 1− n+ k)(n− k),

which implies (α − n)(n − k) = 0, that is, n = α or n = k. The latter is not possible,
because we are assuming that k ∈ [n− 1], so we conclude that n = α.

If n = α, then π(n) = k, and we have i <π k for all i ∈ [n− 1] \ {k}, i.e., Lπ(k) =
[n− 1] \ {k}. Therefore I ∩ Lπ(k) 6= ∅ for all I ∈

(
[n]
2

)
, and I ⊆ Lπ(k) for all I ∈

(
[n]
2

)
with k /∈ I. This means in particular that no set I ∈

(
[n]
2

)
satisfies the defining conditions

of Sπ,k4 and Sπ,k6 , i.e., Sπ,k4 = Sπ,k6 = ∅.

For n ∈ N+ and α, β ∈ [n] with α 6= β, define condition C(α, β) as indicated in
Table 2. The couples (α, β) and the corresponding conditions C(α, β) are partitioned into
eleven types: (A), . . . , (K). The symbol T occurring in the conditions will be given an
interpretation in Lemma 3.4.

Lemma 3.4. Let n > 5 and π ∈ Σn. Let T := {i ∈ [n− 1] : N(π, n− 1, i) > 0}.

(i) For any α, β ∈ [n] with α 6= β, unless n = 7 and (α, β) ∈ {(4, 6), (7, 5)}, we have
π−1(n− 1) = α and π−1(n) = β if and only if condition C(α, β) holds.

(ii) For n = 7, we have π−1(n− 1) = 4 and π−1(n) = 6 if and only if the following three
statements are true:

(a) condition C(4, 6) (of type (B)) holds,

(b) |{I ∈
(

[n]
2

)
: 5 <πI 6}| > 11, and

(c) if the inequality in (b) holds as an equality, then:

(c.1) N(π, c, 6) = 0 for every c ∈ {1, 2, 3}, and

(c.2) there exists d ∈ [n] such that πI(5) = d for every I ∈
(

[n]
2

)
satisfying

πI(4) = 6 and πI(6) = 5.

(iii) For n = 7, we have π−1(n− 1) = 7 and π−1(n) = 5 if and only if the following three
statements are true:
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type (α, β) C(α, β)
(A) 1 6 α 6 n− 2

α = β − 1
T = {p, q} with p = α = β − 1, q = β
N(π, n− 1, p) =

(
p
2

)
+ n− 1

N(π, n− 1, q) =
(
n−1

2

)
−
(
q−1

2

)
(B) 1 6 α 6 n− 3

α < β − 1
β 6 n− 1

T = {p, q, r} with p = α, q = β − 1, r = β
N(π, n− 1, p) = n− 1
N(π, n− 1, q) =

(
q
2

)
N(π, n− 1, r) =

(
n−1

2

)
−
(
r−1

2

)
(C) 1 6 α 6 n− 2

β = n
T = {p, q} with p = α, q = β − 1 = n− 1
N(π, n− 1, p) = n− 1
N(π, n− 1, q) =

(
q
2

)
=
(
n−1

2

)
(D) α = n− 1

β = n
T = {p} with p = n− 1

(E) 1 6 β 6 2
β = α− 1

T = {p, q} with p = β = α− 1, q = α
N(π, n− 1, p) =

(
n−1

2

)
+ p

N(π, n− 1, q) = n− q
(F) 1 6 β 6 2

β < α− 1
α 6 n− 1

T = {p, q, r} with p = β, q = α− 1, r = α
N(π, n− 1, p) =

(
n−1

2

)
+ 1

N(π, n− 1, q) = q − 1
N(π, n− 1, r) = n− r

(G) 1 6 β 6 2
α = n

T = {p, q} with p = β, q = n− 1
N(π, n− 1, p) =

(
n−1

2

)
+ 1

N(π, n− 1, q) = n− 2
(H) 3 6 β 6 n− 2

β = α− 1
T = {p, q, r} with p = β − 1, q = β = α− 1, r = α
N(π, n− 1, p) =

(
p
2

)
N(π, n− 1, q) =

(
n−1

2

)
−
(
q−1

2

)
+ q

N(π, n− 1, r) = n− r
(I) 3 6 β 6 n− 3

β < α− 1
α 6 n− 1

T = {p, q, r, s} with p = β − 1, q = β, r = α− 1, s = α

(J) 3 6 β 6 n− 2
α = n

T = {p, q, r} with p = β − 1, q = β, r = α− 1 = n− 1
N(π, n− 1, p) =

(
p
2

)
N(π, n− 1, q) =

(
n−1

2

)
−
(
q−1

2

)
+ 1

N(π, n− 1, r) = n− 2
(K) β = n− 1

α = n
T = {p, q} with p = n− 2, q = n− 1
N(π, n− 1, p) =

(
n−2

2

)
N(π, n− 1, q) =

(
n
2

)
−
(
n−2

2

)
Table 2: Conditions C(α, β) of Lemma 3.4.
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(a) condition C(7, 5) (of type (J)) holds,

(b) |{I ∈
(

[n]
2

)
: 5 <πI 6}| 6 11, and

(c) if the inequality in (b) holds as an equality, then:

(c.1) there exists c ∈ {1, 2, 3} such that N(π, c, 6) > 0, or

(c.2) there does not exist any d ∈ [n] such that πI(5) = d for every I ∈
(

[n]
2

)
satisfying πI(4) = 6 and πI(6) = 5.

