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Abstract

The Hanani–Tutte theorem is a classical result proved for the first time in the
1930s that characterizes planar graphs as graphs that admit a drawing in the plane
in which every pair of edges not sharing a vertex cross an even number of times.
We generalize this result to clustered graphs with two disjoint clusters, and show
that a straightforward extension to flat clustered graphs with three or more disjoint
clusters is not possible. For general clustered graphs we show a variant of the
Hanani–Tutte theorem in the case when each cluster induces a connected subgraph.

Di Battista and Frati proved that clustered planarity of embedded clustered
graphs whose every face is incident to at most five vertices can be tested in poly-
nomial time. We give a new and short proof of this result, using the matroid
intersection algorithm.

Keywords: graph planarity, clustered planarity, Hanani–Tutte theorem, matroid
intersection algorithm

∗IST Austria, Klosterneuburg, Austria. The research leading to these results has received funding from
the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no [291734], and ESF Eurogiga project GraDR as GAČR
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1 Introduction

Investigation of graph planarity can be traced back to the 1930s and developments ac-
complished at that time by Hanani [22], Kuratowski [27], Whitney [39] and others. Forty
years later, with the advent of computing, a linear-time algorithm for graph planarity
was discovered [24]. Nowadays, a polynomial-time algorithm for testing whether a graph
admits a crossing-free drawing in the plane could almost be considered a folklore result.

Nevertheless, many variants of planarity are still only poorly understood. As a conse-
quence of this state of affairs, the corresponding decision problem for these variants has
neither been shown to be polynomial nor NP-hard. Clustered planarity is one of the most
prominent [6] of such planarity notions. Roughly speaking, an instance of this problem is
a graph whose vertices are partitioned into clusters. The question is whether the graph
can be drawn in the plane so that the vertices in the same cluster belong to the same
simple closed region and no edge crosses the boundary of a particular region more than
once. The aim of the present work is to offer novel perspectives on clustered planarity,
which seem to be worth pursuing in order to improve our understanding of the problem.

More precisely, a clustered graph is a pair (G, T ) where G = (V,E) is a graph and T
is a rooted tree whose set of leaves is the set of vertices of G. The non-leaf vertices of T
represent the clusters. Let C(T ) be the set of non-leaf vertices of T . For each ν ∈ C(T ),
let Tν denote the subtree of T rooted at ν. The cluster V (ν) is the set of leaves of Tν . A
clustered graph (G, T ) is flat if all non-root clusters are children of the root cluster; that
is, if every root-leaf path in T has at most three vertices. When discussing flat clustered
graphs, which is basically everywhere except Sections 1, 2 and 5, by “cluster” we will refer
only to the non-root clusters.

A drawing of G is a representation of G in the plane where every vertex is represented
by a unique point and every edge e = uv is represented by a simple arc joining the two
points that represent u and v. If it leads to no confusion, we do not distinguish between a
vertex or an edge and its representation in the drawing and we use the words “vertex” and
“edge” in both contexts. We assume that in a drawing no edge passes through a vertex,
no two edges touch and every pair of edges cross in finitely many points. We assume that
the above properties of a drawing of G are maintained during any continuous deformation
of the drawing of G except for intermediate one-time events when two edges touch in a
single point or an edge passes through a vertex.

A drawing of a graph is an embedding if no two edges cross.
A clustered graph (G, T ) is clustered planar (or briefly c-planar) if G has an embedding

in the plane such that

(i) for every ν ∈ C(T ), there is a topological disc ∆(ν) containing all the leaves of Tν
and no other vertices of G,

(ii) if µ ∈ Tν , then ∆(µ) ⊆ ∆(ν),

(iii) if µ1 and µ2 are children of ν in T , then ∆(µ1) and ∆(µ2) are internally disjoint,
and
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(G,T ) T

Figure 1: A clustered embedding of a clustered graph (G, T ) and its tree T .

Figure 2: A clustered graph with one non-root cluster, which is not c-planar.

(iv) for every ν ∈ C(T ), every edge of G intersects the boundary of the disc ∆(ν) at
most once.

A clustered drawing (or embedding) of a clustered graph (G, T ) is a drawing (or em-
bedding, respectively) of G satisfying (i)–(iv). See Figures 1 and 2 for an illustration.
We will be using the word “cluster” for both the topological disc ∆(ν) and the subset of
vertices V (ν).

1.1 A brief history of clustered planarity.

The notion of clustered planarity was introduced by Feng, Cohen and Eades [12, 13] under
the name c-planarity. A similar problem, hierarchical planarity, was considered already by
Lengauer [29]. Since then an efficient algorithm for c-planarity testing or embedding has
been discovered only in some special cases. The general problem whether the c-planarity
of a clustered graph (G, T ) can be tested in polynomial time is wide open, already when we
restrict ourselves to three pairwise disjoint clusters and the case when the combinatorial
embedding of G is a part of the input!

A clustered graph (G, T ) is c-connected if every cluster of (G, T ) induces a connected
subgraph. See Figure 12. In order to test a c-connected clustered graph (G, T ) for c-
planarity, it is enough to test whether there exists an embedding of G such that for every
ν ∈ C(T ), all vertices of V (G)\V (ν) are drawn in the outer face of the subgraph induced
by V (ν) [13, Theorem 1]. Cortese et al. [7] gave a structural characterization of c-planarity
for c-connected clustered graphs and provided a linear-time algorithm. Gutwenger et
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al. [20] constructed a polynomial algorithm for a more general case of almost connected
clustered graphs, which can be also used for the case of flat clustered graphs with two
clusters forming a partition of the vertex set. Biedl [3] gave the first polynomial-time algo-
rithm for c-planarity with two clusters, including the case of straight-line or y-monotone
drawings. An alternative approach to the case of two clusters was given by Hong and
Nagamochi [23]. On the other hand, only very little is known in the case of three clusters,
where the only clustered graphs for which a polynomial algorithm for c-planarity is known
are clustered cycles [8].

