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Abstract

Motivated by a conjecture of Frid, Puzynina, and Zamboni, we investigate infi-
nite words with the property that for infinitely many n, every length-n factor is a
product of two palindromes. We show that every Sturmian word has this property,
but this does not characterize the class of Sturmian words. We also show that the
Thue–Morse word does not have this property. We investigate finite words with
the maximal number of distinct palindrome pair factors and characterize the binary
words that are not palindrome pairs but have the property that every proper factor
is a palindrome pair.

1 Introduction

The palindromic length of a word x is the least ` such that x = p1p2 · · · p`, where each pi is
a palindrome (we consider the empty word a palindrome). Frid, Puzynina, and Zamboni
[6] made the following, remarkable conjecture:

Conjecture (Frid–Puzynina–Zamboni). Let w be an infinite word. If there exists k such
that every factor of w has palindromic length at most k, then w is ultimately periodic.

In this paper we focus on words with palindromic length at most 2: these are called
palindrome pairs and have been studied before [9, 10, 11]. Assuming that the Frid–
Puzynina–Zamboni Conjecture is true, there is no aperiodic word with the property that
all of its factors are palindrome pairs. We therefore investigate the following question,
with the hope that it will give some insight into the conjecture.
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Are there aperiodic words w with the property (PP) that for infinitely
many n, every length-n factor of w is a palindrome pair?

As we will see, all Sturmian words have property PP, but this does not characterize
the Sturmian words: there are other words with this property as well. We also show
that the Thue–Morse word does not have property PP. We then look at the analogue of
(finite) rich words for palindrome pairs, rather than palindromes. Finally, we characterize
the finite binary words that are not palindrome pairs, but have the property that each of
their proper factors is a palindrome pair.

2 Palindrome pairs in Sturmian words

In this section we show that every Sturmian word s has property PP and we characterize
the lengths n for which every length-n factor of s is a palindrome pair. We begin with
some preliminaries concerning Sturmian words.

Let α be an irrational real number (fixed for the remainder of this section) with
0 < α < 1 and let α have the continued fraction expansion α = [0; a1 + 1, a2, a3, . . .]. We
define the following sequence of words:

s0 = 1, s1 = 0, sn = s
an−1

n−1 sn−2 for n > 2.

Since sn is a prefix of sn+1 for all n > 1, this sequence converges to an infinite word cα
called the characteristic (or standard) Sturmian word with slope α. An infinite word s is
a Sturmian word with slope α if it has the same set of factors as cα. Since we are only
concerned with the language of factors of s, we will assume without loss of generality that
s = cα. There are many equivalent definitions of “Sturmian word”. For instance, another
definition is the following: An infinite word is Sturmian if it has n+ 1 factors of length n
for every n > 0. For more details on Sturmian words see [12, Chapter 2].

Recall that words x and y are conjugates if x = uv and y = vu for some words u and
v.

Lemma 1. Any conjugate of a palindrome pair is a palindrome pair.

Proof. Let A0B0 be a palindrome pair where A0 = a1a2 · · · ar and B0 = b1b2 · · · bs are
palindromes. As the result is trivial for the empty word, we may assume without loss of
generality that r > 1 and s > 0. If r = 1, note that B0a1 is a palindrome pair. Assume
that r > 2. Then, since A1 = a2a3 · · · ar−1 and B1 = arb1b2 · · · bsa1 are palindromes it
follows that A1B1 is a palindrome pair. The result follows on repeated application of this
argument.

Lemma 2. [4] A palindrome p is a palindromic prefix of s if and only if one of the
following hold:

• p is a factor of sa11 .
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• For either u = p01 or u = p10 we have u = skn−1sn−2 for some n > 2 and some k
such that 1 6 k 6 an−1.

Lemma 3. [3] For every n > 2 and every k such that 1 6 k 6 an−1, s
k
n−1sn−2 is a

palindrome pair.

If w is a word (finite or infinite), the notation w[i : j] indicates the factor of w beginning
at position i and ending at position j − 1 in w. Unless otherwise stated, we assume that
positions are indexed starting with 0.

Lemma 4. Let w be a left special factor of s such that neither w[0 : |w| − 1] nor w is a
palindrome. The words 1w and 0w are not both palindrome pairs.