Proof. We are first going to prove the forward implications of each of (i), (ii), and (iii).
Write α := π−1(n − 1) and β := π−1(n). Let us apply Lemma 3.2 to determine the
cardinalities of the sets Sπ,k1 , . . . , Sπ,k6 for k = n− 1. We clearly have

hπ(n) = 0 and hπ(n− 1) =

{
0, if n− 1 <π n,

1, if n <π n− 1.

Hence the formulas of Lemma 3.2 yield the following

|Sπ,k1 | =
(
β − 1

2

)
, |Sπ,k2 | =

(
n− 1

2

)
−
(
β − 1

2

)
,

|Sπ,k3 | =

{
0, if n− 1 <π n,

1, if n <π n− 1,
|Sπ,k4 | =

{
1, if n− 1 <π n,

0, if n <π n− 1,

|Sπ,k5 | =

{
0, if n− 1 <π n,

α− 2, if n <π n− 1,
|Sπ,k6 | =

{
n− 2, if n− 1 <π n,

n− α, if n <π n− 1.

(In order to see this, note that identity (1) gives
(
α−1

2

)
−
(
α−2

2

)
= α− 2 and

(
n
2

)
−
(
n−1

2

)
−

(n− (n− 1)) = n− 2.)
In the case when n <π n − 1, the set Sπ,k3 is nonempty, namely Sπ,k3 = {{n − 1, n}},

and we have πI(β) = n − 1 for I = {n − 1, n}. Thus, using Lemma 3.1, we get the
numbers N(π, n− 1, i) for i ∈ {α − 1, α, β − 1, β} as indicated in Table 3. For i ∈
[n] \ {α − 1, α, β − 1, β}, we have N(π, n− 1, i) = 0. In the case when α = β − 1 or
β = α − 1, we must take the sum of the respective two numbers: if α = β − 1 then
N(π, n− 1, α) =

(
β−1

2

)
+ n − 1 =

(
α
2

)
+ n − 1; if β = α − 1 then N(π, n− 1, β) =(

n−1
2

)
−
(
β−1

2

)
+ α − 1 =

(
n−1

2

)
−
(
β−1

2

)
+ β. Straightforward calculations with the data

from Table 3 then give the numbers N(π, n− 1, i) shown in Table 2. This proves the
forward implication of (i), as well as the necessity of condition (a) in (ii) and (iii).

We still need to establish the necessity of conditions (b) and (c) in statements (ii)
and (iii). We will do this in parallel for both (ii) and (iii). Let n = 7 and let σ, τ ∈ Σ7

be permutations satisfying σ(4) = 6, σ(6) = 7, τ(7) = 6, τ(5) = 7. For every I ∈
(

[n]
2

)
such that I ⊆ [n] \ {6, 7}, we have 5 <σI 6 and 6 <τI 5. Moreover, if I = {σ(4), σ(7)} =
{6, σ(7)}, then σI(6) = 6, so we have 5 <σI 6 also in this case. Therefore, out of the 21
cards of σ, at least

(
5
2

)
+1 = 11 satisfy 5 <σI 6. Similarly, out of the 21 cards of τ , at least(

5
2

)
= 10 satisfy 6 <τI 5 and hence at most 11 satisfy 5 <σI 6. This proves the necessity

of (b).
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α < β i α− 1 α β − 1 β

n− 1 <π n N(π, n− 1, i) 0 n− 1
(
β−1

2

) (
n−1

2

)
−
(
β−1

2

)
β < α i β − 1 β α− 1 α

n <π n− 1 N(π, n− 1, i)
(
β−1

2

) (
n−1

2

)
−
(
β−1

2

)
+ 1 α− 2 n− α

Table 3: Number of occurrences of n− 1 in different positions in the cards of π.

Assume from now on that the inequalities of statement (b) in both (ii) and (iii) hold
as equalities, that is, exactly 11 cards σI satisfy 5 <σI 6 and exactly 11 cards τ I satisfy
5 <τI 6. Consequently, 5 <σI 6 if and only if I ⊆ [n] \ {6, 7} or I = {6, σ(7)}. Therefore,
if I = {σ(1), 6}, then we have 6 <σI 5 and σI(5) = 6. This is possible only if σI(6) = 5,
which in turn implies that σ(7) = 5.