1.2 Hanani–Tutte theorem.

The Hanani–Tutte theorem [22, 38] is a classical result that provides an algebraic char-
acterization of planarity with interesting theoretical and algorithmic consequences; see
Section 2. The (strong) Hanani–Tutte theorem says that a graph is planar if it can be
drawn in the plane so that no pair of independent edges crosses an odd number of times.
Moreover, its variant known as the weak Hanani–Tutte theorem [4, 31, 34] states that if G
has a drawing D where every pair of edges cross an even number of times, then G has an
embedding that preserves the cyclic order of edges at vertices in D. Note that the weak
variant does not directly follow from the strong Hanani–Tutte theorem. For sub-cubic
graphs, the weak variant implies the strong variant. Other variants of the Hanani–Tutte
theorem were proved for surfaces of higher genus [33, 35], x-monotone drawings [18, 32],
partially embedded planar graphs, and several special cases of simultaneously embedded
planar graphs [37]. See [36] for a recent survey on applications of the Hanani–Tutte
theorem and related results.

We prove a variant of the (strong) Hanani–Tutte theorem for flat clustered graphs
with two clusters forming a partition of the vertex set. Similarly to other variants of the
Hanani–Tutte theorem, as a byproduct of our result, we immediately obtain a polynomial-
time algorithm for testing c-planarity in this special case. The algorithm essentially
consists of solving a linear system of equations over Z2. The running time of the algorithm
is in O(|V (G)|2ω), where O(nω) is the complexity of multiplication of two square n × n
matrices; see Section 2. The best current algorithms for matrix multiplication give ω <
2.3729 [19, 41]. Since our linear system is sparse, it is also possible to use Wiedemann’s
randomized algorithm [40], with expected running time O(n4 log n2) in our case.

Although the worst-case running time of our algorithm is not competitive, we believe
this does not make our results less interesting, since the purpose of our direction of research
lies more in theoretical foundations than in its immediate consequences. Moreover, the
worst-case running time analysis often gives an unfair perspective on the performance of
algebraic algorithms, such as the simplex method.

We remark that there exist more efficient algorithms for planarity testing using the
Hanani–Tutte theorem such as those in [14, 15], which run in linear time; see also [36,
Section 1.4.1]. Moreover, in the case of x-monotone drawings a computational study [5]
showed that the Hanani–Tutte approach [18] performs really well in practice. This should
come as no surprise, since Hanani–Tutte theory seems to provide solid theoretical foun-
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dations for graph planarity that bring together its combinatorial, algebraic, and compu-
tational aspects [37].

1.3 Notation.

In this paper we assume that G = (V,E) is a graph, and we state all our theorems for
graphs. However, in some of our proofs we also use multigraphs, that is, generalized
graphs that can have multiple edges and multiple loops. Most of the notions defined for
graphs extend naturally to multigraphs, and thus we use them without generalizing them
explicitly. We use a shorthand notation G − v for (V \ {v}, E \ {vw| vw ∈ E}), and
G∪E ′ for (V,E ∪E ′). The rotation at a vertex v is the clockwise cyclic order of the end
pieces of edges incident to v. The rotation system of a graph is the set of rotations at all
its vertices. We say that two embeddings of a graph are the same if they have the same
rotation system up to switching the orientations of all the rotations simultaneously. We
say that two edges in a graph are independent if they do not share a vertex. An edge in
a drawing is even if it crosses every other edge an even number of times. A drawing of a
graph is even if all edges are even. A drawing of a graph is independently even if every
pair of independent edges in the drawing cross an even number of times.

1.4 Hanani–Tutte theorem for clustered graphs.

A clustered graph (G, T ) is two-clustered if the root of T has exactly two children, A and
B, and every vertex of G is a child of either A or B in T . In other words, A and B are
the only non-root clusters and they form a partition of the vertex set of G. Obviously,
two-clustered graphs form a subclass of flat clustered graphs. We extend both the weak
and the strong variant of the Hanani–Tutte theorem to two-clustered graphs.

Theorem 1. If a two-clustered graph (G, T ) admits an even clustered drawing D in the
plane then (G, T ) is c-planar. Moreover, (G, T ) has a clustered embedding with the same
rotation system as D.

Theorem 1 has been recently generalized by the first author to the case of strip pla-
narity [16].

Theorem 2. If a two-clustered graph (G, T ) admits an independently even clustered draw-
ing in the plane then (G, T ) is c-planar.

We also prove a strong Hanani–Tutte theorem for c-connected clustered graphs.

Theorem 3. If a c-connected clustered graph (G, T ) admits an independently even clus-
tered drawing in the plane then (G, T ) is c-planar.

On the other hand, we exhibit examples of clustered graphs with more than two
disjoint clusters that are not c-planar, but admit an even clustered drawing. This shows
that a straightforward extension of Theorem 1 and Theorem 2 to flat clustered graphs
with more than two clusters is not possible.
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Theorem 4. For every k > 3 there exists a flat clustered cycle with k clusters that is not
c-planar but admits an even clustered drawing in the plane.

Gutwenger, Mutzel and Schaefer [21] recently showed that by using the reduction
from [37] our counterexamples can be turned into counterexamples for [37, Conjecture
1.2]1 and for a variant of the Hanani–Tutte theorem for two simultaneously embedded
planar graphs [37, Conjecture 6.20].