Proof. Let w be such a factor. Since w is left special, it is well known that w occurs
as a prefix of s. Assume without loss of generality that 1w is a palindrome pair. Write
1w = AB for palindromes A and B. Based on our hypotheses on w, it follows from
Lemma 2 that |A| 6= 0, 1. Hence, we may write A = 1P11 for a palindrome P1. Since P1 is
a palindromic prefix of s it then follows from Lemma 2 that B has prefix 0. Then, since
B is a palindrome it follows that B (and hence, w) has suffix 0. If 0w were a palindrome
pair it would follow by a similar argument that w = 0p201 . . . 1 and thus w has suffix 1,
which is impossible.

Lemma 5. Let u = skn−1sn−2 for some n > 4 and some k such that 1 6 k 6 an−1, where
|u| > 3a1 + 6. There is a factor of s of length |u| − 1 which is not a palindrome pair.

Proof. Let a = 0a1 and b = 0a1+1. Note that these are the only two maximal blocks
of zeros occurring in s. Let w be the right special factor of s of length |u| − 2. Note
that since w0 is a factor of s, and since b is maximal, that w cannot have suffix b. Thus
w is a palindromic prefix of s with suffix (and hence, prefix) a. We consider the word
v = 0−1w01. Note that |v| = |u| − 1. It follows from the facts that w is right special and
that b is the maximal block of zeros in s that v occurs in s. If v is not a palindrome pair
we are done. Assume otherwise, and write v = P1P2 for palindromes P1 and P2. Suppose
that P1 6= 0−1a. It then follows that

u =

P1︷ ︸︸ ︷
. . . 10−1a

P2︷︸︸︷
1 . . .

which contradicts that a is the shortest maximal block of zeros in s. Hence, P1 = 0−1a.
Thus we have w01 = aP2 = a1 . . . 1b1. Since P2 is a palindrome it follows that

P2 = 1b1 . . . 1b1. Then, since w is a palindrome it follows that w01 = aP2 = a1b1 . . . 1b1b1.
Continuing in this manner we obtain that P2 = 1(b1)k for some integer k > 0. We now
consider two cases depending on which of w0 or w1 occurs as a prefix of s.

Case 1. Assume that w0 is a prefix of s. Observe that v occurs as a suffix of sn,
which itself is a prefix of s. Let s[i : j] be this occurrence of v. Since the prefix sn is either
followed by sn−1, or sn (which has prefix sn−1) and since n > 4, we then have either
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s =

sn︷ ︸︸ ︷
a1b1b . . . . . . b1︸ ︷︷ ︸

s[i:j]

sn−1︷ ︸︸ ︷
a1b . . . . . .

or

s =

s4︷ ︸︸ ︷
a1b1b . . . . . . b1︸ ︷︷ ︸

s[i:j]

s3︷︸︸︷
a10

s2︷︸︸︷
a1 . . .

depending on the length of sn−1.
Now, let x = s[i + 2|b| : j + 2|b|]. Note that |x| = |v| = |u| − 1. Suppose for

contradiction that x is a palindrome pair. Note that x has prefix b and suffix 1a1b where
1a1 is unioccurrent in x. Since x is a palindrome pair it then follows that x is a palindrome,
and hence that x = b1a1b. Thus, |u| = 3|b|+ 2 < 3a1 + 6, contrary to our hypothesis.

Case 2. We now assume that w1 is a prefix of s. Note that w1 = a1(b1)ka1 for some
k > 0, and that w10 = u. As before, u is either followed by sn−1, or sn (which has prefix
sn−1). Thus,

s =

u︷ ︸︸ ︷
a1b1b . . . b1a︸ ︷︷ ︸

w

10

sn−1︷ ︸︸ ︷
a1 . . . . . .

Set x = s[|b| : |u| + |a|]. Again, note that |x| = |u| − 1. We suppose that x is a
palindrome pair and apply the same argument to x as was done in the previous case to
obtain x = b1a1b and thus that |u| < 3a1 + 6, a contradiction. This completes the proof.

Lemma 6. If n 6= |skm−1sm−2| for any m > 2 and any k such that 1 6 k 6 am−1, and
n > 3a1 + 6, then s has at most n− 1 palindrome pair factors of length n.

Proof. This follows from Lemmas 4 and 5, the fact that s has n + 1 factors of length n,
and the fact that the factor set of s is closed under reversal.

