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Abstract

A normally regular digraph with parameters (v, k, λ, µ) is a directed graph on v
vertices whose adjacency matrix A satisfies the equation AAt = kI + λ(A + At) +
µ(J − I − A − At). This means that every vertex has out-degree k, a pair of non-
adjacent vertices have µ common out-neighbours, a pair of vertices connected by an
edge in one direction have λ common out-neighbours and a pair of vertices connected
by edges in both directions have 2λ− µ common out-neighbours. We often assume
that two vertices can not be connected in both directions.

We prove that the adjacency matrix of a normally regular digraph is normal.
A connected k-regular digraph with normal adjacency matrix is a normally regular
digraph if and only if all eigenvalues other than k are on one circle in the complex
plane. We prove several non-existence results, structural characterizations, and
constructions of normally regular digraphs. In many cases these graphs are Cayley
graphs of abelian groups and the construction is then based on a generalization of
difference sets.

We also show connections to other combinatorial objects: strongly regular graphs,
symmetric 2-designs and association schemes.

1 Introduction

In this section we introduce normally regular digraphs and other basic concepts. In Section
2 we show that complements of normally regular digraphs are normally regular and we
prove bounds on the parameters. In Section 3 we prove that the adjacency matrices
of normally regular digraphs are normal and we give a Bruck-Ryser type condition for
existence. In Section 4 we characterize normally regular digraphs with µ = 0 or µ = k.
We consider eigenvalues of normally regular digraphs in Section 5 and show that a regular
digraph with normal adjacency matrix is a normally regular digraph if and only if the
non-trivial eigenvalues are on a circle in the complex plane. In Section 6 we consider
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relations to association schemes. The subject of Section 7 is partitions of the vertex
set and in particular group divisible digraphs, i.e., orientations of complete multipartite
graphs. In Section 8 we exclude existence for some parameter sets with small λ. Section
9 describes applications of normally regular digraphs to partitions of designs in smaller
designs. In Section 10 we give several constructions of normally regular digraphs, primarily
constructions as Cayley graphs. In particular, if 4t + 1, 4s + 3 and q are prime powers
and r is not divisible by 3 we get normally regular Cayley digraphs with the following
parameters

((4t+ 1)(4s+ 3), (4t+ 2)(2s+ 1), 4st+ 3s+ t+ 1),

((4s+ 3)(2s+ 1), 4s+ 1, s, 1),(
q2r + qr + 1

q2 + q + 1
, qr − q, q2, q2 + q + 1

)
and, if q ≡ 1 mod 3 (

1

3
(q2 + q + 1), q − 1, 1, 3

)
.

The adjacency matrix of a digraph with vertex set {x1, . . . xv} is a v × v matrix A
in which the (i, j)-entry is

Aij =

{
1 if there is an edge directed from xi to xj

0 otherwise.

Thus any square {0, 1}-matrix is the adjacency matrix of a digraph if and only if all its
diagonal entries are 0. In this paper we consider such matrices that satisfy an equation
involving AAt, where At denotes the transpose of A. The (i, j) entry of AAt (respectively
AtA) is the number of common out-neighbours (respectively in-neighbours) of xi and xj.

We say that a digraph is normal if its adjacency matrixA is normal, i.e., ifAAt = AtA.
It follows that a digraph is normal if and only if for any two (not necessarily distinct)
vertices x and y the number of common out-neighbours of x and y is equal to the number
of common in-neighbours of x and y.

We will use the notation x→ y if there is an edge directed from x to y (and possibly
also an edge from y to x). If x→ y then we say that x dominates y. We write x↔ y if
x→ y and x← y, and identify these two directed edges with an undirected edge.

The set {y | x → y} of out-neighbours of a vertex x is denoted by x+. Similarly x−

denotes the set of in-neighbours. d+(x) = |x+| and d−(x) = |x−| denotes the out-degree
and in-degree of x, respectively.

We will now introduce normally regular digraphs. We first give a matrix free definition.
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Definition 1. A normally regular digraph with parameters (v, k, λ, µ), also denoted
by NRD(v, k, λ, µ), is a directed graph on v vertices such that

• every vertex has out-degree k

• any pair of non-adjacent vertices have exactly µ common out-neighbours,

• any pair of vertices x, y such that exactly one of the edges x→ y or x← y is present
have exactly λ common out-neighbours,

• any pair of vertices x, y such that x↔ y have exactly 2λ−µ common out-neighbours.

A normally regular digraph (or any digraph) is said to be asymmetric if there is no pair
x, y such that x↔ y.

Another very important property of a normally regular digraph, which will be proved
later (Corollary 11) is that an NRD(v, k, λ, µ) also satisfies that every vertex has in-degree
k and that the number of common in-neighbours of two vertices is equal to the number
of common out-neighbours.

This definition may be stated in terms of the adjacency matrix.

Proposition 1. A v × v {0, 1}-matrix A is the adjacency matrix of a normally regular
digraph if and only if every diagonal entry is 0 and

AAt = kI + λ(A+ At) + µ(J − I − A− At),

where I is the identity matrix and J is the matrix in which all entries are 1. This normally
regular digraph is asymmetric if and only if A+ At is a {0, 1} matrix.

It is important to note that a regular digraph with a normal adjacency matrix is not
necessarily a normally regular digraph.

The author first intended to study only asymmetric normally regular digraphs. How-
ever, most of the results hold in the general case, so we will usually not assume that
graphs are asymmetric, but for connections to association schemes and similar results we
need to assume that the graph is asymmetric.

Asymmetric normally regular digraphs with µ = λ have been studied by Ito [12], [13],
[14], [15] and [16], and also by Ionin and Kharaghani [11].

Fossorier, Ježek, Nation and Pogel [6] introduced what they call ordinary graphs.
Their definition is similar to our Definition 1, but the number of common out-neighbours
(and common in-neighbours) of x and y in the three cases is a, b and c, respectively. They
do not assume that c = 2b − a (although this is satisfied in some of their results). Note
that the equation c = 2b−a is essential for the formulation of the definition of a normally
regular digraph as a matrix equation, and thus it is essential for the theory.

U. Ott [28] considered Cayley graph construction from “generalized difference set”
that leads to normally regular digraphs.

Another variation of normally regular digraphs is Deza digraphs. A regular digraph
is said to be a Deza digraph if the number of common out-neighbours of two vertices is
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either b or c, for some constants b and c, but it need not depend on whether the vertices
are adjacent or not. Deza digraphs have been studied by Wang and Feng [34].

Many constructions of normally regular digraphs use Cayley graphs of a group. Let G
be a group and let S be a subset of G not containing the group identity, which we denote
by 1. Then the Cayley graph Cay(G,S) is the graph whose vertices are the elements of
G and with edge set

{x→ y | x−1y ∈ S}.

Let S(−1) = {s−1 | s ∈ S}. Then Cay(G,S) is undirected if S(−1) = S and asymmetric if
S(−1) ∩ S = ∅.

Proposition 2. The Cayley graph Cay(G,S) is a normally regular digraph if and only
if for every g ∈ G, g 6= 1, the number of pairs (x, y) ∈ S × S satisfying yx−1 = g is µ if
g /∈ S ∪ S(−1), λ if g is in exactly one of the sets S, S(−1) and 2λ− µ if g ∈ S ∩ S(−1).

In [21] we will study normally regular digraphs constructed as Cayley graphs of abelian
groups, and in [22] we present a table of small feasible parameters, enumerate small
normally regular digraphs and prove some results related these graphs. In [23], group
divisible normally regular digraphs, i.e, the digraphs considered in Section 4 and Section 7,
are investigated.

It is well-known that, by definition, a strongly regular graph with parameters
(v, k, λ, µ) is an undirected graph with v vertices in which

• every vertex has degree k

• any pair of adjacent vertices have exactly λ common neighbours

• any pair of non-adjacent vertices have exactly µ common neighbours.

Equivalently, a strongly regular graph is a graph whose adjacency matrix A satisfies

A2 = kI + λA+ µ(J − I − A) and AJ = JA = kJ.

Thus any normally regular digraph where all edges are undirected (i.e., x→ y if and
only if x ← y) is a strongly regular graph. Note however that we use λ in a different
meaning. For a normally regular digraph we will use λ2 = 2λ− µ to denote the number
of common out-neighbours of a pair of vertices joined by two edges.

In the theory of normally regular digraphs we will require that λ is an integer and thus
µ and λ2 are congruent modulo 2. Thus not every strongly regular graph is a normally
regular digraph.

There are some directed analogues of strongly regular graphs other than normally reg-
ular digraphs. Duval [5] introduced directed strongly regular graphs which have adjacency
matrix A satisfying

A2 = tI + λA+ µ(J − I − A) and AJ = JA = kJ.
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Many proof techniques from strongly regular graphs, especially the use of eigenvalues, are
more easily applied to directed strongly regular graphs than to normally regular graphs,
see [5] or [18].