Let us write down the minors of σ and τ , providing as much details as we can deduce
from the known facts: σ(4) = 6, σ(6) = 7, σ(7) = 5, τ(5) = 7, τ(7) = 6. See the first
two columns of Table 4. The rows are labeled as ij, where i, j ∈ [7] with i < j. The row
then represents the minor σI with I = {σ(i), σ(j)} or τ I with I = {τ(i), τ(j)}. In the
bottom part of the tables we have counted the number of times each element of [6] occurs
at each position in the table. The blanks in the table represent unknown values. Note
that N(σ, c, 6) = 0 for every c ∈ {1, 2, 3}.

For every I ∈
(

[n]
2

)
with 7 ∈ I, we have that τ I(6) = τ(6). We cannot have τ(6) = 5,

because then all cards τ I have the property that 6 <τI 5, contradicting the assumption
that the equality case of the inequality in (b) holds. If τ(6) = c for some c ∈ {1, 2, 3},
then N(τ, c, 6) > 0.

Therefore, it only remains to consider the case τ(6) = 4. Having fixed this value,
we can complement the information about the cards of τ ; see the rightmost column of
Table 4. Each one of the entries marked with ∗ is either 3 or 4; three of them are 3’s and
three of them are 4’s. Exactly which ones are 3 and which ones are 4 depends on which
one of the three numbers 1, 2, 3 is mapped to 5 by τ .

Observe that the six minors σI of σ that satisfy σI(4) = 6 and σI(6) = 5 are precisely
the ones with σ(6) = 7 ∈ I. It follows that for each such I, σI(5) = σ(5). On the other
hand, among the six minors τ I of τ that satisfy τ I(4) = 6 and τ I(6) = 5, exactly three
satisfy τ I(5) = 3 and exactly three satisfy τ I(5) = 4 (recall from the previous paragraph
the discussion about the entries ∗).

We have now established that the conditions of statements (i), (ii), and (iii) are nec-
essary for π−1(n − 1) = α and π−1(n) = β. Since all possible values of α, β, and n
are covered by statements (i), (ii), and (iii), sufficiency of these conditions will follow if
we show that the conditions are mutually exclusive. Observe first that the conditions of
statements (ii) and (iii) clearly cannot both hold simultaneously. It is thus enough to
show that the conditions C(α, β) with α, β ∈ [n], α 6= β, are mutually exclusive, with the
single exception that conditions C(4, 6) and C(7, 5) are identical when n = 7.

So, let α, β, α′, β′ ∈ [n] with α 6= β, α′ 6= β′ and (α, β) 6= (α′, β′), and assume that
C(α, β) and C(α′, β′) hold simultaneously. Then, first of all, both conditions must specify
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σ =

(
1234567

6 75

)
σI

ij 1 2 3 4 5 6
12 5 6 4
13 5 6 4
14 6 5
15 5 6 4
16 6 5
17 5 6
23 5 6 4
24 6 5
25 5 6 4
26 6 5
27 5 6
34 6 5
35 5 6 4
36 6 5
37 5 6
45 6 5
46 6 5
47 5 6
56 6 5
57 5 6
67 6 5

1: 0
2: 0
3: 0
4: 6
5: 0 0 3 8 0 10
6: 0 0 0 6 10 5

τ =

(
1234567

7 6

)
τ I

ij 1 2 3 4 5 6
12 6 5
13 6 5
14 6 5
15 6
16 6 5
17 6
23 6 5
24 6 5
25 6
26 6 5
27 6
34 6 5
35 6
36 6 5
37 6
45 6
46 6 5
47 6
56 6
57 6
67 6

1:
2:
3:
4:
5: 10
6: 0 0 0 6 10 5

τ =

(
1234567

746

)
τ I

ij 1 2 3 4 5 6
12 6 ∗ 5
13 6 ∗ 5
14 6 ∗ 5
15 4 6
16 6 5
17 6 4
23 6 ∗ 5
24 6 ∗ 5
25 4 6
26 6 5
27 6 4
34 6 ∗ 5
35 4 6
36 6 5
37 6 4
45 4 6
46 6 5
47 6 4
56 4 6
57 6 4
67 6 4

1: 0 0
2: 0 0
3: 3 0
4: 8 6
5: 0 10
6: 0 0 0 6 10 5

Table 4: Minors of permutations σ and τ . Each row ij represents σI with I = {σ(i), σ(j)}
or τ I with I = {τ(i), τ(j)}.