Theorem 7. Let s be a Sturmian word and let n > 3a1 + 6 be a positive integer. Every
factor of s of length n is a palindrome pair if and only if n = |skm−1sm−2| for some m > 4
and some k such that 1 6 k 6 am−1.

Proof. Let n be such an integer. It is known that the n + 1 factors of length n in s are
the conjugates of skm−1sm−2, as well as a palindromic singular factor [13]. It follows from
Lemma 3 that skm−1sm−2 is a palindrome pair. It then follows from Lemma 1 that all
factors of length n are palindrome pairs. The converse follows immediately from Lemma
6.

Corollary 8. Every Sturmian word has property PP.
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Property PP does not characterize Sturmian words. Consider the following construc-
tion. For i = 1, 2, . . . let wi be an arbitrary palindrome of some length ti over {0, 1} and
write wi = wi,1wi,2 · · ·wi,ti . We define a sequence of palindromes p1, p2, . . . as follows:

p1 = 0

p2 = p1w1,1 p1w1,2 · · · p1w1,t1 p1

p3 = p2w2,1 p2w2,2 · · · p2w2,t2 p2
...

Note that pi is a prefix of pi+1 for all i, so we have a limiting infinite word p.

Proposition 9. For each i > 1, every factor of p of length |pi|+ 1 is a palindrome pair.

Proof. Any factor of p of length |pi| + 1 is a conjugate of pia for some a ∈ {0, 1}. The
result follows from Lemma 1.

Now the word p is not necessarily Sturmian. For a suitable choice of wi, we have that
0pi0 and 1pi1 are both factors of p. However it is well-known that this implies that p is
not Sturmian (see [12, Chapter 2]).

3 Palindrome pairs in the Thue–Morse word

Let µ be the morphism that maps 0→ 01 and 1→ 10. Let t = µω(0) be the Thue–Morse
word.

Theorem 10. The word t does not have property PP.

Proof. This can be verified “automatically” using the Walnut Prover software created by
Hamoon Mousavi and available at

https://cs.uwaterloo.ca/~shallit/papers.html .

We will not explain in detail the methodology implemented by the Walnut Prover (the
reader may consult [8] or [14], for example). The important point is that to be able to
apply this method, we need the property PP to be expressible in a certain extension of
first order logic. The relevant formulae are given below. The first defines all pairs (i, j)
such that t[i : j] is a palindrome:

(i, j) : (i = j) ∨ ((i < j) ∧ ∀k (i+ k < j)⇒ t[i+ k] = t[j − 1− k]).

Let us refer to this formula as palindrome(i, j). The clause (i = j) corresponds to the
empty palindrome when used in the next formula, which defines all n such that every
factor of t is a palindrome pair:

(n) : ∀i ∃j palindrome(i, j) ∧ palindrome(j, i+ n).
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The output of the Walnut Prover is a description (by a finite automaton) of the binary
representations of all n defined by the formula above. After running the prover we find
that for 0 6 n 6 5, every length-n factor of t is a palindrome pair, but for n > 6 there is
at least one length-n factor of t that is not a palindrome pair.

Proposition 11. For each k > 1 there are at least 3 · 22k+1 factors of t of length 3 · 22k

that are palindrome pairs.

Proof. It is well known that for each k the squares µk(010)µk(010) and µk(101)µk(101)
occur in the Thue–Morse word. Furthermore, since µ2(0) = 0110 and µ2(1) = 1001, we
see that µ2k(010) and µ2k(101) are palindromes. Thus every conjugate of µ2k(010) and
µ2k(101) is a product of two palindromes and occurs in t.

Proposition 12. For odd n there are at most 32 factors of t of length n that are palin-
drome pairs.

Proof. Let w be an factor of t of odd length. If |w| ∈ {1, 3} the result is clear, so suppose
|w| > 5. Blondin-Massé et al. [2] gave the following formula for the number Pt(n) of
palindromic factors of length n of t:

Pt(n) =



1 n = 0,

2 1 6 n 6 4,

0 n odd and n > 5,

4 n even and 4k + 2 6 n 6 3 · 4k, for k > 1,

2 n even and 3 · 4k + 2 6 n 6 3 · 4k+1, for k > 1.

(1)

Consequently w is not a palindrome. Suppose w is a product of two palindromes, u and
v, where |u| is odd. We have two choices for |u|, namely |u| ∈ {1, 3}, and for each choice
of length there are two possible values for u. Thus there are four choices for u. By (1)
there are at most four choices for v. Since we could have w = uv or w = vu, this gives at
most 32 possibilities for w.