Another well-known combinatorial structure to which normally regular digraphs are
related are 2-designs (or Balanced Incomplete Block Designs). A 2 − (v, k, λ) design is

an incidence structure with {0, 1} incidence matrix N of size v × b, b = λv(v−1)
k(k−1) satisfying

NN t = (k − λ)I + λJ. (1)

A 2-design is said to be symmetric if b = v. The parameter k−λ is called the order of the
symmetric design. For information on design theory, see Beth, Jungnickel and Lenz [2].

Let A be the adjacency matrix of a normally regular digraph. If µ = λ then A is
incidence matrix of symmetric 2-design. If µ = λ+ 1 then A+ I is incidence matrix of a
symmetric 2-design. In this paper we will often assume that µ /∈ {λ, λ+ 1}.

A tournament is a digraph with the property that for any two distinct vertices x
and y exactly one of the edges x→ y or y → x is present.

We will need the following property of regular tournaments in Section 4.

Lemma 3 (Rowlinson [31]). A tournament is normal if and only if it is regular.

Proof. If A is an adjacency matrix of a regular tournament, i.e., AJ = JA = kJ , for some
number k then, since At = J − I − A, AAt = AJ − A− A2 = JA− A− A2 = AtA.

Conversely, in a normal digraph every vertex has equal in-degree and out-degree, and
in a tournament this degree would be v−1

2
, where v is the number of vertices.

Example 1. The Cayley graph Cay(Z5, {1, 2}) is a regular tournament and it is therefore
normal. But it is not a normally regular digraph.

If a tournament is a normally regular digraph then it is called a doubly regular
tournament. It satisfies k = 2λ + 1. µ is arbitrary. Sometimes it is convenient to take
µ = λ. In other cases we may take µ = 0. Such tournaments are also called homogenous
tournaments by Kotzig [24], and Ito [16] used the term Hadamard tournaments, as these
tournaments are equivalent to skew Hadamard matrices of order v + 1 (see Reid and
Brown [29]).

Thus it is possible that doubly regular tournaments of order v exists for all v ≡ 3
mod 4.

The most important construction of a doubly regular tournament is the Paley tourna-
ment which is constructed as follows. Let F be the field of q elements, q ≡ 3 mod 4, and
let Q be the non-zero squares in F. Then the Cayley graph Cay(F, Q) is a doubly regular
tournament.

We conclude this section with two small asymmetric normally regular digraphs.
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Example 2. Let Q = {1, i, j, k,−1,−i,−j,−k} be the quaternion group. Then the Cayley
graph Cay(Q, {i, j, k}) is an NRD(8,3,1,0) with the following adjacency matrix

0 1 1 1 0 0 0 0
0 0 0 1 1 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 1 0 0
0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 0


This is the smallest non-trivial normally regular digraph with µ = 0. Normally regular
digraphs with µ = 0 or µ = k are characterized in Section 4.

Example 3. Cay(Z19, {1, 4, 6, 7, 9, 11}) is an NRD(19,6,1,3). This is the smallest nor-
mally regular digraph with µ /∈ {k, 0, λ, λ+ 1}. It belongs to an infinite family constructed
in Theorem 34. This digraph is asymmetric and in fact λ2 = 2λ− µ is negative.

2 Complementary graphs and the parameters

The complement of a graph with adjacency matrix A is the graph with adjacency matrix
J − I − A. The following theorem is proved by an easy computation.

Theorem 4. Let A the adjacency matrix of an NRD(v, k, λ, µ). Then J − I − A is the
adjacency matrix of a normally regular digraph with parameters

(v, k, λ, µ) = (v, v − k − 1, v − 2k + λ− 1, v − 2k + 2λ− µ).

We will now consider upper and lower bounds on the parameters µ, λ and λ2. There
exist normally regular digraphs for which λ2 = 2λ − µ < 0. But in that case there can
not be any undirected edges and so the digraph is asymmetric. Note that Theorem 4 is
still valid in this case.

Lemma 5. The paramaters of an asymmetric normally regular digraph with k > 1 satisfy
the following restriction:

k > 2λ+ 1.

Proof. The number of edges in the subgraph spanned by the set x+ of out-neighbours of
a vertex x is kλ 6

(
k
2

)
. Thus 2λ 6 k − 1.

Lemma 6. The parameters of a normally regular digraph satisfy the inequality

2kλ+ (v − 2k − 1)µ > k2 − k. (2)
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Proof. Consider the number of triples (x, y, z) of vertices such that x→ y ← z. We first
count the triples by choosing first (x, z) and then y can be chosen in k, 2λ − µ, λ or µ
ways. The number of pairs (x, z) with x = z is v. If the graph has ` undirected edges
then the number of pairs (x, z) with x ↔ z is 2`, the number of pairs with x → z but
x 6← z is vk − 2`, the number of pairs with x← z but x 6→ z is vk − 2`, and the number
of non-adjacent pairs is v2 − v − 2vk + 2`. And then the number of triples is

vk + 2`(2λ− µ) + 2(vk − 2`)λ+ (v2 − v − 2vk + 2`)µ = v(k + 2kλ+ (v − 2k − 1)µ).

If we first choose y and then choose x and z among its in-neighbours then we can express
the number of triples as

∑
y d
−(y)2. We do not yet know what the in-degrees are, but

we know that the average in-degree is k. Therefore
∑

y d
−(y)2 >

∑
y k

2 = vk2. The
inequality follows from this.

In the next section we will prove that every vertex has in-degree exactly k, and there-
fore we get equality in Lemma 6.

If a normally regular digraph is a tournament then µ can be chosen arbitrarily and if
it is a complete undirected graph Kv then µ and λ can be chosen arbitrarily such that
λ2 = 2λ− µ = v − 2. In all other cases we have 0 6 µ 6 k.

Proposition 7. Suppose there exists an NRD(v, k, λ, µ) which is not a tournament or a
complete graph. Then

0 6 µ 6 k,

and
λ2 = 2λ− µ 6 k − 1.

It can be proved that there is equality in the inequality λ2 6 k−1 if and only if µ = 0.

Proof. Suppose that µ < 0. Then the digraph does not have any pair of non-adjacent
vertices. Since it is not a complete graph, v − 2k − 1 > −k. As µ is negative we then
have (v − 2k − 1)µ < −kµ. As the digraph is not a tournament, there exist undirected
edges and 2λ− µ = λ2 6 k − 1. From Lemma 6 we have

k2 − k 6 2kλ+ (v − 2k − 1)µ < 2kλ− kµ 6 k(k − 1),

a contradiction. Thus µ > 0.
If x↔ y then x and y have λ2 6 k − 1 common out-neighbours. So suppose that the

digraph is asymmetric. Then by Lemma 5, 2λ 6 k − 1 and so 2λ− µ 6 k − 1.
Suppose now that µ > k. Let (v, k, λ, µ) be the parameters of the complementary

normally regular digraph. Then by Theorem 4

v − 2k + 2λ− µ = µ > k = v − k − 1,

and so 2λ− µ > k − 1, a contradiction.

It is convenient to introduce two further parameters of a normally regular digraph:

η = k − µ+ (µ− λ)2 (3)
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and
ρ = k + µ− λ.

The parameter η will play a role similar to that of the order of a symmetric design.
Ma [27] uses the parameter ∆ = 4η in the study of strongly regular graphs. The factor 4
is necessary in order get an integer for a general strongly regular graph.

Note that it follows from Theorem 4 that the complement of a normally regular digraph
G has the same value of η as G:

η = k − µ+ (µ− λ)2 = η.

3 Matrix equations

Using equation 3, the matrix equation in Proposition 1 is equivalent the to following
equation.

(A+ (µ− λ)I)(A+ (µ− λ)I)t = ηI + µJ. (4)

Thus for B = (A+ (µ− λ)I) we have

BBt = ηI + µJ,

and since AJ = kJ (every vertex has out-degree k),

BJ = ρJ.

We will now prove that a normally regular digraph is normal. The following lemma
is a generalization of a proof of the fact that the dual of a symmetric 2-design is also a
2-design, see [2].

Lemma 8. Suppose that B is a non-singular v× v matrix such that BBt = ηI + µJ and
BJ = ρJ for some constants ρ, η, µ. Then B is normal and µv = ρ2 − η.

Proof. From BJ = ρJ we get ρ−1J = B−1J and

Bt = B−1(BBt) = B−1(ηI + µJ) = ηB−1 + µρ−1J (5)

Using that J is symmetric, we get from this

ρJ = (BJ)t = JBt = ηJB−1 + µρ−1J2 = ηJB−1 + µρ−1vJ.