the same set T . Therefore it is necessary that the set T specified by condition C(α, β)
has the same cardinality as the set T specified by condition C(α′, β′). Thus we have four
possibilities: either (α, β) and (α′, β′) are both of type (D) of Table 2 (in which case
|T | = 1), or the types of both are among (A), (C), (E), (G), (K) (in which case |T | = 2),
or the types of both are among (B), (F), (H), (J) (in which case |T | = 3), or they are
both of type (I) (in which case |T | = 4). Furthermore, it is easy to see that if (α, β) and
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(α′, β′) are of the same type of Table 2, then the set T specified by condition C(α, β) is
distinct from the set T specified by C(α′, β′). We can therefore assume that (α, β) and
(α′, β′) are of distinct types (and hence 2 6 |T | 6 3). The remainder of this proof is a
case-by-case analysis that leads to a contradiction in each case, except for the case when
n = 7 and {(α, β), (α′, β′)} = {(4, 6), (7, 5)}.

Consider first the case when |T | = 2. Assume that T = {p, q} with p < q. Suppose
first that one of (α, β) and (α′, β′) is of type (A) and the other is of type (C). Without
loss of generality, let us assume that (α, β) is of type (A) and (α′, β′) is of type (C).
By C(α′, β′) we have q = n − 1 and by C(α, β) we have p = q − 1 = n − 2. Then(
n−2

2

)
+ n − 1 = N(π, n− 1, p) = n − 1, so

(
n−2

2

)
= 0. This implies that n 6 3, which

contradicts our assumption that n > 5.
Suppose then that (α, β) and (α′, β′) are of types (A) and (E), respectively. Since

a condition of type (E) holds, we have 1 6 p 6 2, which implies
(
p
2

)
= p − 1. Then

p− 1 + n− 1 = N(π, n− 1, p) =
(
n−1

2

)
+ p, which implies

(
n−1

2

)
= n− 2. The solution of

this equation is n = 2 or n = 3. These solutions are not feasible, because we are assuming
that n > 5.

Suppose that (α, β) and (α′, β′) are of types (A) and (G), respectively. By C(α′, β′)
we have q = n − 1 and by C(α, β) we have p = q − 1 = n − 2. Since a condition of
type (G) holds, we have 1 6 p 6 2, which implies that 3 6 n 6 4. This contradicts our
assumption that n > 5. In a similar way, we reach a contradiction if we suppose that
(α, β) and (α′, β′) are of types (C) and (E), respectively.

Suppose that (α, β) and (α′, β′) are of types (A) and (K), respectively. By C(α′, β′)
we have p = n − 2 and q = n − 1. Then

(
n−2

2

)
+ n − 1 = N(π, n− 1, p) =

(
n−2

2

)
, which

implies that n = 1. This contradicts our assumption that n > 5.
Suppose that (α, β) and (α′, β′) are of types (C) and (G), respectively. Then n− 1 =

N(π, n− 1, p) =
(
n−1

2

)
+ 1, that is,

(
n−1

2

)
= n − 2. As we have seen above, this yields a

contradiction to our assumption that n > 5.
Suppose that (α, β) and (α′, β′) are of types (C) and (K), respectively. Then n− 1 =

N(π, n− 1, p) =
(
n−2

2

)
, which implies n2 − 7n + 8 = 0. The solution of this quadratic

equation is n = (7 ±
√

17)/2. Since there is no integer solution, we have arrived in a
contradiction.

Suppose that (α, β) and (α′, β′) are of types (E) and (G), respectively. By C(α′, β′)
we have q = n− 1, and by C(α, β) we have p = q − 1 = n− 2. Since a condition of type
(E) holds, we have 1 6 p 6 2, which implies 3 6 n 6 4. This contradicts our assumption
that n > 5. A similar argument leads to a contradiction if we suppose that (α, β) is of
type (E) or (G) and (α′, β′) is of type (K).

Let us then consider the case when |T | = 3. Assume that T = {p, q, r} with p < q < r.
Suppose first that (α, β) and (α′, β′) are of types (H) and (J), respectively. Condition
C(α, β) implies that q = p + 1, r = q + 1 = p + 2, and condition C(α′, β′) asserts that
r = n − 1. Hence n = r + 1 = p + 3. We have n − r = N(π, n− 1, r) = n − 2, which
implies r = 2. Hence n = 3, which contradicts the assumption that n > 5.

Suppose that (α, β) is of type (F) and (α′, β′) is of type (H) or (J). Since a condition
of type (F) holds, we have 1 6 p 6 2, and since a condition of type (H) or (J) holds, we
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have 2 6 p 6 n−3. Hence p = 2, and we have
(
n−1

2

)
+1 = N(π, n− 1, p) =

(
p
2

)
=
(

2
2

)
= 1,

which implies that
(
n−1

2

)
= 0, i.e., n 6 2, which contradicts the assumption that n > 5.