4 Words with the maximal number of palindrome pair factors

A word w of length n is called rich (i.e., “rich in palindromes”) if it contains the maximum
number (viz. n+ 1) of distinct palindromic factors [7]. Rich words have been extensively
studied. Here we investigate the analogue of richness for palindrome pairs; i.e., we study
words of length n that have the maximum possible number of distinct factors that are
palindrome pairs.

As it turns out, we are unable to prove anything concerning this problem; we therefore
will just present some conjectures based on computer calculations. Computer experiments
suggest that for n > 1 the maximum possible number of distinct palindrome pair factors
in a binary word of length n is ⌈

n2 + 2n+ 3

3

⌉
.
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Furthermore, computer experiments also suggest that if x is a binary word of length n
beginning with 0 that contains the maximum number of distinct palindrome pair factors,
then

• if n ≡ 0 (mod 3), then x is one of

0n/3+11n/31n/3−1, 0n/31n/31n/3, 0n/31n/3+11n/3−1,
0n/3−11n/31n/3+1, 0n/3−11n/3+11n/3;

• if n ≡ 1 (mod 3), then x is one of

0dn/3e1bn/3c1bn/3c, 0dn/3e1dn/3e1bn/3c−1, 0bn/3c1bn/3c1dn/3e,
0bn/3c1dn/3e0bn/3c, 0bn/3c−11dn/3e1bn/3c;

• if n ≡ 2 (mod 3), then x is one of

0dn/3e1dn/3e1bn/3c, 0bn/3c1dn/3e0dn/3e.

Given how simple these words are, it would be nice to prove that they do indeed contain
the maximum number of distinct palindrome pair factors.

5 Minimal non-palindrome pairs

In this section we look at words somewhat related to those described in the previous
section. A minimal non-palindrome pair is a word that is not a palindrome pair but has
the property that each of its proper factors is a palindrome pair. It turns out that we can
characterize the minimal non-palindrome pairs over the alphabet {0, 1}. In this section
all words considered are over the alphabet {0, 1}.

Given a word w, a block of w is an occurrence of a factor of w that consists of one or
more repetitions of a single letter and that cannot be extended to either side to create a
longer such occurrence. The following lemma is easily verified and may be used without
reference in the following results.

Lemma 13. Any word with at most three blocks is a palindrome pair.

A block that is neither the first nor the last block in a word w is called an internal
block. A block b of w is a maximum block if all other blocks have length at most the
length of b. Among all maximum blocks, the internal ones are called internal maximum
blocks. We now state and prove a critical lemma.

Lemma 14. A minimal non-palindrome pair with an internal maximum block has at most
five blocks.
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Proof. Let w be a minimal non-palindrome pair with an internal maximum block x (of
ones, say). Note that |x| > 2. Suppose that w has at least six blocks. Since x is internal
and w has at least six blocks we may without loss of generality assume that

z0 = 0 . . . 0 1 . . . 1︸ ︷︷ ︸
x

0 . . . 01 . . . 1

is a four block factor of w containing x internally. Since

y = 0 . . . 0 1 . . . 1︸ ︷︷ ︸
x

0 . . . 01

is a proper factor of w, and hence a palindrome pair, and since |x| > 2, it follows that the
blocks of 0’s in z0 have equal length. Then, since 0−1y is also a palindrome pair it follows
that these blocks of 0’s have length 1.

We now consider two cases.
Case 1. Assume that z0 is not a suffix of w. Then, the factor

z1 = 0 1 . . . 1︸ ︷︷ ︸
x

01 . . . 10

occurs in w. Since w has at least six blocks it follows that z1 is a proper factor of w, and
hence a palindrome pair. It then follows that z1 is a palindrome. Before we proceed, we
show that the other case results in the same occurrence.