This implies that

JB−1 =
ρ− µρ−1v

η
J,

and so

vJ = J2 = (JB−1)(BJ) =
ρ− µρ−1v

η
ρvJ.
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Thus
ρ− µρ−1v

η
= ρ−1, (6)

and JB−1 = ρ−1J or ρJ = JB. Now equation 5 implies

BtB = ηI + µρ−1JB = ηI + µJ = BBt.

Rewriting equation 6 we get µv = ρ2 − η.

Corollary 9. The parameters of a normally regular digraph satisfy

µv = ρ2 − η. (7)

Theorem 10. Every normally regular digraph is normal.

Proof. Let A be the adjacency of a normally regular digraph and let B = A + (µ− λ)I.
Then BBt = ηI + µJ . Suppose first that B is singular. Then one of the eigenvalues
of ηI + µJ is zero: η = 0 or η + µv = 0. Since µ, v > 0 this is possible only when
η = k − µ+ (µ− λ)2 is 0. As k + (µ− λ)2 > k > µ, µ = k + (µ− λ)2 implies k = µ = λ.
This implies that k = 0. Since a graph with no edges is normal, we may thus assume that
B is non-singular, and the result follows from the lemma.

In a normal digraph the number of common in-neighbours of two vertices is equal to
the number of common out-neighbors. We therefore get the following.

Corollary 11. An NRD(v, k, λ, µ) is regular of degree k, i.e., every vertex has in-degree k
and out-degree k. Furthermore, the number of common in-neighbours of distinct vertices
x and y is 

µ if x and y are non-adjacent,

λ if either x→ y or y → x, but not both,

2λ− µ if x↔ y.

Since we now know that every vertex has in-degree k, it follows that there is equality
in Lemma 6. Thus

2kλ+ (v − 2k − 1)µ = k2 − k (8)

This equation is equivalent to equation 7.

From the theory of symmetric 2-designs we also have the Bruck-Ryser type condition.
It is based on the following general lemma from Beth, Jungnickel and Lenz [2]

Lemma 12. Suppose that N is a rational v × v matrix satisfying the equation

NN t = (a− b)I + bJ

for some integers a > b and v odd. Then the equation

x2 = (a− b)y2 + (−1)(v−1)/2bz2

has a solution (x, y, z) ∈ Z3 \ {(0, 0, 0)}.
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For normally regular digraphs we have the following.

Theorem 13. Suppose that there exist an NRD(v, k, λ, µ).

• If v is even then η = k − µ+ (µ− λ)2 is a square.

• If v ≡ 1 (mod 4) then the Diophantine equation x2 − µy2 = ηz2 has an integer
solution such that x, y, and z are not all zero.

• If v ≡ 3 (mod 4) then the Diophantine equation x2 + µy2 = ηz2 has an integer
solution such that x, y, and z are not all zero.

Proof It follows from equation 4 that the determinant of ηI + µJ is a square. The
eigenvalues of this matrix are η + µv = ρ2 with multiplicity 1 and η with multiplicity
v − 1. For the equality we used equation 7. Thus the result follows when v is even.

For v odd, the theorem follows from equation 4 and the above lemma.

4 µ = 0 or µ = k

In this section we will characterize the structure of normally regular digraphs with µ = 0
or µ = k. We first prove that these two cases are complementary. After this we will
characterize normally regular digraphs with µ = 0 and then get the case µ = k as a
corollary.

Proposition 14. A normally regular digraph satisfies µ = k if and only if the comple-
mentary normally regular digraph satisfies µ = 0.

Proof. If µ = 0 then it follows from equation 8 that 2λ = k − 1. And then µ = v − 2k +
2λ− µ = v − k − 1 = k. If µ = k then it follows from equation 8 that v = 3k − 2λ. Thus
µ = v − 2k + 2λ− µ = 0.

4.1 µ = 0

We will first characterize asymmetric normally regular digraphs with µ = 0 and then
generalize to digraphs with undirected edges.

A normally regular digraph with µ = 0 need not be connected. However, each con-
nected component will be a normally regular digraph with the same value of k and λ.
Thus we will only consider normally regular digraphs whose underlying undirected graph
is connected. As each vertex has equal in- and out-degree this implies that the digraph
is strongly connected. Thus there is a directed path from any vertex to any other vertex.
A normally regular digraph with µ = 0 may be a doubly regular tournament. Another
possibility is that k = 1 and the digraph is a directed cycle.
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Let T be a tournament with adjacency A. Then D(T ) denotes the digraph with
adjacency matrix 

0 1 . . . 1 0 0 . . . 0
0 1
... A

... At

0 1
0 0 . . . 0 0 1 . . . 1
1 0
... At ... A
1 0


.

Thus if T is a tournament with only one vertex then D(T ) is a directed cycle of length 4.
In this section we consider a tournament with one vertex to be doubly regular.

Theorem 15. A connected digraph is an asymmetric normally regular digraph with µ = 0
if and only if either

1. it is a directed cycle of length at least 5

2. it is a doubly regular tournament or

3. it is isomorphic to D(T ) for some doubly regular tournament T .

Proof. Suppose that G is a connected asymmetric normally regular digraph with µ = 0,
k > 2 and that G is not a tournament.

As µ = 0 we get from equation 8 that λ = k−1
2

. Let x be a vertex of G. Then every
vertex in x+ has out-degree λ in this subgraph and thus in-degree at most k− 1− λ = λ.
It follows that x+ is a regular tournament. Similarly, x− is a regular tournament.

Since G is strongly connected and it is not a tournament, there exist a vertex y ∈ G
such that x and y are non-adjacent and there is a path from x to y in G. We may choose
y such that the (directed) distance from x to y is minimal, i. e. y is dominated by a vertex
in x+ or in x−. Since x and y are non-adjacent and µ = 0, y is not dominated by any
vertex in x−, and similarly y does not dominate any vertex in x+. Thus y is dominated
by a vertex, say v, in x+. Suppose there is a vertex w in x+ that does not dominate
y. Since x+ is a regular tournament it is strongly connected, so there is a directed path
from v to w in x+. On this path there are vertices u and u′ such that u → u′, u → y
but u′ does not dominate y. This is a contradiction to µ = 0. Thus every vertex in x+

dominates y. If another vertex y′, non-adjacent to x was dominated by a vertex in x+, it
would be dominated by every vertex in x+ and so y and y′ have k common in-neighbours,
a contradiction. Thus every vertex in x+ dominates λ vertices in x−.

Now a vertex in x− dominated by a vertex in x+ (which dominates y) must be adjacent
to y, as µ = 0. As above, y then dominates every vertex of x−, and every vertex in x−

is dominated by λ vertices in x+. Also every vertex in x− dominates exactly λ vertices
in x+. Thus V (G) = {x, y} ∪ x+ ∪ x−. Furthermore there is an enumeration of vertices
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x+ = {v1, . . . , vn} and x− = {v′1, . . . , v′n} such that v′i is the unique vertex non-adjacent
to vi and vice versa.

If vi → vj then, since no vertex dominates both vj and v′j, v
′
j → vi. Similarly vj → v′i

and v′i → v′j. Thus the mapping vi 7→ v′i is an isomorphism.
We also see that v′` is a common out-neighbour of vi and vj if and only if v` is a

common in-neighbour of vi and vj. Thus the number of vertices in x+ dominating vi and
vj plus the number of vertices in x+ dominated by vi and vj is λ − 1. But since x+ is
a regular tournament it is normal (by Lemma 3) and thus these two numbers are both
equal to λ−1

2
and so λ is odd, and x+ is a doubly regular tournament, NRD(k, λ, λ−1

2
, ·).

If on the other hand G is a doubly regular tournament with degree k = 2λ + 1 and
with vertex-set {x1, . . . , xn}, n = 2k + 1, then we may construct a graph with vertex-set
{v0, . . . , vn, v′0, . . . , v′n} and edges

v0 → vi → v′0 → v′i → v0, for 1 6 i 6 n

and
vi → vj → v′i → v′j → vi if xi → xj in G, for 1 6 i, j 6 n.

It is easy to verify that this new graph is an NRD(2n+ 2, n, k, 0).

The smallest non-trivial example of the type of normally regular digraphs mentioned
as possibility 3 is a Cayley graph of the quaternion group of order 8 (see Example 2).
In [17] and [23], it is investigated when normally regular digraphs of this type are Cayley
graphs or vertex transitive.

We will now characterize normally regular digraphs with µ = 0 and with undirected
edges. We need a definition to describe the digraphs. Let G be a digraph with vertices
x1, . . . , xn. The s-clique extension of G, denoted by Ks(G) is the digraph with vertex
set partitioned in sets V1, . . . , Vn of size s where each Vi induce an complete undirected
graph and furthermore for y ∈ Vi and z ∈ Vj, y → z if and only if xi → xj in G.
If B is an adjacency matrix of G then an adjacency matrix of Ks(G) can be expressed
using Kronecker products of matrices (see Hall [10]) as follows B ⊗ Js + In ⊗ (Js − Is) =
(B + I)⊗ Js − Ins.