1.5 Embedded clustered graphs with small faces.

A pair (D(G), T ) is an embedded clustered graph if (G, T ) is a clustered graph and D(G)
is an embedding of G in the plane, not necessarily a clustered embedding. The embedded
clustered graph (D(G), T ) is c-planar if it can be extended to a clustered embedding of
(G, T ) by choosing a topological disc for each cluster.

We give an alternative polynomial-time algorithm for deciding c-planarity of embedded
flat clustered graphs with small faces, reproving a result of Di Battista and Frati [10]. Our
algorithm is based on the matroid intersection theorem. Its running time is O(|V (G)|3.5)
by [9], so it does not outperform the linear algorithm from [10]. Similarly as for our other
results, we see its purpose more in mathematical foundations than in giving an efficient
algorithm. We find it quite surprising that by using completely different techniques we
obtained an algorithm for exactly the same case. Our approach is very similar to a
technique used by Katz, Rutter and Woeginger [26] for deciding the global connectivity
of switch graphs.

Theorem 5. [10] Let D(G) be an embedding of a graph G in the plane such that all its
faces are incident to at most five vertices. Let (G, T ) be a flat clustered graph. The problem
whether (G, T ) admits a c-planar embedding in which G keeps its embedding D(G) can be
solved in polynomial time.

1.6 Organization.

The rest of the paper is organized as follows. In Section 2 we describe an algorithm for
c-planarity testing based on Theorem 2. In Section 3 we prove Theorem 1. In Section 4
we prove Theorem 2. In Section 5 we prove Theorem 3. In Section 6 we provide a family
of counterexamples to the variant of the Hanani–Tutte theorem for clustered graphs with
three clusters, and discuss properties that every such counterexample, whose underlying
abstract graph is a cycle, must satisfy. In Section 7 we prove Theorem 5. We conclude
with some remarks in Section 8.

1For a graph G drawn in the plane the conjecture claims that by redrawing G we can eliminate
crossings in a subgraph H of G consisting of independently even edges without introducing new pairs of
non-adjacent edges crossing an odd number of times.
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Figure 3: A continuous deformation of e resulting in an edge-vertex switch (e, v).

2 Algorithm

Let (G, T ) be a clustered graph for which the corresponding variant of the strong Hanani–
Tutte theorem holds, that is, the existence of an independently even clustered drawing of
(G, T ) implies that (G, T ) is c-planar.

Our algorithm for c-planarity testing is an adaptation of the algorithm for planarity
testing from [36, Section 1.4.2]. The algorithm starts with an arbitrary clustered drawing
D of (G, T ). Such a drawing always exists: for example, we can traverse the tree T
using depth-first search and place the vertices of G on a circle in the order encountered
during the search. Then we draw every edge as a straight-line segment. Since every
cluster consists of consecutive vertices on the circle, the topological discs representing the
clusters can be drawn easily. The algorithm tests whether the edges of the initial drawing
D can be continuously deformed to form an independently even clustered drawing D0 of
(G, T ). This is done by constructing and solving a system of linear equations over Z2.
By the corresponding variant of the strong Hanani–Tutte theorem, the existence of such
a drawing D0 is equivalent to the c-planarity of (G, T ).

Now we describe the algorithm in more details. We start with the original algorithm
for planarity testing and then show how to modify it for c-planarity testing.

During a “generic” continuous deformation from D to some other drawing D′, the
parity of the number of crossings between a pair of independent edges is affected only
when an edge e passes over a vertex v that is not incident to e, in which case we change
the parity of the number of crossings of e with all the edges incident to v; see Figure 3.
We call such an event an edge-vertex switch. Note that every edge-vertex switch can be
performed independently of others, for any initial drawing: we can always deform a given
edge e to pass close to the given vertex v, while introducing new crossings with every
edge “far from v” only in pairs; that is, after every event when e touches another edge,
a pair of new crossings is created. For our purpose the deformation from D to D′ can
be represented by the set of edge-vertex switches that were performed an odd number
of times during the deformation. An edge-vertex switch of an edge e with a vertex v is
denoted by the ordered pair (e, v).

A drawing of (G, T ) can then be represented as a vector v ∈ ZM2 , where M is the
number of unordered pairs of independent edges. The component of v corresponding to
a pair {e, f} is 1 if e and f cross an odd number of times and 0 otherwise. Let e be
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an edge of G and v a vertex of G such that v /∈ e. Performing an edge-vertex switch
(e, v) corresponds to adding the vector w(e,v) ∈ ZM2 whose only components equal to 1 are
those indexed by pairs {e, f} where f is incident to v. The set of all drawings of G that
can be obtained from D by edge-vertex switches then corresponds to an affine subspace
v+W , where W is the subspace generated by the set {w(e,v); v /∈ e}. The algorithm tests
whether 0 ∈ v +W , which is equivalent to the solvability of a system of linear equations
over Z2.

The difference between the original algorithm for planarity testing and our version for
c-planarity testing is the following. To keep the drawing of (G, T ) clustered after every
deformation, for every edge e = v1v2, we allow only those edge-vertex switches (e, v) such
that v is a child of some vertex of the shortest path between v1 and v2 in T . Such vertices
v are precisely those that are not separated from e by cluster boundaries.