Case 2. Assume now that z0 is a suffix of w. Since w has at least six blocks it then
follows that

z2 = 01 . . . 10 1 . . . 1︸ ︷︷ ︸
x

0

is a proper factor of w, and thus a palindrome pair, and hence a palindrome.
In either case, we find that w contains a palindromic factor of the form z1.
We now claim that all blocks of zeros in w have length 1. Suppose to the contrary that

00 occurs in w. Without loss of generality we may assume that there is an occurrence of
00 that begins prior to the start of z1. Let b0 be the rightmost such occurrence. Let u0
be the proper factor of w that begins with this occurrences of b0 and ends with the last
block of ones in z1. Since u0 is a proper factor, and hence a palindrome pair, it follows
that b0

−1u0 is a palindrome. However, we then have that the proper factor u01
−1 of w is

not a palindrome pair, a contradiction. Hence 00 does not occur in w.
Next, we show that all internal blocks of ones in w are maximum blocks. Suppose

that there is a block of ones in w which is not a maximum block. Let b1 be an occurrence
of this with minimum possible distance to z1 in w. Without loss of generality we may
assume that b1 precedes z1 in w. Then, since b1 is internal and has minimum possible
distance to z1 in w, it follows that

0b10 1 . . . 1︸ ︷︷ ︸
|x|

0
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is a proper factor of w. This factor is not a palindrome pair, a contradiction. Hence, all
internal blocks of ones in w are maximum blocks.

It follows from these two properties (all blocks of zeros in w have length 1 and all in-
ternal blocks of ones in w have the same length) that w is a palindrome pair. This is easily
verified by considering the initial and final blocks of w. Hence, we have a contradiction.
This completes the proof.

We now make use of this lemma to prove two results which will allow us to construct
the class of minimal non-palindrome pairs. By “extending a block” we mean increasing
its length by 1 or more.

Lemma 15. The word resulting from extending an internal maximum block in a minimal
non-palindrome pair is itself a minimal non-palindrome pair.

Proof. Clearly, the result will follow on repeated application if we show it holds when
extending an internal maximum block by one. Let w be a minimal non-palindrome pair
with an internal maximum block x. Note |x| > 2. Let w′ be the word resulting from
extending x by one and let x′ be the extension of x in w′.

We first show that w′ is not a palindrome pair. Suppose to the contrary that w′ = A′B
for some palindromes A′ and B. Assume without loss of generality that A′ contains at
least half of x′. We may then write w = AB where A is A′ with one symbol of x′ removed.
Suppose for contradiction that x′ is contained in A′. Since x was a maximum block in w
it follows that x′ is unioccurrent in w′. Hence x′ is centred in A′. Clearly in this case w
is also a palindrome pair, a contradiction. We conclude that x′ is split between A′ and
B. It then follows from a similar argument that neither A′ nor B can be contained in x′.
It now follows from Lemma 14 applied to w and the fact that A′ and B are palindromes
that

w′ = ︸ ︷︷ ︸
A′

11 . . . 10 . . . 0

x′︷ ︸︸ ︷
11 . . . 1 1 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

B

and hence

w = ︸ ︷︷ ︸
A

11 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1 1 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

B

where 11 is a prefix of w′, and hence also of w. Note that since w is not a palindrome pair,
the blocks of zeros in A and B cannot be equal. Let u be the prefix of w ending with the
final zero of B. Since w has prefix 11, it follows that u and 1−1u are not both palindrome
pairs. Since these are proper factors of w, we have a contradiction. This completes the
proof that w′ is not a palindrome pair.

We must now prove the minimality of w′. Suppose for contradiction that w′ has a
proper factor u′ which is not a palindrome pair. Let u be the corresponding factor in w
(note that u′ = u unless u′ contains x′). Since u is a proper factor of w, it is a palindrome
pair. Write u = ab for palindromes a and b. Since u′ is not a palindrome pair it follows
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that x must be contained in u, but cannot be centred in either a or b. Without loss of
generality assume that at least half of x is in a. We now consider two cases.

Case 1. Suppose that x is contained in a. Without loss of generality we then have
by Lemmas 13 and 14 that either

u = 1 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

a

0 . . . 0︸ ︷︷ ︸
b

or

u = 0 . . . 01 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1 0 . . . 0︸ ︷︷ ︸

a

0 . . . 0︸ ︷︷ ︸
b

First, assume the former. Since 1−1u is a proper factor of w, and hence a palindrome pair,
it follows that the blocks of zeros in a and b are equal. This contradicts the assumption
that u′ is not a palindrome pair.

In the latter case, Lemma 14 implies that w consists of 5 blocks. Therefore, w can
be obtained by adding some number of zeros to the beginning and end of u. However,
adding such zeros to the ends of u preserves the property of being a palindrome pair.
Consequently, w is a palindrome pair, a contradiction. This completes the case.