Suppose that (α, β) and (α′, β′) are of types (B) and (F), respectively. Then we have
n − 1 = N(π, n− 1, p) =

(
n−1

2

)
+ 1, that is,

(
n−1

2

)
= n − 2. As we have seen above, this

yields a contradiction to n > 5.
Suppose then that (α, β) and (α′, β′) are of types (B) and (H), respectively. Condition

C(α′, β′) implies that p, q, r are three consecutive integers, i.e., q = p+ 1 and r = p+ 2.
From the conditions on N(π, n− 1, i) for i ∈ {p, q, r} we obtain the following system of
simultaneous equations:

(
p

2

)
= n− 1,(

n− 1

2

)
−
(
p

2

)
+ p+ 1 =

(
p+ 1

2

)
,

n− p− 2 =

(
n− 1

2

)
−
(
p+ 1

2

)
.

Rewriting the second equation, using the identity
(
p
2

)
+ p =

(
p+1

2

)
(see identity (1)), and

then substituting n− 1 for
(
p
2

)
as per the first equation, we obtain

(
n−1

2

)
+ 1 = 2(n− 1),

which yields the quadratic equation n2 − 7n + 8 = 0, which, as we have seen above, has
no integer solution, and we have arrived in a contradiction again.

Finally, suppose that (α, β) and (α′, β′) are of types (B) and (J), respectively. By
C(α, β) we have q = r−1, and by C(α′, β′) we have p = q−1 and r = n−1. Consequently,
p = n− 3, q = n− 2, r = n− 1. From the conditions on N(π, n− 1, i) for i ∈ {p, q, r} we
obtain the following system of simultaneous equations:

n− 1 =

(
n− 3

2

)
,(

n− 2

2

)
=

(
n− 1

2

)
−
(
n− 3

2

)
+ 1,(

n− 1

2

)
−
(
n− 2

2

)
= n− 2.

The first equation can be written equivalently as n2 − 9n + 14 = 0. The solution of this
quadratic equation is n = 2 or n = 7. The former solution is not feasible, because we
are assuming that n > 5. The other two equations are also satisfied with n = 7. Then
we have (α, β) = (4, 6) and (α′, β′) = (7, 5). It is indeed true that conditions C(4, 6) and
C(7, 5) are identical when n = 7.

We conclude that conditions C(α, β) and C(α′, β′) hold simultaneously if and only
if (α, β) = (α′, β′) or n = 7 and {(α, β), (α′, β′)} = {(4, 6), (7, 5)}. This completes the
proof.

Lemma 3.5. Let n > 5 and π ∈ Σn. Let k ∈ [n− 2]. Write α := π−1(k), β := π−1(k+1).
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For i ∈ [n− 1], let

M(π, k, i) :=


N(π, k, i), if i ∈ [n] \ {β − 1, β}
N(π, k, i)− |Sπ,k1 |, if i = β − 1,

N(π, k, i)− |Sπ,k2 |, if i = β.

Let m := max{i ∈ [n− 1] : M(π, k, i) > 0}. Then the following statements hold:

(i) For p ∈ {1, . . . , n− 2}, α = p if and only if m = p.

(ii) α = n− 1 if and only if m = n− 1 and M(π, k, n− 2) > 2.

(iii) α = n if and only if m = n− 1 and M(π, k, n− 2) 6 1.

Proof. We are first going to prove the forward implications of statements (i)–(iii). It
follows from Lemmas 3.1 and 3.2 that M(π, k, i) > 0 only if i 6 α. By Lemma 3.3,
|Sπ,k4 | = |Sπ,k6 | = 0 if and only if n = α. Therefore, if α < n, then M(π, k, α) >
|Sπ,k4 |+ |S

π,k
6 | > 0, and we have m = α.

Furthermore, if α = n− 1, then hπ(k) ∈ {n− k− 1, n− k}. If hπ(k) = n− k− 1, then

M(π, k, n− 2) > |Sπ,k5 | =
(
n− 2

2

)
−
(
n− 2− (n− k − 1)

2

)
=

(
n− k − 1

2

)
+ (k − 1)(n− k − 1),

where the last equality holds by identity (2). If k = 1, then
(
n−k−1

2

)
+ (k−1)(n−k−1) =(

n−2
2

)
>
(

3
2

)
= 3. If k = n−2, then

(
n−k−1

2

)
+(k−1)(n−k−1) =

(
1
2

)
+(n−3)·1 = n−3 > 2.

If 2 6 k 6 n− 3, then
(
n−k−1

2

)
+ (k − 1)(n− k − 1) >

(
2
2

)
+ 1 · 2 = 3.