We also include edge-cluster switches (e, C) where C is a child of some vertex of the
shortest path between v1 and v2 in T . An edge-cluster switch (e, C) moves e over the
whole topological disc representing C; see Figure 4. Combinatorially, this is equivalent to
performing all the edge-vertex switches (e, v), v ∈ C, simultaneously. The corresponding
vector w(e,C) is the sum of all w(e,v) for v ∈ C. Therefore, the set of allowed switches
generates a subspace Wc of W . Since every allowed switch can be performed in every
clustered drawing, every vector from Wc can be realized by some continuous deformation.
Moreover, every clustered drawing of (G, T ) can be obtained from any other clustered
drawing of (G, T ) by a homeomorphism of the plane and by a sequence of finitely many
continuous deformations of the edges, where each of the deformations can be represented
by a subset of allowed switches. Indeed, by [36, Theorem 1.18] or by the discussion of
the original algorithm in previous paragraphs, the vectors v and v′ corresponding to two
clustered drawings D and D′ of (G, T ) differ by a vector w ∈ W . We claim that w ∈ Wc.
Suppose that D and D′ have the same vertices. Let e be an edge of G, let e0 be the
curve representing e in D, and let e1 be the curve representing e in D′. Let γ be the
closed curve obtained by joining e0 and e1. Let S be the set of vertices of G “inside”
γ; see Subsection 4.1 part 2) for the definition. For every cluster C that e cannot cross,
all the vertices of C belong to the same connected region of R2 \ γ; in particular, they
are all “inside” or all “outside” γ. For every cluster C whose vertices are “inside” γ, we
perform the switch (e, C) and perform the corresponding deformation on the curve e0.
Let e1/2 be the resulting curve. The closed curve obtained by joining e1/2 and e1 has
all the vertices of G “outside”. Therefore, if we now deform e1/2 to e1 arbitrarily, every
vertex will be crossed an even number of times, so no changes in the parity of crossings
between independent edges will occur.

Our algorithm then tests whether 0 ∈ v +Wc.
Before running the algorithm, we first remove any loops and parallel edges and check

whether |E(G′)| < 3|V (G′)| for the resulting graph G′. Then we run our algorithm on
(G′, T ). This means solving a system of O(|E(G′)||V (G′)|) = O(|V (G)|2) linear equa-
tions in O(|E(G′)|2) = O(|V (G)|2) variables. This can be performed in O(|V (G)|2ω) 6
O(|V (G)|4.746) time using the algorithm by Ibarra, Moran and Hui [25].

Gutwenger, Mutzel and Schaefer [21] independently proposed a different algebraic
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v1 v2

v2

v1

Figure 4: Left: an edge-vertex switch (e, v) and an edge-cluster switch (e, C). Right: the
shortest path between v1 and v2 in T . The four light gray vertices in the middle cannot
participate in a switch with e individually.

algorithm for testing clustered planarity, based on a reduction to simultaneous planarity.
It is not hard to show that their algorithm is equivalent to ours, in the sense that both
algorithms accept the same instances of clustered graphs.

3 Weak Hanani–Tutte for two-clustered graphs

First, we prove a stronger version of a special case of Theorem 1 in which G is a bipartite
multigraph with the two parts corresponding to the two clusters. We note that a bipartite
multigraph has no loops, but it can have multiple edges. In this stronger version, which
is an easy consequence of the weak Hanani–Tutte theorem, we assume only the existence
of an arbitrary even drawing of G that does not have to be a clustered drawing.

Lemma 6. Let (G, T ) be a two-clustered bipartite multigraph in which the two non-root
clusters induce independent sets. If G admits an even drawing then (G, T ) is c-planar.
Moreover, there exists a clustered embedding of (G, T ) with the same rotation system as
in the given even drawing of G.

Proof. We assume that G = (V,E) is connected, since we can draw each connected
component separately. Let A and B be the two clusters of (G, T ) forming a partition of
V (G). By the weak Hanani–Tutte theorem [4, 34] we obtain an embedding D of G with
the same rotation system as in the initial even drawing of G.

It remains to show that we can draw the discs representing the clusters. This follows
from a much stronger geometric result by Biedl, Kaufmann and Mutzel [2, Corollary 1].
We need only a weaker, topological, version, which has a very short proof. For each face
f of D, we may draw without crossings a set Ef of edges inside f joining one chosen
vertex in A incident to f to all other vertices in A incident to f . Since the dual graph of
G in D is connected, the multigraph (A,

⋃
f Ef ) is connected as well. Let E ′ be a subset

of
⋃
f Ef such that TA = (A,E ′) is a spanning tree of A. A small neighborhood of TA is

an open topological disc ∆A containing all vertices of A, and the boundary of ∆A crosses
every edge of G at most once; see Figure 5. In the complement of ∆A we can easily find a
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∆A ∆A

∆B

Figure 5: Left: Drawing the disc ∆A. The edges of E ′ are dashed, while the edges of⋃
f Ef \ E ′ are dotted. Right: Drawing the disc ∆B.

u v u v

Figure 6: Pulling v towards u. The evenness of the drawing is preserved.

topological disc ∆B containing all vertices of B, by drawing its boundary partially along
the boundary of ∆A and partially along the boundary of the outer face of D.

3.1 Proof of Theorem 1

The proof is inspired by the proof of the weak Hanani–Tutte theorem from [34].
Let A and B be the two clusters of (G, T ) forming a partition of V (G). We assume

that G is connected, since we can embed each component separately. We start with an
even clustered drawing of (G, T ). We proceed by induction on the number of vertices.

First, we discuss the inductive step. If we have an edge e between two vertices u, v
in the same part (either A or B), we contract e by pulling v along e towards u while
dragging all the other edges incident to v along e as well. See Figure 6. We keep all
resulting loops and multiple edges. If some edge crosses itself during the dragging, we
eliminate the self-crossing by a local redrawing. The resulting drawing is still a clustered
drawing. This operation keeps the drawing even and it also preserves the rotation at each
vertex. Then we apply the induction hypothesis and decontract the edge e. This can
be done without introducing new crossings, since the rotation system has been preserved
during the induction.