Theorem 16. If G is an asymmetric NRD(v, k, λ, 0) then for any positive integer s,
Ks(G) is an NRD(sv, sk + s− 1, sλ+ s− 1, 0).

Conversely, if G is a connected NRD(v, k, λ, 0), then for some number s there is an
asymmetric normally regular digraph G′ with parameters (v

s
, k−s+1

s
, λ−s+1

s
, 0) such that G

is isomorphic to Ks(G′).

Proof. Consider a connected normally regular digraph with µ = 0. We have that k =
2λ + 1. Then the number of common out-neighbours of x and y, where x ↔ y, is
2λ− µ = k − 1.

Thus if x ↔ y then x and y have exactly the same set of out-neighbours (and the
same set of in-neighbours) other than y and x. In particular, if x↔ y ↔ z then x↔ z.
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It follows that the vertex set is partitioned in sets V1, . . . , Vm, such that each Vi spans
a complete subgraph and there are no undirected edges joining Vi and Vj for i 6= j. If
x→ y for some x ∈ Vi and y ∈ Vj then x→ y for every x ∈ Vi and y ∈ Vj.

Choose i such that |Vi| > |Vj|, for all j and let s = |Vi|. Let V +
i denote the set of

out-neighbours outside Vi of vertices in Vi. Then V +
i = Vi1∪. . .∪Vi` for some i1, . . . , i` and

V +
i has size k−(s−1) = 2λ+2−s. In the subgraph spanned by V +

i every vertex has out-
degree λ. The average in-degree is also λ. Thus the average number of undirected edges
incident with a vertex is at least 2λ−(2λ+2−s−1) = s−1. By the maximality of |Vi| = s,
no vertex is incident with more than s− 1 undirected edges and so |Vi1| = . . . = |Vi`| = s.
Since the graph is connected, repeated use of this argument shows that |V1| = . . . = |Vm|.
Consider a graph G′ with vertices x1, . . . , xm and edges xi → xj if Vi → Vj.Then G′ is an
NRD(v

s
, k−s+1

s
, λ−s+1

s
, 0), and G is isomorphic to Ks(G′).

Example 4. If G′ in this proof is an NRD(8t+8, 4t+3, 2t+1, 0) then G is an NRD((8t+
8)s, (4t+4)s−1, (2t+2)s−1, 0). Thus an NRD(16, 7, 3, 0) may appear with (s, t) = (2, 0)
or with (s, t) = (1, 1) and so s can not be determined from the parameters.

4.2 µ = k

Theorem 17. A digraph G is an asymmetric normally regular digraph with µ = k if and
only if there is a number s such that G is obtained from a doubly-regular tournament by
replacing each vertex x by a set Vx of s new vertices such that if x→ y in the tournament
then u→ w for every u ∈ Vx and w ∈ Vy. Then s = k − 2λ = v − 2k.

In other words a graph is an asymmetric normally regular digraph with µ = k if and
only if it has an adjacency matrix which is the Kronecker product of an adjacency matrix
of a doubly regular tournament and Js

Proof. If G is an asymmetric normally regular digraph with µ = k then the complement G
of G is a connected normally regular digraph with µ = 0 and with no pair of non-adjacent
vertices. Then G is constructed as in Theorem 16 from an asymmetric normally regular
digraph with µ = 0 and with no pair of non-adjacent vertices. By Theorem 15 this is a
doubly regular tournament.

5 Eigenvalues

We first state some properties of the spectrum of a normal matrix.

Lemma 18. Let A be a normal matrix with real entries.
Suppose that θ is an eigenvalue of A of multiplicity m. Then

• θ is an eigenvalue of At of multiplicity m.

• θ is an eigenvalue of A of multiplicity m.

the electronic journal of combinatorics 22(4) (2015), #P4.21 13



• θ+ θ is an eigenvalue of A+At. The multiplicity of this eigenvalue is m if θ is real,
and 2m if θ is not real.

Conversely, suppose that τ is an eigenvalue of A+ At of multiplicity d.
Then there is an eigenvalue θ of A such that τ = θ + θ. If θ is real then θ = τ

2
has

multiplicity d and if θ is not real then θ has multiplicity d
2
.

Proof. As A is a normal matrix we have the following spectral decomposition

A =
∑
θ

θEθ,

where the sum is over the eigenvalues of A, and Eθ is the matrix of the orthogonal
projection on the corresponding eigenspace. As A is real, the adjoint matrix (i.e., the
complex conjugate of the transposed matrix) is At and since orthogonal projections are
self-adjoint we get

At =
∑
θ

θEθ.

In particular, x ∈ Cv is an eigenvector of A with eigenvalue θ if and only x is an eigenvector
of At with eigenvalue θ.

As the characteristic polynomial of A is real, θ and θ are roots of equal multiplicity.
Thus θ is also an eigenvalue of A of multiplicity m. Any eigenvector of A with eigenvalue
θ or θ is an eigenvector of A + At with eigenvalue θ + θ. Thus, if θ 6= θ then θ + θ is an
eigenvalue of A+ At with multiplicity 2m, but if θ is real then the multiplicity is m.

Conversely, as the spectral decomposition of A+At can be obtained from the spectral
decomposition of A, any eigenvalue τ of A+At has the form θ+θ, where θ is an eigenvalue
of A.

In general it is not possible to compute the eigenvalues of a normally regular digraph
from its parameters. We only know that the degree k is an eigenvalue and (if the graph
is connected then) it has multiplicity 1. We now show that all other eigenvalues lie on a
circle in the complex plane with centre λ− µ and radius

√
η.

Theorem 19. Suppose that θ 6= k is an eigenvalue of an NRD(v, k, λ, µ).
Then

|θ − (λ− µ)| = √η. (9)

Proof. Let A be the adjacency matrix of an NRD(v, k, λ, µ). Let x ∈ Cv be an eigenvector
for A with eigenvalue θ. Then x is eigenvector for At with eigenvalue θ.

Thus (θ+µ−λ)(θ+µ−λ) is an eigenvalue of (A+(µ−λ)I)(A+(µ−λ)I)t = ηI+µJ .
If θ 6= k then

(θ + µ− λ)(θ + µ− λ) = η

i.e.,
|θ − (λ− µ)| = √η.
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We now show that equation 9 characterizes normally regular digraphs. This theorem
generalizes the well-known result that a connected regular undirected graph with exactly
three eigenvalues is strongly regular, see [7].

Theorem 20. Suppose that G is a connected k-regular directed graph with a normal ad-
jacency matrix A, and suppose there exist real numbers a and b such that every eigenvalue
θ 6= k satisfies |θ − a| = b.
Then either

• G is a normally regular digraph with λ = a + (k−a)2−b2
v

and µ = (k−a)2−b2
v

, where v
is the number of vertices, or

• G is a strongly regular graph.

Proof. We can write A =
∑m

i=1 θiEi where θ1, . . . , θm are the eigenvalues of A and
E1, . . . , Em are the orthogonal projections on the corresponding eigenspaces. We may
assume that θ1 = k so that E1 = 1

v
Jv. Then A − aI =

∑m
i=1(θi − a)Ei, A

t − aI =∑m
i=1(θi−a)Ei and so (A−aI)(At−aI) =

∑m
i=1(θi−a)(θi−a)Ei = (k−a)2E1+b

2
∑m

i=2Ei =

(k−a)2 1
v
J + b2(I− 1

v
J). This equation is equivalent to AAt = (b2−a2 + (k−a)2−b2

v
)I+ (a+

(k−a)2−b2
v

)(A+At)+ (k−a)2−b2
v

(J−I−A−At). If G is not undirected and not a tournament
then clearly, λ and µ are integers and then the theorem follows from Proposition 1. If G
is a tournament then λ is an integer, there are infinitely many choices for (a, b), and µ is
arbitrary. If G is undirected then it is strongly regular.

Proposition 21. Suppose that A is the adjacency matrix of a connected NRD(v, k, λ, µ).
Then

1. The spectrum of A is completely determined by the spectrum of A + At and the
parameters (v, k, λ, µ).

2. If the digraph is not an undirected strongly regular graph then A has at least one
non-real eigenvalue.

Proof. 1. Suppose that τ is an eigenvalue of A + At of multiplicity m. By Lemma 18,
there is an eigenvalue θ of A such that τ = θ + θ. The real part of θ is τ

2
. We know

from Theorem 19 that |θ − (λ− µ)| = √η. Thus θ is in the intersection of a vertical line
determined by the eigenvalue of A+ At and a circle determined by the parameters.