Case 2. Suppose that x is split between a and b. Since u′ is not a palindrome pair
and by Lemma 14 we may write

u = ︸ ︷︷ ︸
a

11 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1 1 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

b

where the blocks of zeros in a and b are not equal. Let y be the prefix of u ending with
the last zero of b. Note that y and 1−1y cannot both be palindrome pairs, but are both
proper factors of w. This is a contradiction, which completes the proof.

Lemma 16. The word resulting from deleting one digit from an internal maximum block
of a minimal non-palindrome pair of length at least 7 is itself either a minimal non-
palindrome pair or is one of 01n01n0 or 10n10n1 for some integer n > 1.

Proof. Let w′ be a minimal non-palindrome pair of length at least 7 with an internal
maximum block x′ (of ones, say). Note |x′| > 2. Let w and x be obtained from w′ and
x′ respectively by deleting one digit from x′. If w is of the form 01n01n0 we are done, so
suppose this is not the case.

We first prove that w is not a palindrome pair. Suppose to the contrary and write
w = AB for palindromes A and B. Without loss of generality assume that at least half
of x is in A. Since w′ is not a palindrome pair it follows that x is not centred in either A
or B, nor is either A or B contained in x. There are two cases to now consider.

Case 1. Assume that x is contained in A. By Lemmas 13 and 14 there are without
loss of generality two further possibilities. Either

w = 1 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

A

0 . . . 0︸ ︷︷ ︸
B
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or

w = 0 . . . 01 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1 0 . . . 0︸ ︷︷ ︸

A

0 . . . 0︸ ︷︷ ︸
B

First, assume the former. Since w′ is not a palindrome pair it follows that the blocks
of zeros in w′ are not equal. Since 1−1w′ is a proper factor of w′, and hence a palindrome
pair, it follow that w′ = 10 . . . 110 . . . 0. Since x′ is maximum in w′ it then follows that
|w′| = 6, a contradiction.

Next, assume the latter. Note that since w′ is not a palindrome pair, the blocks of
ones in w′ have different lengths. Let v be the suffix of w′ starting with the first one of w′.
Since v is a proper factor of w′, and hence a palindrome pair, it follows that the blocks
of zeros in v are equal. Applying a similar argument to the first four blocks of w′ we get
that the first two blocks of zeros in w′ are also equal. Since A is a palindrome it then
follows that B = ε. Since 0−1w′ is a palindrome pair it follows that the blocks of zeros
in w′ have length 1. Thus w′ = 01|x

′|−101|x
′|0, and hence w = 01|x

′|−101|x
′|−10, which is a

contradiction. This completes the case.
Case 2. Assume x is split between A and B. By Lemma 14 it follows that

w = ︸ ︷︷ ︸
A

1 . . . 10 . . . 0

x︷ ︸︸ ︷
1 . . . 1 1 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

B

Since w′ is not a palindrome pair it follows that the blocks of zeros in w′ are not equal.
Thus, the proper factor of w′ obtained from w′ by deleting its final block of ones is not a
palindrome pair. This contradiction completes the proof that w is not a palindrome pair.

It remains to prove that w is minimal. Suppose that some proper factor u of w is not a
palindrome pair. Let u′ be the corresponding proper factor of w′. Since u′ is a palindrome
pair, while u is not, u must contain x. Write u′ = ab for palindromes a and b. Without
loss of generality we may assume that at least half of x′ is in a. Clearly, x′ is not centred
in either a or b. By Lemma 14 without loss of generality we again consider two cases.

Case 1. Assume that x′ is contained in a. Then either

u′ = 1 . . . 10 . . . 0

x′︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

a

0 . . . 0︸ ︷︷ ︸
b

or

u′ = 0 . . . 01 . . . 10 . . . 0

x′︷ ︸︸ ︷
1 . . . 1 0 . . . 0︸ ︷︷ ︸

a

0 . . . 0︸ ︷︷ ︸
b

First, assume the former. Since u is not a palindrome pair it follows that the blocks
of zeros in u′ are not equal. Thus 1−1u′ is a proper factor of w′ which is not a palindrome
pair, a contradiction. Next, assume the latter. Lemma 14 implies that w′ is obtained
from u′ by adding some number of zeros to the beginning and end of u′. However, this
would mean that w′ is a palindrome pair, which is a contradiction. This contradiction
completes the proof.
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One final Lemma is needed for our main result.