In the base step, G is a multigraph consisting of a bipartite multigraph H with parts
A and B and possible additional loops at some vertices. We can embed H by Lemma 6.
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It remains to embed the loops. Note that after the contractions, no loop crosses the
boundary of a cluster. Each loop l divides the rotation at its corresponding vertex v(l)
into two intervals. One of these intervals contains no end piece of an edge connecting A
with B, otherwise l would cross some edge of H an odd number of times. Call such an
interval a good interval in the rotation at v(l). Observe that there are no two loops l1 and
l2 with v(l1) = v(l2) = v whose end-pieces have the order l1, l2, l1, l2 in the rotation at v,
as otherwise the two loops would cross an odd number of times. Hence, at each vertex
the good intervals of every pair of loops are either nested or disjoint.

We use induction on the number of loops to draw all the loops at a given vertex v
without crossings and without changing the rotation at v. For the inductive step, we
remove a loop l whose good interval in the rotation at v is inclusion minimal. Such an
interval contains only the two end-pieces of l, since there exist no edges between a pair of
vertices in A or B. By induction hypothesis, we can embed the rest of the loops without
changing the rotation at v. Finally, we can draw l in a close neighborhood of v within the
face determined by the original rotation at v. This concludes our discussion of the base
step of the induction and the proof of the theorem.

4 Strong Hanani–Tutte for two-clustered graphs

In this section we prove Theorem 2. Let (G, T ) be a two-clustered graph. Let A and B
be the two clusters of (G, T ) forming a partition of V (G). For a subset V ′ ⊆ V (G), let
G[V ′] denote the subgraph of G induced by V ′. The following lemma gives a characteri-
zation of c-planarity for two-clustered graphs, similar to the one for c-connected clustered
graphs [13, Theorem 1].

Lemma 7. An embedding of a two-clustered graph (G, T ) is a clustered embedding if and
only if G[B] is contained in the outer face of G[A] and G[A] is contained in the outer face
of G[B].

Proof. The “only if” part is trivial. Let D be an embedding of G in which G[B] is
contained in the outer face of G[A] and vice-versa. First we extend D to an embedding
D1 of a connected two-clustered graph (G1, T ) by adding the minimum necessary number
of edges between the components of D. (If G is connected, then G1 = G and D1 = D.)
The embedding D1 still satisfies the assumptions of the lemma, since adding an edge
between two components creates no cycle.

Next we contract each component of G1[A] ∪ G1[B] in D1 to a point, while keeping
all the loops and multiple edges, and preserving the rotations of the vertices. Let D2 be
the resulting embedding and (G2, T2) the corresponding two-clustered multigraph. The
connectedness of G2 and the assumption of the lemma imply that the interior of every loop
in D2 is empty of vertices. We remove all the loops, and apply Lemma 6 to the resulting
two-clustered multigraph (G3, T3). We obtain topological discs ∆A and ∆B certifying the
c-planarity of (G3, T3). Finally, we reintroduce the loops and decontract the components
of G1[A] and G1[B] inside the discs ∆A and ∆B, respectively. Finally, we delete the edges
connecting the components of G.
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By the assumption of Theorem 2 and the strong Hanani–Tutte theorem, G has an
embedding. However, in this embedding, G[B] does not have to be contained in a single
face of G[A] and vice-versa. Hence, we cannot guarantee that a clustered embedding of
(G, T ) exists so easily.

For an induced subgraph H of G, the boundary of H is the set of vertices in H that
have a neighbor in G−H. We say that an embedding D(H) of H is exposed if all vertices
on the boundary of H are incident to the outer face of D(H).

The following lemma is an easy consequence of the strong Hanani–Tutte theorem. It
helps us to find an exposed embedding of each connected component X of G[A] ∪ G[B].
Later in the proof of Theorem 2 this allows us to remove non-essential parts of each such
component X and concentrate only on a subgraph G′ of G in which both G[A] and G[B]
are outerplanar.

Lemma 8. Suppose that (G, T ) admits an independently even clustered drawing. Then
every connected component of G[A] ∪G[B] admits an exposed embedding.

Proof. Let D be an independently even clustered drawing of (G, T ). Let ∆A and ∆B be
the two topological discs representing the clusters A and B, respectively.

Let X be a component of G[A]. (For components of G[B] the proof is analogous.)
Let ∂X be the boundary of X. For Y ⊆ A, let E(Y,B) be the set of edges connecting
a vertex in Y with a vertex in B. Observe that E(X,B) = E(∂X,B). We replace
B by a single vertex v and connect it to all vertices of ∂X. We obtain a graph X ′ =
(V (X) ∪ {v}, E(X) ∪ {uv;u ∈ ∂X}.

We get an independently even drawing of X ′ from D by contracting ∆B to a point
and removing the vertices in A \ X and all parallel edges. By the strong Hanani–Tutte
theorem we obtain an embedding of X ′. By changing this embedding so that v gets to the
outer face and then removing v with all incident edges, we obtain an exposed embedding
of X.

4.1 Proof of Theorem 2

The proof is inspired by the proof of the strong Hanani–Tutte theorem from [34]. Its
outline is as follows. First we obtain a subgraph G′ of G containing the boundary of each
component of G[A] and G[B] and such that each of G′[A] and G′[B] is a cactus forest,
that is, a graph where every two cycles are edge-disjoint. Equivalently, a cactus forest
is a graph with no subdivision of K4 − e. A connected component of a cactus forest
is called a cactus. Then we apply the strong Hanani–Tutte theorem to a graph which
is constructed from G′ by splitting vertices common to at least two cycles in G′[A] and
G′[B], and turning all cycles in G′[A] and G′[B] into wheels. The wheels guarantee that
everything that has been removed from G in order to obtain G′ can be inserted back.
Finally we draw the clusters using Lemma 6.