If this intersection is on the real line then | τ
2
− (λ− µ)| = √η and, by Lemma 18, τ

2
is

an eigenvalue of A with multiplicity m.
Otherwise, there are two intersections, θ and θ. By Lemma 18, they are both eigen-

values of A with multiplicity m
2

.
2. If all eigenvalues of A are real then since A is normal it follows that A is selvadjoint

and thus symmetric. But the digraph has directed edges.

Remark. If A is the adjacency matrix of a digraph G without undirected edges then
A + At is the adjacency matrix of the underlying undirected graph of G, i.e., the graph
obtained by replacing each directed edge by an undirected edge.
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This seems to be all that we can say in general about the the spectrum of a normally
regular digraph. But for µ = 0 we can at least describe the spectrum for the most
important class of normally regular digraphs.

Theorem 22. Suppose that T is a doubly regular tournament such that G = D(T ) is an
NRD(v, k, λ, 0). Then the eigenvalues of Ks(G) are

sk + s− 1, −1, s− 1 + is
√
k, s− 1− is

√
k

with multiplicities
1, sv − k − 2, λ+ 1, λ+ 1.

Proof. First we consider the eigenvalues of the adjacency matrix A of G. Then A+At is
the adjacency matrix of an imprimitive strongly regular graph. This graph has eigenvalues
2k, 0 and −2 with multiplicities 1, k + 1 and k. Thus if θ 6= k is an eigenvalue of A then
θ+ θ ∈ {0,−2}. By equation 9, |θ− λ| = λ+ 1, as η = k− µ+ (µ− λ)2 = 2λ+ 1 + λ2. If
θ + θ = −2 then θ = −1. The multiplicity is k. If θ + θ = 0 then θ = ±i

√
k. These two

eigenvalues have multiplicity 1
2
(k + 1) = λ+ 1.

Thus A+ I has eigenvalues k+ 1, 0 and 1± i
√
k. The matrix (A+ I)⊗ Js− Ivs is an

adjacency matrix of Ks(G). We first compute the eigenvalues of (A + I) ⊗ Js and then
subtract 1.

For each eigenvector x ∈ Cv of A + I with eigenvalue θ we can replace each entry xi
with s entries equal to xi to get an eigenvector in Cvs of (A+ I)⊗ Js with eigenvalue sθ.
Furthermore we can get v(s− 1) orthogonal eigenvectors with eigenvalue 0, by taking one
of the blocks to be orthogonal to (1, . . . , 1)t ∈ Cs and all other entries 0.

Note that the two non-isomorphic NRD(16, 7, 3, 0) mentioned in Example 4 have dif-
ferent spectra.

6 Relation to association schemes

An asymmetric normally regular digraph may have the additional property that A2 (where
A is the adjacency matrix) can be expressed as linear combination of A, At, I and J . In
that case the digraph is related to an association scheme.

Definition 2. Let X be finite set and let {R0, R1, . . . , Rd} be a partition of X×X. Then
X = (X, {R0, R1, . . . , Rd}) is an association scheme with d classes if the following
conditions are satisfied

• R0 = {(x, x) | x ∈ X},

• for each i ∈ {0, . . . , d} there exists i′ ∈ {0, . . . , d} such that

Ri′ = {(x, y) | (y, x) ∈ Ri},
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• for each triple (i, j, k), i, j, k ∈ {0, . . . , d} there exist a number pkij such that for all
x, y ∈ X with (x, y) ∈ Rk there are exactly pkij elements z ∈ X such that (x, z) ∈ Ri

and (z, y) ∈ Rj.

If i = i′ for all i then the association scheme is called symmetric, otherwise it is non-
symmetric.

The relation Ri, i = 1, . . . , d can be considered as an undirected graph if i = i′ and as
a directed graph if i 6= i′.

It is well-known that an undirected graph is strongly regular if and only if it is a
relation of a symmetric association scheme with two classes. And a directed graph is a
doubly regular tournament if and only if it is a relation of a non-symmetric association
scheme with two classes.

For a general introduction to association schemes we refer to Bannai and Ito [1].
Goldbach and Classen [8] have studied non-symmetric association schemes with three
classes and in [9] they describe the structure of non-symmetric association schemes with
three classes that are imprimitive, i.e., at least one the graphs R1, R2, R3 is disconnected.
For tables of feasible parameter sets see [19]. Association schemes with four classes and
with no symmetric relations other than R0 have been investigated by Jianmin Ma and
Kaishun Wang [26].

Proposition 23. 1. If (X, {R0, R1, R2, R3}) is an association scheme with 1′ = 2 then
R1 and R2 are asymmetric normally regular digraphs.

2. If (X, {R0, R1, R2, R3, R4}) is an association scheme with 1′ = 2 and 3′ = 4 then
R1, . . . , R4 are asymmetric normally regular digraphs.

Proof. We prove case 2 for the graph R1. The other cases are similar. The graph R1 is
regular with degree p012. Suppose that x and y are adjacent in R1. We may assume that
(x, y) ∈ R1. Then the number of common out-neighbours of x and y is p112. Suppose
now that x and y are non-adjacent. We may assume that (x, y) ∈ R3, since otherwise
(x, y) ∈ R4 and then (y, x) ∈ R3. Then the number of common out-neighbours of x and
y is p312.

It follows from Proposition 21 that the adjacency matrix of a normally regular di-
graph has at least three distinct eigenvalues. The normally regular digraphs constructed
from non-symmetric association schemes with 2, 3 or 4 classes have 3, 4 and 5 distinct
eigenvalues, respectively.

We now consider normally regular digraphs where the number of distinct eigenvalues
is either 3, 4 or 5, and try to construct association schemes.

In the following proofs it is easier to work with a reformulation of the definition of
association schemes in terms of matrices.

Proposition 24. Suppose that R0, . . . , Rd are relations on a set X, with adjacency matri-
ces A0, . . . , Ad. Let A be the vector space spanned by {A0, . . . , Ad}. Then (X, {R0, . . . , Rd})
is an association scheme if and only if A0 + . . .+ Ad = J and
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• I ∈ {A0, . . . , Ad}, (say I = A0),

• At
i ∈ {A0, . . . , Ad}, for all i, and

• A is closed under matrix multiplication.

In fact, AiAj =
∑

k p
k
ijAk.

By Theorem 20, it is not necessary to assume that the digraphs considered in the
following three results are normally regular. This follows from other properties.

Theorem 25. Suppose that G is a connected k-regular digraph with a normal adjacency
matrix A having exactly three distinct eigenvalues. Then either

• G is an undirected strongly regular graph or

• G is a doubly regular tournament and therefore a normally regular digraph, and the

eigenvalues are k, −1
2

+ i
√
λ+ 3

4
and −1

2
− i
√
λ+ 3

4
, with multiplicities 1, k and k

respectively, where k = 2λ+ 1.

In both cases we have an association scheme with 2 classes.

Proof. Let k, θ and τ be the eigenvalues and let Ek, Eθ and Eτ be the orthogonal projec-
tions on the eigenspaces. Then A = span{Ek, Eθ, Eτ} is closed under multiplication, as
the projections are idempotents and the eigenspaces are orthogonal. We have

I = Ek + Eθ + Eτ ,

J = vEk

A = kEk + θEθ + τEτ ,

and the adjoint of A is
At = kEk + θEθ + τEτ .

It follows that I, J, A and At are linearly dependent, so there exists rational numbers
a, b, c, d not all 0 such that

aA+ bAt = c(J − I) + dI.

Clearly d = 0. If c = 0 then A = At. Otherwise either A+At = J − I or A = At = J − I.
Thus either A = span{I, A,At} or A = span{I, A, J − I − A} and these matrices

satisfy the properties required in Proposition 24.
The spectrum can be computed as described in Proposition 21.

Theorem 26. Suppose that G is a connected asymmetric k-regular digraph with a normal
adjacency matrix A having exactly four distinct eigenvalues. Then G is a relation of a
non-symmetric association scheme with three classes and G is a normally regular digraph.
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Proof. Let A be the adjacency matrix of G. Let A = span{I, A,At, J − I − A − At}.
We need to show that A is closed under matrix multiplication. Let k, τ, θ and θ be the
eigenvalues of A. Let Ek, Eτ , Eθ and Eθ, respectively, be the orthogonal projections on
the corresponding eigenspaces. Then

I = Ek + Eτ + Eθ + Eθ,

J = vEk,

A = kEk + τEτ + θEθ + θEθ,

and
At = kEk + τEτ + θEθ + θEθ.

Thus {Ek, Eτ , Eθ, Eθ} is a basis of A. Since these projections are idempotents and the
product of distinct projections is 0, A is closed under multiplication.

If an asymmetric normally regular digraph has exactly five distinct eigenvalues then it
may have either three real eigenvalues and one pair of complex conjugate eigenvalues or
else it has one real eigenvalues and two pairs complex conjugate eigenvalues. In the latter
cases it seems likely that the graph is a relation of a non-symmetric association scheme
with four classes. We can only prove the following.