Lemma 17. The only minimal non-palindrome pairs which do not have internal maximum
blocks are 11(01)n00 and 00(10)n11 for each n > 1.

Proof. Clearly, these words are minimal non-palindrome pairs. Let w be a minimal non-
palindrome pair with no internal maximum blocks that is not one of the words given in
the statement of the lemma. From left to right, let bi be the ith block of ones in w.
Assume without loss of generality that b0 is both a prefix and a maximum block of w.
We prove that w does not have an internal block of zeros with length at least 2. Suppose
to the contrary that such a block exists. Let u be the shortest prefix of w with suffix 00.
Since u is a proper factor of w, and hence a palindrome pair, it then follows u = b000.
Since w is not a palindrome pair it follows that w has at least four blocks. Let v be the
smallest four block prefix of w. We have v = b00 . . . 0b10, which is not a palindrome pair.
Thus, v = w. Now, since 11−|b0|v is a proper factor of w, and hence a palindrome pair, it
follows that |b1| = 1. Finally, since 1−1v is a proper factor of w, and hence a palindrome
pair, it follows that b0 = 11, and hence since b0 is maximum and w is not a palindrome
pair, that w = 110100. We may conclude that w has no internal block of at least two
zeros. We now consider two cases.

Case 1. Assume w has at least five blocks. Thus, y0 = b00b10b2 is a prefix of w. Since
w is not a palindrome pair it follows that y1 = y00 is also a prefix of w. Since b0

−1y1 is a
proper factor of w, and hence a palindrome pair, it follows that |b1| = |b2|. Since w is not
a palindrome pair it then follows that y2 = y1b30 is a prefix of w. We then argue as before
to show that |b3| = |b2|, and continue until we reach the final block of w. Since w is not
a palindrome pair, we have that w = b00b10 . . . bk0 . . . 0 for some integer k > 1 (note that
00 is a suffix of w and |bi| = |bj| for any i, j such that 1 6 i < j 6 k). If |bk| > 1, then the
suffix of w starting with the last 1 of bk−1 is a proper factor of w, but not a palindrome
pair, a contradiction. Thus all internal blocks of ones have length 1. Thus z = 11(01)r00
is a factor of w for some k > 1, and hence, as z is not a palindrome pair, z = w. This
completes the case.

Case 2. Assume now that w has at most four blocks. Thus

w = b00b10 . . . 0

Since w is not a palindrome pair it follows that 00 is a suffix of w. Since 10b100 is a
proper factor of w, and hence a palindrome pair, it follows that |b1| = 1. Thus w contains,
and is hence equal to, 110100. This completes the proof.

We now construct the class of minimal non-palindrome pairs inductively. It is easily
verified that every word of length five or less is a palindrome pair. The minimal non-
palindrome pairs of length six are given below. For i > 7, to generate the minimal
non-palindrome pairs of length i:

• Extend any internal maximum block in a minimal non-palindrome pair of length
i− 1 by one.
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• If i is even, add the words 11(01)
i−4
2 00, 01

i−4
2 01

i−4
2

+10, 10
i−4
2 10

i−4
2

+11, 01
i−2
2 0

i−2
2 1

and their reverses.

The minimal non-palindrome pairs for the first few i are given in the following table.
For conciseness, reverses and words with prefix 1 have been omitted.

i 6 7 8 9 10
001011 0011101 00101011 001111101 0010101011
001101 0100011 00111101 010000011 0011111101
010011 0101110 01000011 010111110 0100000011
010110 0110001 01011110 011000001 0101111110
011001 0111001 01100001 011011110 0110000001

01101110 011100001 0110111110
01110001 011110001 0111000001
01111001 011111001 0111011110

0111100001
0111110001
0111111001

Table 1: List of short minimal non-palindrome pairs

This leads us to our main result.

Theorem 18. The minimal non-palindrome pairs are exactly those words described above.

Proof. It is easily verified that those words of length six given in the table, as well as those
described in part two of the construction above are minimal non-palindrome pairs. It then
follows from Lemma 15 that all the constructed words are also minimal non-palindrome
pairs.