Now we describe the proof in detail. Let X1, . . . , Xk be the connected components
of G[A] ∪ G[B]. By Lemma 8 we find an exposed embedding D(Xi) of each Xi. Let X ′i
denote the subgraph of Xi obtained by deleting from Xi all the vertices and edges not
incident to the outer face of D(Xi). Observe that X ′i is a cactus.
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Figure 7: Making e and f even by changing the drawing locally around v.

Let G′ = (
⋃k
i=1X

′
i) ∪ E(A,B). That is, G′ is a subgraph of G that consists of all the

cacti X ′i and all edges between the two clusters. Let D′ denote the drawing of G′ obtained
from the initial independently even clustered drawing of G by deleting the edges and
vertices of G not belonging to G′. Thus, D′ is an independently even clustered drawing
of G′.

In what follows we process the cycles of G′[A] and G′[B] one by one. We will be
modifying G′ and also the drawing D′. We will maintain the property that every processed
cycle is vertex-disjoint with all other cycles in G′[A] and G′[B], and every edge of every
processed cycle is even in D′. Initially, the property is met as no cycle is processed. Let
C denote an unprocessed cycle in G′[A]. For cycles in G′[B], the procedure is analogous.
We proceed in several steps.

4.2 1) Correcting the rotations.

For every vertex v of C, we redraw the edges incident to v in a small neighborhood of
v, and change the rotation at v, as follows [34]. If the two edges e, f of C incident to v
cross an odd number of times, we redraw one of them, say, f , so that they cross evenly.
Next, we redraw every other edge incident to v so that it crosses both e and f evenly; see
Figure 7. After we perform these modifications at every vertex of C, all the edges of C are
even. However, some pairs of edges incident to a vertex of C may cross oddly; see Figure 7
d). Moreover, no processed cycles have been affected since they are vertex-disjoint with
C.

4.3 2) Cleaning the “inside”.

We two-color the connected components of R2 \C so that two regions sharing a nontrivial
part of their boundary receive opposite colors. The existence of such a coloring is a well-
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Figure 8: Transforming inner C-bridges into outer C-bridges. Every nontrivial C-bridge
contains a vertex in B.

known fact; for example, one can color the points of R2\C using the parity of the winding
number of C. We say that a point not lying on C is “outside” of C if it is contained in the
region with the same color as the unbounded region. Otherwise, such a point is “inside”
of C.

A C-bridge in G′ is a “topological” connected component of G′ − E(C); that is, a
connected component K of G′ − C together with all the edges connecting K with C, or
a chord of C in G′. We say that a C-bridge L is outer if all edges of L incident to C
attach to the vertices of C from “outside”. Similarly, we say that a C-bridge L is inner
if all edges of L incident to C attach to the vertices of C from “inside”. Since all the
edges of C are even, every C-bridge is either outer or inner. A C-bridge is trivial if it
attaches only to one vertex of C; otherwise it is nontrivial. Since C is edge-disjoint with
all cycles in G′[A], every nontrivial C-bridge contains a vertex of B. Since D′ is a clustered
drawing of G′, all vertices of G′[B] lie “outside” of C, and so every nontrivial C-bridge is
outer. Therefore, every inner C-bridge is trivial. We redraw every inner C-bridge L as
follows. Let v be the vertex of C to which L is attached. We select a small region in the
neighborhood of v “outside” of C, and draw L in this region by continuously deforming
the original drawing of L, so that L crosses no edge outside L; see Figure 8. After this
step, nothing is attached to C from “inside”.

4.4 3) Vertex splitting.

Let v be a vertex of C belonging to at least one other cycle in G′[A]. Let x and y be the
two neighbors of v in C. By the previous step, the edges xv and yv are consecutive in
the rotation at v. We split the vertex v by replacing it with two new vertices v′ and v′′

connected by an edge, and draw them very close to v. We replace the edges xv and yv by
edges xv′ and yv′, respectively. For every neighbor u of v that is not on C, we replace the
edge uv by an edge uv′′. See Figure 9. Clearly, this vertex-splitting introduces no pair of
independent edges crossing oddly. Moreover, after all the splittings, C is vertex-disjoint
with all cycles in G′[A].
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Figure 9: Splitting a vertex v common to several cycles in G′[A].

C C

vC

Figure 10: Attaching a wheel to C.

4.5 4) Attaching the wheels.

Now we fill the cycle C with a wheel. More precisely, we add a vertex vC into A and
place it very close to an arbitrary vertex of C “inside” of C. We connect vC with all the
vertices of C by edges that closely follow the closed curve representing C either from the
left or from the right, and attach to their endpoints on C from “inside”; see Figure 10.
We allow portions of these new edges to lie “outside” of C only near self-crossings of C.
In particular, in the neighborhoods of vertices of C, the new edges are always “inside” of
C. Since no C-bridge is inner, all the new edges are even.

Let G′′ denote the graph obtained after processing all the cycles of G′[A] and G′[B].
Now we apply the strong Hanani–Tutte theorem to G′′. We further modify the resulting
embedding in several steps so that in the end, the only vertices and edges of G′′ not
incident to the outer face of G′′[A] or G′′[B] are the vertices vC that form the centers of
the wheels, and their incident edges. First, suppose that some of the wheels are embedded
so that their central vertex vC is in the outer face of the wheel. Then the outer face is
a triangle, say vCuw. We can then redraw the edge uw along the path uvCw, without
crossings, so that vC gets inside the wheel. We fix all the wheels in this way. Next, if
some of the wheels contains another part of G′′ in some of its inner faces, we flip the whole
part over an edge of the wheel to its outer face, without crossings. See Figure 11. After
finitely many flips, all the inner faces of the wheels will be empty.