Proposition 27. Suppose that G is a connected asymmetric k-regular digraph with a
normal adjacency matrix having exactly five distinct eigenvalues k, θ, θ, τ, τ , where θ and
τ have distinct real parts. Then G is a normally regular digraph and it is an orientation
of a strongly regular graph.

Proof. There is a circle in the complex plane passing through θ, θ, τ and τ with centre in
the intersection of the real axis and the perpendicular bisector of θ and τ . By Theorem 20,
G is normally regular.

The underlying undirected graph is regular and has exactly three distinct eigenvalues
2k, θ + θ and τ + τ . Thus it is strongly regular, see [7].

Conversely, it follows from Proposition 21 that if a normally regular digraph is an
orientation of a strongly regular graph then the number of distinct eigenvalues is either
four or five.

7 Group divisible partitions

We start with the definition of two types of partitions of the vertex set.
Suppose that the vertex set of a normally regular digraph is partitioned in sets

V1, . . . , Vm. Then we say that V1, . . . , Vm is an equitable partition if there exists con-
stants cij, dij for i, j ∈ {1, . . . ,m} such that for every vertex x ∈ Vi, |x+ ∩ Vj| = cij
and for every vertex y ∈ Vj, |y− ∩ Vi| = dij. If |Vi| = |Vj| then cij = dij. We say that
C = (cij)i,j=1,...,m is the quotient matrix of the equitable partition, see [7].
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Let G be an asymmetric NRD(v, k, λ, µ). Then we say that G is group divisible if G
is a multipartite tournament, i.e., if V (G) can be partitioned in sets V1, . . . , Vr such that
there is an edge between x ∈ Vi and y ∈ Vj if and only if i 6= j.

Since G is regular the sets Vi all have the same size, say |Vi| = s = v − 2k, for
i = 1, . . . , r. Then v = rs and k = 1

2
(r − 1)s. We assume that s > 1.

The adjacency matrix of a group divisible normally regular digraph with µ 6= λ is also
the incidence matrix of a group divisible design, see [2]

Lemma 28. Let G be an asymmetric NRD(v, k, λ, µ) and suppose that G is group divisible
with partition V1, . . . , Vr. Then V1, . . . , Vr is an equitable partition.

Proof. For z ∈ Vi let cij(z) = |z+ ∩ Vj|. We need to prove that cij(z) does not depend
on z. Let x ∈ Vi and y ∈ Vj. We count the vertices in S = {z | x → z → y} in
two ways. The number of out-neighbours of x outside Vj is k − cij(x). λ of these out-
neighbours are common out-neighbours of x and y. The remaining k− cij(x)− λ vertices
are in S. Similarly, y has k − (|Vi| − cji(y)) = k − (s − cji(y)) in-neighbours outside Vi.
k − (s− cji(y))− λ vertices are in S. Thus s = cij(x) + cji(y), for all x ∈ Vi.

Proposition 29. Let A be the adjacency matrix of a group divisible normally regular
digraph. Then

• A has either 4 or 5 distinct eigenvalues.

• If A has 4 distinct eigenvalues then the graph is a relation of a non-symmetric
imprimitive association scheme with three classes.

• If A has 5 distinct eigenvalues then r and s are odd.

Proof. Since A+At is a strongly regular graph it has three distinct eigenvalues. Then by
Theorem 19 and Proposition 21, A has either 4 or 5 eigenvalues.

It follows from Theorem 26 that if A has 4 eigenvalues then the graph is a relation of
a non-symmetric association scheme with three classes.

It follows from Proposition 21 that if A has 5 distinct eigenvalues then eigenvalue k
has multiplicity 1 and the other 4 eigenvalues have pairwise the same multiplicity. Thus
the number of vertices is odd, and so r and s are odd.

The only known examples of group divisible normally regular digraphs with an odd
number of vertices satisfies µ = k and then by Theorem 17 they are a relation of a
non-symmetric imprimitive association scheme with three classes.

Conjecture 1. Any group divisible normally regular digraph is a relation of a non-
symmetric imprimitive association scheme with three classes.

Example 5. The parameters of a group divisible normally regular digraph must satisfy
that v − 2k divides v. This is satisfied by (v, k, λ, µ) = (16, 6, 2, 2). There are four
asymmetric normally regular digraphs with these parameters. Two of these are group
divisible and thus are relations of an association scheme.
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One of these is a Cayley graph

Cay(Z4 × Z4, {(0, 3), (1, 3), (2, 1), (3, 0), (3, 2), (3, 3)}).

The independent sets of vertices in this digraph are the cosets of the subgroup {(0, 0), (0, 2),
(2, 0), (2, 2)}.

One of the normally regular digraphs with these parameters that is not group divisible
has vertex set {ai, bi | i ∈ Z8} and edges

ai → ai+1, ai+2, bi, bi+1, bi+4, bi+6, i ∈ Z8,

bi → bi−1, bi−2, ai−2, ai−3, ai−5, ai−7, i ∈ Z8.

Thus group divisibility is not determined by the parameters.

8 Combinatorial results for small λ

In this section we use combinatorial methods to prove non-existence for certain parameter
sets where λ is small. If λ is so small that 2λ − µ is negative then only the asymmetric
case need to be considered.

Theorem 30. If there exist an asymmetric normally regular digraph with parameters
(v, k, λ, µ) where 2µ > k + λ then the graph is group-divisible and v − 2k divides v.

Proof. Suppose that G is an NRD(v, k, λ, µ). Let x be a vertex in G. Let y and z be
vertices in V (G)− {x} − x+ − x−. Then x+ ∩ y+ and x+ ∩ z+ each consist of µ vertices
in the set x+ of k vertices. Thus |y+ ∩ z+| > 2µ− k > λ and so y and z are nonadjacent.
It follows that every vertex in G belongs to a unique independent set of v − 2k vertices
and so G is group divisible with v

v−2k groups.

Corollary 31. Suppose that 2λ − µ < 0, 2µ > k + λ and v − 2k does not divide v then
an NRD(v, k, λ, µ) does not exist.

Theorem 32. If a normally regular digraph with λ = 0, µ 6= k and µ > 2 exists then

k > 2µ+ 1
2

+
√

2µ+ 1
4
.

From Theorem 17 we know that an NRD(v, k, 0, k) is obtained from a directed triangle
by replacing each vertex by k vertices.

Proof Suppose that G is an NRD(v, k, 0, µ) with µ 6= k. Since 2λ − µ < 0 any such
normally regular digraph is asymmetric. In this proof we use notation Ux = V (G)−{x}−
x+ − x− for a vertex x in G. By equation 8 we have

|Ux| =
k(k − 1)

µ
(10)

By Proposition 7, k > µ.
Claim 1: k > 2µ.
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Proof Let x be any vertex in G. By Theorem 30, Ux is an independent set if
µ < k < 2µ.

So suppose that k = 2µ and k > 2. By equation 10, |Ux| = 2k − 2. Suppose that
y, z ∈ Ux and y dominates z. x+∩y+ and x+∩z+ are disjoint sets (as λ = 0) of cardinality
µ. Thus their union is x+. z has µ in-neighbours in x−, no in-neighbours in x+ and thus
µ in-neighbours in Ux. Let y′ ∈ Ux be another vertex dominating z. Then y′ and z have
no common out-neighbours in x+, i.e., x+ ∩ (y′)+ = x+ ∩ y+. Thus y and y′ have at least
µ+ 1 common out-neighbours, a contradiction.

Thus Ux is an independent set.
Let z ∈ x+. Every vertex other than x dominating z belongs to Ux. As Ux is inde-

pendent, no vertex dominates both z and y ∈ Ux and so z is adjacent to every vertex in
Ux (but to no other vertex in x+). Thus z is adjacent to 2k − 1− |Ux| vertices in x−. By
equation 10 and µ < k 6 2µ, we have k > 2k − 1 − |Ux| > 1, and so there is a vertex
w ∈ x− adjacent to z and a vertex u ∈ x− not adjacent to z. Then w and z are adjacent
vertices in Uu, a contradiction.
Claim 2: k > 2µ+ 1.