To show that these are the only minimal non-palindrome pairs, let w′ be a minimal
non-palindrome pair of length i > 7. If w′ has no internal maximum blocks, then by
Lemma 17, w′ is either 11(01)

i−4
2 00 or its reverse, and is therefore accounted for by our

construction.
If w′ has exactly one internal maximum block, then w′ can be obtained by extending

an internal maximum block in some word w of length i − 1. By Lemma 16 w is either
a minimal non-palindrome pair, or is one of 01

i−4
2 01

i−4
2 0 or 10

i−4
2 10

i−4
2 1. Again w′ is

accounted for by our construction.
If w′ has more than one internal maximum block, then without loss of generality w′

contains a factor 01k0k1 for some k > 2. However this factor is not a palindrome pair. It
follows that this factor is not a proper factor and hence that w′ = 01

i−2
2 0

i−2
2 1. Again w′

is accounted for by our construction. This concludes the proof.

Corollary 19. Let npp(i) be the number of minimal non-palindrome pairs of length i.
Then npp(i) = 0 if i < 6 and for all j > 3,

npp(2j) = npp(2j + 1) = 8j − 12.
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Proof. One first checks that there are 12 minimal non-palindrome pairs of length 6. Let
i > 6 be odd. Every minimal non-palindrome pair of length i− 1 with exactly 1 internal
maximum block produces one of length i by extending this internal maximum block. The
word 11(01)

i−5
2 00 and its reversal produce no minimal non-palindrome pairs of length

i, since they have no internal maximum blocks to extend. The word 01
i−3
2 0

i−3
2 1 and its

reversal each produce two minimal non-palindrome pairs, since they each have two internal
maximum blocks. Thus there is no net increase in the number of minimal non-palindrome
pairs when going from length i− 1 to i, and so we have npp(i) = npp(i− 1).

On the other hand, if i is even, then every minimal non-palindrome pair of length i−1
produces one minimal non-palindrome pair of length i. Additionally, our construction
adds eight new words of length i. Thus there are

npp(i− 1) + 8

= npp(i− 2) + 8 (since i− 1 is odd)

= 4(i− 2)− 12 + 8 (inductively)

= 4i− 12

minimal non-palindrome pairs of length i.
Writing i = 2j if i is even and i = 2j + 1 if i is odd, the above gives npp(2j) =

npp(2j + 1) = 8j − 12, as required.

6 Conclusion

Here we mention some interesting open questions raised by the previous results. The first
one is an obvious one, although we shall see shortly that the answer may, in fact, be “no”.

Question. Does property PP characterize some interesting class of words?

We can also define a complexity function based on palindrome pairs. Recall that the
factor complexity function Cw(n) counts the number of factors of w of length n. Similarly,
the palindrome complexity function Pw(n) counts the number of palindromic factors of
w of length n. We could therefore define a palindrome pair complexity function PPw(n)
that counts the number of factors of w of length n that are palindrome pairs. Property
PP could then be rephrased as “Cw(n) = PPw(n) for infinitely many n.”

Problem. Explore the relationships between the functions Cw(n), Pw(n), and PPw(n).

It is known that if w has linear factor complexity then its palindromic complexity is
bounded [1]. We have already seen above that this is not true for the palindrome pair
complexity. The results of Section 3 give upper and lower bounds for the palindrome pair
complexity of the Thue–Morse word for certain values of n.

Problem. Give explicit formulas for the palindrome pair complexity of words such as the
Fibonacci word and the Thue–Morse word.
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Further to the question posed above regarding whether property PP characterizes
some interesting class of words, one might wonder if, for instance, property PP implies
O(n) factor complexity. Unfortunately, this is not the case. Suppose we perform the
construction of the word p in Proposition 9 by defining the wi’s as follows: wi = BiB

R
i ,

where Bi is a de Bruijn sequence of order |pi|+1; that is, Bi contains every binary word of
length |pi|+ 1 exactly once (see, for instance, [5]). Then p contains at least 2|pi|+1 factors
of length (|pi| + 1)2. If we set ni = (|pi| + 1)2, then we see that Cp(ni) > 2

√
ni . So there

are words that are not so “nice” that still have property PP.
The following would show that property PP is a property of Sturmian words that does

not carry over to episturmian words. In principle, it could be resolved using the Walnut
Prover, as described in the proof of Theorem 10 1.

Conjecture 20. The Tribonacci word does not have property PP.

In Section 4 we already stated the problem of characterizing the binary words of
each length that have the maximum possible number of distinct palindrome pair factors.
Of course, the most interesting open problem is to resolve the Frid–Puzynina–Zamboni
Conjecture.
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