After the modifications, G′′[A] is drawn in the outer face of G′′[B] and vice-versa. In
the resulting embedding we delete all the vertices vC and contract the edges between the
pairs of vertices v′, v′′ that were obtained by vertex-splits.

Thus, we obtain an embedding of G′ in which for every component Xi of G′[A]∪G′[B],
all vertices of G′−Xi are drawn in the outer face of Xi. Now we insert the removed parts
of G back to G′, by copying the corresponding parts of the embeddings D(Xi) defined

the electronic journal of combinatorics 22(4) (2015), #P4.24 15



vC

u w

vC

u w

Figure 11: Fixing the wheels and flipping everything else to the outer face of G′′[A]. The
circle represents a vertex in B.

(G,T ) T

Figure 12: A c-planar embedding of a c-connected clustered graph (G, T ) and the corre-
sponding tree T .

in the beginning of the proof. This is possible since we are placing the removed parts of
Xi inside faces bounded by simple cycles of Xi. Hence, we obtain an embedding of G in
which for every component X of G[A]∪G[B], all vertices of G−X are drawn in the outer
face of X. Thus, Lemma 7 applies and that concludes the proof.

5 Strong Hanani–Tutte for c-connected clustered graphs

Here we prove Theorem 3, using the ideas from the proof of Theorem 2.
Let (G, T ) be a c-connected clustered graph with an independently even clustered

drawing. Our goal is to find a c-planar embedding of (G, T ); see Figure 12. We proceed
by induction on the number of clusters of (G, T ). If the root cluster is the only cluster in
(G, T ), the theorem follows directly from the strong Hanani–Tutte theorem applied to G.
For the inductive step, we assume that (G, T ) has at least one non-root cluster.

A minimal cluster is a cluster that contains no other cluster of (G, T ). Let V (µ) be
a minimal cluster of (G, T ). Let (G, T ′) be a clustered graph obtained from (G, T ) by
removing µ from T and attaching all its children to its parent. Note that (G, T ′) is still
c-connected.

Starting from (G, T ′), we process the connected subgraph G[V (µ)] analogously as
the components of G[A] in the proof of Theorem 2, where we substitute A = V (µ) and
B = V (G)−V (µ). By modifying (G, T ′) we obtain a c-connected clustered graph (G′′, T ′′)
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with an independently even clustered drawing. Now we apply the induction hypothesis
and obtain a clustered embedding of (G′′, T ′′). Again, we modify this embedding so that
all vertices of V (G′′)−V (µ) are in the outer face of G′′[V (µ)]. Then we remove the wheels,
contract the new edges and insert back the removed parts of G[V (µ)]. Finally we draw
a topological disc ∆(µ) around the closure of the union of all interior faces of G[V (µ)].
Since G[V (µ)] is connected, this last step is straightforward and results in a clustered
embedding of (G, T ).

6 Counterexample on three clusters

In this section we construct a family of even clustered drawings of flat clustered cycles
on three and more clusters that are not clustered planar. These examples imply that a
straightforward generalization of the Hanani–Tutte theorem to graphs with three or more
clusters is not possible.

Before giving the construction, we prove that there are no other “minimal” counterex-
amples to the Hanani–Tutte theorem for flat clustered cycles with three clusters, and more
generally, flat clustered cycles whose clusters form a cycle structure. A reader interested
only in the counterexample can immediately proceed to Subsection 6.2 or directly to the
study of Figure 16.

Let k > 3. We say that a flat clustered graph (G, T ) with k clusters is cyclic-clustered
if there is a cyclic ordering of its clusters (V1, V2, . . . , Vk) such that for i 6= j, G has an edge
between Vi and Vj if and only if |i− j| ∈ {1, k− 1}; that is, if Vi and Vj are consecutive in
the cyclic ordering. In this section we assume that (G, T ) is a cyclic-clustered graph with
k clusters. Clustered drawings of cyclic-clustered graphs with no edge-crossings outside
the clusters have a simple structure.

Observation 9. Let D be a clustered drawing of a cyclic-clustered graph (G, T ) with k
clusters on the sphere such that the edges do not cross outside the topological discs ∆i rep-
resenting the clusters Vi. Then we can draw disjoint simple curves α1, β1, α2, β2, . . . , αk, βk
such that both αi and βi connect the boundaries of ∆i and ∆i+1, do not intersect other
discs ∆j, and the bounded region bounded by αi, βi and portions of the boundaries of ∆i

and ∆i+1 contains all portions of the edges between Vi and Vi+1 that are outside of ∆i and
∆i+1 (the indices are taken modulo k).

Proof. The observation is obvious when there is exactly one edge between every pair of
consecutive clusters. The general case follows easily by induction on the number of the
inter-cluster edges.

We note that if (G, T ) has only three clusters, then the conclusion of Observation 9
holds even if (G, T ) is not cyclic-clustered, that is, if there is a pair of clusters with no
edge between them.

First we show that it is enough to consider clustered drawings in which the clusters
are drawn as cones bounded by a pair of rays emanating from the origin. We call such
drawings radial.
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Figure 13: Eliminating crossings outside clusters in a cyclic-clustered graph.

We call two clustered drawings of (G, T ) equivalent if for every pair of independent
edges e and f , the number of their crossings has the same parity in both drawings. We
call a clustered drawing weakly even if every pair of edges between two disjoint pairs of
clusters cross an even number of times. Clearly, every independently even drawing is also
weakly even.

Lemma 10. Given a weakly even clustered drawing D of a cyclic-clustered graph (G, T ),
there exists a radial clustered drawing of (G, T ) equivalent to D.

Proof. Here we refer to the topological discs representing the clusters simply by “clusters”,
and denote them also by Vi.