Proof Suppose that k = 2µ+1 and let x be a vertex in G. By equation 10, |Ux| = 2k.
Since G is regular and |Ux ∪ {x}| > |x+ ∪ x−|, Ux cannot be an independent set. Let
y, z ∈ Ux such that y → z. y and z have no common out-neighbours in x+ so there a
unique vertex w ∈ x+ which is not dominated by y or z. The in-neighbours of z are µ
vertices in x−, possibly w, and at least µ vertices in Ux. Let y′ 6= y be a vertex in Ux
dominating z. Since y′ and z have no common out-neighbours in x+ and y and y′ have
only µ common out-neighbours, y′ dominates w. Since λ = 0, w does not dominate z,
and so z has µ+1 in-neighbours in Ux. We have now shown that in the graph spanned by
Ux any vertex has in-degree either 0 or µ+ 1 and, by symmetry, it has out-degree either 0
or µ+ 1. Thus the in-neighbours of z in Ux has out-degree µ+ 1. Any two in-neighbours
of z in Ux have at least µ− 1 common out-neighbours in (x+ ∩ y+)∪{w}. Thus z is their
only common out-neighbour in Ux. Counting the vertices in Ux we have

4µ+ 2 = |Ux| > 1 + (µ+ 1) + (µ+ 1)µ,

and so µ = 2.
Now |Ux| = 10 and we have at least 7 vertices of in-degree 3 in Ux and, by symmetry, at

least 7 vertices of out-degree 3. So there is a vertex with out-degree and in-degree 3. We
may assume that z is such a vertex. Then z dominates a vertex which is also dominated
by an in-neighbour of z. This is a contradiction to λ = 0. This proves claim 2.

Let r = k − 2µ. Then r > 2, by Claim 2. By equation 10, µ divides k(k − 1) =
(2µ + r)(2µ + r − 1) = µ(4µ + 4r − 2) + r(r − 1). Thus µ divides r(r − 1) and so

r2 − r = sµ, for some positive integer s. Then r = 1
2

+
√
sµ+ 1

4
.

If s = 1 then µ = r(r − 1) and k = 2µ + r = r(2r − 1). From equation 10, we see

that v = 1 + 2k + k(k−1)
µ

= 2k + 4r2 is even and so η is a square, by Theorem 13. But

η = k − µ + µ2 = r2((r − 1)2 + 1) cannot be a square. Thus s > 2. This proves the
theorem. �
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9 Normally regular digraphs as quotient graphs

9.1 Subplane partition

Fossorier, Ježek, Nation and Pogel [6] considered partition of a projective plane of order
n into subplanes π1, . . . , πv of order q, v = n2+n+1

q2+q+1
. They say that such a partition is

ordinary if for each pair (i, j) either each point of πi is incident with a line of πj or no
point of πi is incident with a line of πj.

For an ordinary partition of a projective plane they consider the quotient graph with
vertices π1, . . . , πv and an edge πi → πj if the points of πi are incident with lines of πj.
They proved that this quotient graph is what they called an ordinary graph. This is a
normally regular digraph in our terminology.

Theorem 33 (Fossorier, Ježek, Nation and Pogel [6]). If a projective plane of order n
has an ordinary partition into projective planes of order q then the quotient graph is a
normally regular digraph with (v, k, λ, µ) = (n

2+n+1
q2+q+1

, n− q, q2, q2 + q + 1).

For a partition into Baer subplanes, i.e., n = q2, the quotient graph is a complete
undirected graph.

Theorem 36 below describes the special case of this theorem where we consider de-
sarguesian planes. Theorem 34 may also be seen as a special case of Theorem 33 where
q = 1.

9.2 Bipartite graphs of diameter 3

Delorme, Jørgensen, Miller and Pineda-Villavicencio [4] considered a similar quotient
graph construction. In this paper we considered bipartite q + 1 regular graphs with
diameter 3 and with 2(q2 + q) vertices. (The largest possible bipartite q+ 1 regular graph
with diameter 3 has 2(q2 + q + 1) vertices and it appears only as incidence graph of a
projective plane of order q.) In such graphs the vertices are partitioned into cycles of
length 4. It is proved that the graph obtained by directing all edges from one bipartition
class to the other and then identifying each 4-cycle to a vertex is a normally regular
digraph with (v, k, λ, µ) = ( q

2+q
2
, q − 1, 0, 2).

This was our original motivation for studying normally regular digraphs.

10 Constructions

In this section we give a number of constructions of families of normally regular digraphs.
Most of these constructions use Cayley graphs of abelian groups.

10.1 Asymmetric Cayley graph constructions

The first construction uses a partition of a projective plane into triangles. If a triangle is
considered to be a “subplane” of order 1 then this is a special case of the construction in
Theorem 33.
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This construction was also found by de Resmini and Jungnickel [30] as an example of
what they call a failed symmetric design.

Theorem 34. Let k be a multiple of 3 such that k+1 is a prime power. Then there exists
S ⊂ Zv, v = k2+3k+3

3
such that Cay(Zv, S) is an asymmetric NRD(v, k, 1, 3).

Proof When λ = 1 and µ = 3, η = k + 1, which is assumed to be a prime power. By
equation 7, v = η2+η+1

3
.

By Singer’s theorem [32] there exist a cyclic planar difference set of order η, i. e. a
subset D of Z3v with |D| = η + 1 such that each non-zero element of Z3v is a difference
of exactly one ordered pair of elements in D. In particular there is a unique pair of
difference v. By adding a constant to D if necessary, we may assume that v, 2v ∈ D. Let
D′ = D \ {v, 2v}, and let S ⊆ Zv be the numbers congruent to numbers in D′ modulo v.

As v is not a difference in D′, |S| = η − 1 = k.
Suppose that x and −x are both in S. Then for some a, b ∈ {0, 1, 2}, x+av,−x+bv ∈

D′. Choose i, j ∈ {1, 2} such that a + b ≡ i + j (mod 3). Then we have two equal
differences in D

(x+ av)− iv = jv − (−x+ bv)

a contradiction. Thus S ∩ −S = ∅.
If x ∈ Zv is congruent (mod v) to a difference of elements in D, one of which is v or

2v, then either x ≡ a − iv or x ≡ iv − a for a ∈ D and i ∈ {1, 2}, i. e. x or −x ∈ S.
Conversely if x ∈ S or −x ∈ S then x is in exactly to ways congruent (mod v) to a
difference of two elements in D one of which is v or 2v.

Let x ∈ Zv \ (S ∪ −S ∪ {0}). Then each of x, x + v and x + 2v can be written in
exactly one way as a difference of elements in D, in fact in D′. Thus x can be written in
exactly three ways as a difference of elements in S.

If x ∈ S ∪ −S then only one of the three pairs of elements in D whose difference is
congruent to x (mod v) is in D′. Thus x can be written in exactly one way as a difference
of elements in S.

Hence Cay(Zv, S) is an NRD(v, k, 1, 3).

In the next theorem we construct a family of Cayley graphs of abelian but not neces-
sarily cyclic groups. It is well-known that this digraph is one of the classes of a (so-called
cyclotomic) association scheme with four classes.

Theorem 35. Suppose that v is a prime power, v ≡ 5 mod 8. Let D denote the following
subset of GF[v]:

D = {x4 | x 6= 0}

Then the Cayley graph of the additive group of GF[v] generated by D is a normally regular
digraph with v = 4k + 1 = 8(µ+ λ) + 5.

Proof As v ≡ 5 mod 8, the set D has cardinality k = v−1
4

and −1 6∈ D. Thus D ∪ −D
is the set of squares in GF [v]. This means that the cosets of the subgroup (of the
multiplicative group) D are D, −D, R, and −R for some set R. Let D = {1, q2, . . . , qk}.
Then qqi − q, 2 6 i 6 k, q ∈ D is the set of differences, we want to consider. For a
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fixed i, every element in the coset to which qi − 1 belongs appears exactly once as a
difference qqi − q, q ∈ D. This means that if among the differences q2 − 1, . . . , qk − 1,
the number of elements in D,−D,R and −R, are λ1, λ2, µ1 and µ2, respectively, then
among all differences of distinct element of D an element appears λ1, λ2, µ1, or µ2 times
according to whether it belongs to D,−D,R, or −R. Since for every x, x and −x appears
as a difference the same number of times, λ1 = λ2 and µ1 = µ2.

The only known infinite family of primitive non-symmetric association schemes with
three classes is a family constructed by Liebler and Mena [25]. For every s = 2n, they
constructed a so-called distance regular digraph of girth 4 and degree s(2s2−1), as a Cayley
digraph of Z4× . . .×Z4. Their graph is in fact an NRD(4s4, s(2s2−1), 2s(s−1), s(s−1)).

Some of the normally regular digraphs constructed in the next two subsections are
also asymmetric.

10.2 Construction from desarguesian planes

We will now consider the subplane partition described in Section 9.1 for desarguesian
projective planes.

Theorem 36. Let q be a prime power and let r > 2 be an integer not divisible by 3. Let
v = q2r+qr+1

q2+q+1
. Then there exists a set S ⊂ Zv such that Cay(Zv, S) is a normally regular

digraph with parameters (v, qr − q, q2, q2 + q + 1).

Proof. Let GF[q3r] be the field with q3r elements and with primitive element α. Then
GF[qr] and GF[q3] are subfields and their intersection is GF[q] as 3 does not divide r.