If hπ(k) = n− k, then

M(π, k, n− 2) > |Sπ,k5 | =
(
n− 2

2

)
−
(
n− 2− (n− k)

2

)
=

(
n− k

2

)
+ (k − 2)(n− k),

where the last equality holds by identity (2). In this case, we necessarily have k > 1.
If k = 2, then

(
n−k

2

)
+ (k − 2)(n − k) =

(
n−2

2

)
>
(

3
2

)
= 3. If 3 6 k 6 n − 2, then(

n−k
2

)
+ (k − 2)(n− k) >

(
2
2

)
+ 1 · 2 = 3.

If α = n, then |Sπ,k4 | = |S
π,k
6 | = 0 and

M(π, k, n− 1) > |Sπ,k5 | = |S
π,k
5 |+ |S

π,k
6 | =

(
n− k

2

)
+ (k − 1)(n− k) > 1.

Moreover, we have N(π, k, n− 2) = λ+ µ, where

λ =

{
0, if π(n− 2) < k,

1, if π(n− 2) > k,
µ =


0, if n− 2 /∈ {β − 1, β},
|Sπ,k1 |, if n− 2 = β − 1,

|Sπ,k2 |, if n− 2 = β.
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Hence M(π, k, n− 1) = N(π, k, n− 1)− µ = λ 6 1.
We have shown above that the conditions of statements (i)–(iii) are necessary. The

conditions are also sufficient, because they are clearly mutually exclusive and all possible
values of α are covered.

Lemma 3.5 takes a simpler form when k = 1. Namely, in this case we have
(
k
2

)
= 0,

so |Sπ,11 | = |S
π,1
2 | = 0. Consequently, M(π, 1, i) = N(π, 1, i) for all i ∈ [n− 1].

Corollary 3.6. Let n > 5 and π ∈ Σn. Let m := max{i ∈ [n− 1] : N(π, 1, i) > 0}.

(i) For p ∈ {1, . . . , n− 2}, π−1(1) = p if and only if m = p.

(ii) π−1(1) = n− 1 if and only if m = n− 1 and N(π, 1, n− 2) > 2.

(iii) π−1(1) = n if and only if m = n− 1 and N(π, 1, n− 2) 6 1.

Theorem 3.7. Assume that n > 5, and let π, τ ∈ Σn. Then deckπ = deck τ if and only
if π = τ .

Proof. If is obvious that if π = τ then deck π = deck τ . Assume that deck π = deck τ . We
are going to show by induction on k, starting from k = n and going down to k = 1, that
π−1(k) = τ−1(k) for all k ∈ [n]. Since deckπ = deck τ , it clearly holds that N(π, k, i) =
N(τ, k, i) for all k, i ∈ [n− 1]. The conditions of Lemma 3.4 depend only on the deck
of the permutation considered, so Lemma 3.4 implies that π−1(n − 1) = τ−1(n − 1) and
π−1(n) = τ−1(n). Let k ∈ [n− 2] and assume that π−1(`) = τ−1(`) whenever k+ 1 6 ` 6
n. Then hπ(k + 1) = hτ (k + 1). Consequently, |Sπ,k1 | = |S

τ,k
1 | and |Sπ,k2 | = |S

τ,k
2 |, as given

by Lemma 3.2, so the numbers M(π, k, i) and M(τ, k, i) of Lemma 3.5 must be equal, for
each i ∈ [n− 1]. Therefore, Lemma 3.5 implies that π−1(k) = τ−1(k). This completes the
inductive step, and we conclude that π = τ .

Remark 3.8. If n = 4, then conditions C(2, 3) (of type (A)) and C(4, 2) (of type (F)) of
Lemma 3.4 are identical. This perhaps explains the non-reconstructibility of the permu-
tations 1342 and 1423 (see Table 1).

4 Permutation reconstruction algorithm

The proof of Theorem 3.7 and Lemmas 3.4 and 3.5 provide an algorithm for recovering a
permutation from its identification minors. Namely, assume that we are given as an input
deckπ for some permutation π ∈ Σn, n > 5, but the permutation π itself is unknown. We
can then apply the following procedure to determine π.

1. Determine the numbers N(π, k, i) for all k ∈ [n], i ∈ [n− 1]. (This is straightforward
calculation from the input.)

2. By examining the numbers N(π, n− 1, i), determine the unique elements α, β ∈ [n]
for which condition C(α, β) of Lemma 3.4 holds. Unless we have n = 7 and (α, β) ∈
{(4, 6), (7, 5)}, we can set π−1(n − 1) := α and π−1(n) := β; otherwise we need
to check the special additional conditions of Lemma 3.4 (ii) and (iii) to determine
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N(π, k, i)
i

1 2 3 4 5 6

k

1 1 1 1 1 11 6
2 1 2 4 14 0 0
3 1 17 0 0 0 3
4 1 0 1 1 6 12
5 1 0 11 5 4 0
6 16 1 4 0 0 0

Table 5: The numbers N(π, k, i) of Example 4.1.

π−1(n) and π−1(n− 1). (This can be done by examining directly the cards that are
given as an input.)