Let β = α(q3r−1)/(q3−1). Then β is a primitive element of GF[q3] and β /∈ GF[qr]. Thus
when GF[q3r] is considered as a 3 dimensional vector space over GF[qr] then vectors 1

and β span a 2 dimensional subspace U . Let u = q3r−1
qr−1 = q2r + qr + 1 and let D = {i ∈

Zu | αi ∈ U}. Then by Singer’s theorem [32], D is a planar difference set in Zu.
Similarly, we may consider GF[q3] as a 3 dimensional vector space over GF[q]. In this

space the vectors 1 and β span a 2 dimensional subspace W . Let w = q3−1
q−1 = q2+q+1 and

let T = {i ∈ Zw | βi ∈ W}. Again T is a planar difference set in Zw. As qr−1
q−1 and w are

coprime, multiplication by qr−1
q−1 is an automorphism of Zw and so T ′ = { qr−1

q−1 i | i ∈ T} is

a planar difference set. Then the set T ′′ = { qr−1
q−1 vi | i ∈ T} is a difference set in subgroup

〈v〉 of Zu. This set satisfies T ′′ = {i ∈ Zu | αi ∈ W} and T ′′ ⊂ D, as β = α
qr−1
q−1

v.
If for some x, y ∈ D the difference x − y is a non-zero multiple of v then x, y ∈ T ′′.

Let D′ = D \ T ′′. Let S ⊂ Zv be the numbers congruent to numbers in D′ modulo v. As
multiples of v are not differences in D′, |S| = qr − q.

Let g ∈ Zv, g 6= 0. Then g is congruent modulo v to q2 + q+ 1 elements in Zu, each of
which can uniquely be written as difference x− y where x, y ∈ D. If g ∈ S then exactly
q+1 of these differences satisfy y ∈ T ′′. If g /∈ S then none of the differences have y ∈ T ′′.
Similarly, if g ∈ −S then exactly q + 1 of the differences have x ∈ T ′′.
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Thus the number of pairs x, y ∈ S such that a nonzero element g ∈ Zv can be written
as g = x− y is µ = q2 + q+ 1 if g /∈ S ∪−S, λ = q2 if g is in exactly one of the sets S,−S,
and 2λ− µ = q2 − q − 1 if g ∈ S ∩ −S.

For r = 2 the graph constructed in this theorem is a complete graph with v = q4+q2+1
q2+q+1

=

q2− q+ 1. If r > 4 is even then the projective plane of order qr has an ordinary partition
in subplanes of order q2 and the planes of order q2 have an ordinary partition in subplanes
of order q. Then the vertices of the normally regular digraph are partitioned in sets of
size q2 − q + 1 spanning complete subgraphs. Thus S ∩−S contains all nonzero elements
of the subgroup of order q2 − q + 1.

We conjecture that these are the only elements in S ∩ −S.

Conjecture 2. Let S be as in Theorem 36.

• If r is odd then S ∩ −S = ∅.

• If r is even then S ∩ −S consists of the nonzero elements of the subgroup of order
q2 − q + 1.

The proof of Theorem 36 is an algorithm for computing the set S. The above conjecture
is based on computations of S for the following values of (q, r): (2,4), (2,5), (2,7), (2,8),
(2,10), (3,4), (3,5), (4,4), (4,5), (5,4).

Example 6. 1. For q = 2 and r = 4, we get

S = {7, 13, 14, 17, 19, 23, 26, 28, 29, 31, 34, 35, 37, 38} ∈ Z39.

This gives an NRD(39, 14, 4, 7). In this particular case, the normally regular digraph is
isomorphic to the graph constructed in Corollary 40, with (s, t) = (0, 3).
2. For q = 2 and r = 5, we get

S = {11, 17, 21, 22, 25, 29, 31, 34, 42, 43, 44, 45, 49, 50, 58, 62,

68, 81, 84, 86, 88, 90, 91, 97, 98, 100, 116, 121, 124, 136} ∈ Z151.

This gives an asymmetric NRD(151, 30, 4, 7).

10.3 Product constructions

In this section we give two constructions of normally regular digraphs that are not asym-
metric. They are products involving doubly regular tournament and conference graphs.
In some cases they are Cayley graphs.

Theorem 37. Let T be a doubly regular tournament with 4t+ 3 vertices and let K2t+1 be
the complete graph of order 2t+ 1.

Then the cartesian product with vertex set V (T )× V (K2t+1) and edge set

{(x, u)→ (y, u) | x→ y in T} ∪ {(x, u)↔ (x, v) | u↔ v in K2t+1}

is an NRD((4t+ 3)(2t+ 1), 4t+ 1, t, 1).
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Proof. Let (x, u) and (y, v) be vertices in the cartesian product. If x = y and u 6= v then
(x, u) and (y, v) are joined by an undirected edge and their common out-neighbours are
the remaining 2t− 1 vertices of the form (x,w). If x 6= y and u = v then (x, u) and (y, v)
are joined by a directed edge and their common out-neighbours are the vertices (z, u)
where z is a common out-neighbour of x and y in T . There are t such vertices. If x 6= y
and u 6= v then (x, u) and (y, v) are non-adjacent. We may assume x → y in T . Then
(y, u) is the unique common out-neighbour of (x, u) and (y, v).

If T is a Paley tournament then the above construction is a Cayley graph.

Corollary 38. Let F be the field of 4t + 3 elements and let Q be the set of non-zero
squares in F. Let S = {(d, 0) | d ∈ Q} ∪ {(0, z) | z 6= 0} be a subset of the direct product
F× Z2t+1 of the additive group of F and the cyclic group of order 2t+ 1.

Then Cay(F× Z2t+1, S) is an NRD((4t+ 3)(2t+ 1), 4t+ 1, t, 1).

A strongly regular with (v, k, λ, µ) = (4µ + 1, 2µ, µ − 1, µ) is called a conference
graph. The most important construction of conference graphs are the Paley graphs
which are constructed as follows. Let F be the field of q elements, q ≡ 1 mod 4 and let
Q be the non-zero squares in F. Then the Cayley graph of the additive group Cay(F, Q)
is a conference graph, see [7].

Theorem 39. Let H be a conference graph with 4t + 1 vertices and let T be a doubly
regular tournament with 4s+ 3 vertices. Let G be the graph with vertex set V (H)× V (T )
and with edge set

{(u, x)→ (v, y) | either u↔ v and x→ y, or u 6↔ v and x← y}

∪ {(u, x)↔ (u, y) | u ∈ V (H), x, y ∈ V (T )}.

Then G is a normally regular digraph with parameters

((4t+ 1)(4s+ 3), (4t+ 2)(2s+ 1), 4ts+ 3s+ t+ 1, (2t+ 1)(2s+ 1)).

Proof. Suppose that (u, x) → (v, y) but (u, x) 6← (v, y) in G. Then either u ↔ v and
x → y, or u and v are non-adjacent and x ← y. Suppose that u ↔ v and x → y. Let
(w, z) be a common out-neighbour of (u, x) and (v, y). Then w and z satisfy one of the
following six cases.

w = u, y → z,

w = v, x→ z, z 6= y,

u↔ w ↔ v, x→ z, y → z,

u 6↔ w 6↔ v, x← z, y ← z,

u↔ w 6↔ v, x→ z, y ← z,

u 6↔ w ↔ v, x← z, y → z.
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The number of vertices (w, z) in each case are 2s + 1, 2s, ts, (t − 1)s, ts and t(s + 1),
respectively. The case where u and v are non-adjacent and x ← y is similar. Thus
λ = 4ts+ 3s+ t+ 1.

The parameters k and µ are easy to compute. Now suppose that (u, x)↔ (v, y). Then
u = v. A common out-neighbour (w, z) of (u, x) and (u, y) is of one of the following three
cases.

w = u, z 6= x, y,

w ↔ u, x→ z, y → z,

w 6↔ u, x← z, y ← z.

The number of vertices of each type is 4s+ 1, 2ts and 2ts, respectively. This adds up to
4ts+ 4s+ 1 = 2λ− µ.

If the conference graph and the doubly regular tournament in this theorem are both
of Paley type then G is a Cayley graph.

Corollary 40. Let F and E be finite fields of order 4t+1 and 4s+3, respectively. Let QF
and QE be the sets of non-zero squares in F and E, respectively. Let RF = F \ (QF ∪ {0})
and RE = E \ (QE ∪ {0}). Let S = (QF × QE) ∪ (RF × RE) ∪ ({0} × (E \ {0})). Then
Cay(F×E, S) is an NRD((4t+1)(4s+3), (4t+2)(2s+1), 4ts+3s+ t+1, (2t+1)(2s+1)).

Note that if (4t + 1) − (4s + 3) = ±2 then we get the difference set with Hadamard
parameters constructed by Stanton and Sprott [33] by adding (0, 0) to S if (4t+1)−(4s+
3) = 2 or by taking the complement of S if (4t+ 1)− (4s+ 3) = −2.
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