3. For each k, starting from n−2 and going down to 1, perform the following: Compute
the numbers M(π, k, i) (i ∈ [n− 1]) of Lemma 3.5 and determine π−1(k) by applying
Lemma 3.5. (Observe that the numbers M(π, k, i) can indeed be computed, because
we know N(π, k, i) for all k, i ∈ [n− 1] and we have already determined π−1(`) for
` > k. In particular we know π−1(k + 1) and the number hπ(k + 1), which occurs
in the formula for |Sπ,k1 | and |Sπ,k2 | in Lemma 3.2.)

Some shortcuts can be made in this algorithm. By Corollary 3.6 and Lemma 3.5,
we can actually determine π−1(1) from the numbers N(π, 1, i) (i ∈ [n− 1]) without first
determining π−1(`) for any other ` ∈ [n]. Note also that if I = {n, `}, where ` is an element
of [n] such that π−1(`) ∈ {π−1(n)−1, π−1(n) + 1}, then the string πI(1)πI(2) . . . πI(n−1)
is obtained from π(1)π(2) . . . π(n) simply by removing the entry n = π(π−1(n)). Thus, we
could proceed as follows. First determine π−1(1), π−1(n−1), and π−1(n) using Lemmas 3.4
and 3.5. Then we can start determining the entries as above, going down from ` = n− 2
to ` = 2, but we can stop the iteration at any point when there is only one card, possibly
with multiplicity greater than 1, where the entries determined so far are in the right
positions (taking into account the deletion of n, whose position is known). By inserting
n at the appropriate position in this string, we obtain π.

Let us illustrate the permutation reconstruction algorithm with an example.

Example 4.1. Assume that n = 7 and π ∈ Σn is a permutation such that

deckπ = {136254, 236514, 362514, 436251, 536214, 615243, 625143, 625413, 631254,

632514, 632514, 632514, 634251, 635214, 635214, 635214, 635214, 635241,

635241, 635241, 635241}.

In order to determine π, let us first count how many times each number appears at each
position in the cards of π. The values N(π, k, i) for each k ∈ [n− 1], i ∈ [n− 1] are
shown in Table 5. Based on this information, we can determine π−1(6) and π−1(7) by
applying Lemma 3.4. We see that condition C(3, 1) of type (F) holds: we have T = {i ∈
[6] : N(π, 6, i) > 0} = {1, 2, 3}, N(π, 6, 1) =

(
7−1

2

)
+ 1 = 16, N(π, 6, 2) = 2 − 1 = 1,
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M(π, k, i)

k hπ(k + 1) |Sπ,k1 | |Sπ,k2 | i: 1 2 3 4 5 6 π−1(k) π

5 1
(

3−1−1
2

)
= 0

(
5
2

)
− 0 = 10 1 0 1 5 4 0 5 7∗6∗5∗∗

4 2
(

5−1−2
2

)
= 1

(
4
2

)
− 1 = 5 1 0 1 0 1 12 7 7∗6∗5∗4

3 3
(

7−1−3
2

)
= 3

(
3
2

)
− 3 = 0 1 17 0 0 0 0 2 736∗5∗4

2 1
(

2−1−1
2

)
= 0

(
2
2

)
− 0 = 1 1 1 4 14 0 0 4 73625∗4

1 3
(

4−1−3
2

)
= 0

(
1
2

)
− 0 = 0 1 1 1 1 11 6 6 7362514

Table 6: Data generated by the reconstruction algorithm in Example 4.1.

N(π, 6, 3) = 7− 3 = 4. Therefore π−1(6) = 3, π−1(7) = 1, so π = 7∗6∗∗∗∗, where the ∗’s
denote values of π that are still unknown to us.

Now, applying Lemmas 3.2 and 3.5, we can determine the data shown in Table 6,
filling in the cells in the usual reading order: from left to right and from top to bottom.
We conclude that π = 7362514.

Note that we could make a shortcut. We can determine π−1(6) = 3, π−1(7) = 1,
π−1(1) = 6 as above, so we know that π = 7∗6∗∗1∗. Hence there must be a card of the
form ∗6∗∗1∗. In fact, there is only one card of this form, namely 362514. Inserting 7 in
the first position we recover π = 7362514.

5 Set-reconstructibility of permutations

Having discovered that all permutations of [n] are reconstructible from identification mi-
nors whenever n > 5, we may ask whether reconstruction is possible if we ignore the
multiplicities of cards. As we will see shortly, this is not in general possible, even for large
values of n.

The set-deck of a permutation π ∈ Σn is defined as the set {πI : I ∈
(

[n]
2

)
} of its iden-

tification minors, and it is denoted by set-deck π. If τ ∈ Σn and set-deckπ = set-deck τ ,
then τ is a set-reconstruction of π. If every set-reconstruction of π is equal to π, then
π is set-reconstructible. Set-reconstructibility clearly implies reconstructibility, but the
converse is not necessarily true.

If 2 6 n 6 4, then there obviously exist permutations of [n] that are not set-recon-
structible, for the simple reason that there are permutations that are not even recon-
structible. Further examples of permutations that are not set-reconstructible, despite
being reconstructible, can be found by examining Table 1.

By Theorem 3.7, every permutation of a set with at least five elements is recon-
structible, but, as the following example illustrates, for every n > 3, there exist non-set-
reconstructible permutations of [n].

Example 5.1. Assume that n > 3, and let π = 23 . . . n1, τ = 23 . . . (n − 1)1n. Let us
consider the identification minors of π and τ . Let I = {i, j} ∈

(
[n]
2

)
with i < j. If i = 1,
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Π πΠ

{{1, 2, 3}, {4}, {5}} 132
{{1, 2, 4}, {3}, {5}} 213
{{1, 2, 5}, {3}, {4}} 213
{{1, 3, 4}, {2}, {5}} 132
{{1, 3, 5}, {2}, {4}} 123
{{1, 4, 5}, {2}, {3}} 312
{{2, 3, 4}, {1}, {5}} 213
{{2, 3, 5}, {1}, {4}} 213
{{2, 4, 5}, {1}, {3}} 312

Π πΠ

{{3, 4, 5}, {1}, {2}} 312
{{1, 2}, {3, 4}, {5}} 213
{{1, 2}, {3, 5}, {4}} 213
{{1, 2}, {4, 5}, {3}} 213
{{1, 3}, {2, 4}, {5}} 132
{{1, 3}, {2, 5}, {4}} 123
{{1, 3}, {4, 5}, {2}} 132
{{1, 4}, {2, 3}, {5}} 213
{{1, 4}, {2, 5}, {3}} 312

Π πΠ

{{1, 4}, {3, 5}, {2}} 312
{{1, 5}, {2, 3}, {4}} 213
{{1, 5}, {2, 4}, {3}} 312
{{1, 5}, {3, 4}, {2}} 312
{{2, 3}, {4, 5}, {1}} 213
{{2, 4}, {3, 5}, {1}} 312
{{2, 5}, {3, 4}, {1}} 312

Table 7: Permutations arising from π = 31524 via 3-partitions.

then πI = τI = 2 . . . (j − 1)1j . . . (n− 1). If i > 2, then πI = 23 . . . (n− 1)1. If i > 2 and
j 6 n− 1, then τI = 23 . . . (n− 2)1(n− 1). If i > 2 and j = n, then τI = 23 . . . (n− 1)1.
We conclude that π and τ have the same set-deck, namely

{123 . . . (n− 1), 213 . . . (n− 1), 2314 . . . (n− 1), . . . , 23 . . . (n− 1)1}.

6 Generalization

The identification minors of permutations that we have discussed in this paper are a special
case of a more general way of deriving permutations from a given permutation that was
studied by the current author in [10]. Namely, given a permutation π = π1π2 . . . πn ∈ Σn

and a partition Π of [n] with ` blocks, we define the permutation πΠ of [`] as the result
of the following procedure:

1. For each block B of Π, let mB := min{πi : i ∈ B}, and for every i ∈ B, replace πi
by mB.

2. Remove all repeated occurrences of elements from the resulting sequence, retaining
only the first occurrence of each number mB (B ∈ Π).

3. Take the pattern of the resulting sequence.

We say that πΠ is the permutation arising from π via Π. For k ∈ N+, let us call πΠ an
(n − k)-identification minor of π if Π has n − k blocks. For example, the permutations
arising from π = 31524 via 3-partitions are presented in Table 7. Using this terminology,
the identification minors of π that we have discussed earlier in this paper are (n − 1)-
identification minors, as they are exactly the permutations arising from π via partitions
of [n] with n − 1 blocks, i.e., partitions of the form {I} ∪ {{i} : i ∈ [n] \ I} for some
I ∈

(
[n]
2

)
.

This definition gives immediately rise to a reconstruction problem: for a fixed param-
eter k ∈ N+, the objects are permutations of an n-element set, the cards of a permutation
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π ∈ Σn are its (n − k)-identification minors πΠ for each (n − k)-partition Π of [n], and
the equivalence relation on Σn is the equality relation.

Investigation of this reconstruction problem for k > 1 remains a topic of future re-
search. For example, the following problem seems natural. For k ∈ N+, let us denote by
Nk the smallest number N , if one exists, such that for every n > N , every permutation of
[n] is reconstructible from its (n− k)-identification minors. Theorem 3.7 and the discus-
sion in Section 2 show that N1 = 5. Does the number Nk exist for every positive integer
k? Determine Nk for k > 1.
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