If all the crossings in D are inside clusters, we can easily obtain a radial drawing of
(G, T ) equivalent to D as follows. By Observation 9, we can flip some edges so that the
outer face intersects all the clusters. Then the complement of the union of the discs ∆i

and the curves αi and βi from Observation 9 in the plane contains exactly one bounded
and one unbounded component touching all the clusters. Therefore, we can continuously
deform the plane and then expand the clusters to take the shape of the cones.

Suppose that there are crossings outside clusters in D. We show how to obtain an
equivalent drawing that has all crossings inside clusters, in two phases.

In the first phase, we eliminate all crossings outside clusters as follows. We continu-
ously deform every edge of G between two consecutive clusters Vi and Vi+1 (the indices are
taken modulo k) into a narrow corridor between Vi and Vi+1, keeping the interiors of Vi
and Vi+1 fixed except for a small neighborhood of their boundaries. See Figure 13. Inside
the corridor between Vi and Vi+1, we want the portions of the edges to be noncrossing,
but their order may be arbitrary. We may represent this deformation by the set S(D,D′)
of edge-cluster switches (see Section 2 for the definition) that were performed an odd
number of times.

Now we again use the fact that between every two consecutive clusters of the cyclic
sequence (V1, V2, . . . , Vk), there is at least one edge of G. Since no two edges cross outside
clusters in D′, both drawings D and D′ are weakly even. Hence, if S(D,D′) contains an
edge-cluster switch (e, Vi) with a cluster Vi that is disjoint with e, then S(D,D′) contains

the electronic journal of combinatorics 22(4) (2015), #P4.24 18



an edge-cluster switch of e with every cluster disjoint with e. We call such an edge
switched.

In the second phase, we further transform D′ into a drawing D′′ by deforming the edges
only inside the clusters. For every switched edge e, we perform edge-vertex switches of
e with all vertices in the two clusters incident to e, except for the endpoints of e. Since
performing an edge-vertex switch of e with every vertex of G not incident to e has no effect
on the parity of the number of crossings of e with independent edges, the new drawing
D′′ is equivalent to D.

In the rest of this section we assume that G is a cycle Cn = v1v2 . . . vn. For technical
reasons, we define vn+1 as v1. For j ∈ [n], let ϕ(vj) denote the index of the cluster
containing vj, that is, vj ∈ Vϕ(vj).

For every edge vivi+1 of Cn we define sign(vivi+1) ∈ {−1, 0, 1}, as an element of Z,
so that sign(vivi+1) ≡ ϕ(vi+1) − ϕ(vi) (mod k). Note that the sign is well defined since
(G, T ) = (Cn, T ) is cyclic-clustered and k > 3. We then define the winding number of
(Cn, T ) as 1

k

∑n
i=1 sign(vivi+1). Note that in a radial clustered drawing of (Cn, T ) where the

clusters V1, V2, . . . Vn are drawn in a counter-clockwise order, our definition of the winding
number of (Cn, T ) coincides with the standard winding number of the curve representing
Cn with respect to the origin.

We will show that if (Cn, T ) is a counterexample to the variant of the Hanani–Tutte
theorem for flat cyclic-clustered graphs with k clusters, then the winding number of (Cn, T )
is odd.

We say that (Cn, T ) is monotone if sign(v1v2) = sign(v2v3) = · · · = sign(vnv1) 6= 0.
In the following two lemmas we show how to reduce any even radial clustered draw-

ing of (Cn, T ) to an even radial clustered drawing of a monotone cyclic-clustered cycle
(Cn′ , T ′), for some n′ 6 n, that has the same winding number as (Cn, T ).

We extend the notion of edge contraction to flat clustered cycles as follows. If (G, T )
is a clustered cycle and e = uv is an edge of G with both vertices u, v in the same cluster
C, then (G, T )/e is the clustered multigraph obtained by contracting e and keeping the
vertex replacing u and v in the cluster C. The clustering of the rest of the vertices is
left unchanged. If P = uwv is a path of length 2 in G such that u and v are in the
same cluster C, then (G, T )/P is the clustered multigraph obtained by contracting the
edges uw and wv and keeping the vertex replacing u and v in the cluster C. Obviously,
if G = Cn, then the contraction of an edge yields a cycle of length n − 1. Similarly, the
contraction of a path of length 2 yields a cycle of length n− 2.

Lemma 11. Let D be an even radial clustered drawing of (Cn, T ). Let e be an edge in Cn
with both endpoints in the same cluster Vi. Then (Cn, T )/e has an even radial clustered
drawing.

Proof. Since the edge e is completely contained inside the disc representing the cluster
Vi, we can contract the curve representing e in D towards one of its endpoints, dragging
the edges incident to the other endpoint along. Since e was even, this does not change
the parity of the number of crossings between the edges of G.
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Figure 14: Illustration for the proof of Lemma 12. From left to right: the successive
stages of the redrawing operation eliminating paths P1, P2 and P3. The edge f cannot be
present in the drawing, since it would violate its evenness.

Lemma 12. Let D be an even radial clustered drawing of (Cn, T ). Let Va and Vb be two
adjacent clusters. Let P1, . . . , Pm be all the paths of length 2 in Cn
whose middle vertices belong to Va and whose end vertices belong to Vb. Then (Cn′ , T ′) =
(. . . ((Cn, T )/P1)/ . . . )/Pm has an even radial clustered drawing.

Proof. Refer to Figure 14. By Lemma 11, we assume that no edge of Cn has both vertices
in the same cluster. At the end we can recover the contracted edges by decontractions.

The proof proceeds by the following surgery performed on D. First we cut the paths
Pi at the ray r separating the clusters Va and Vb, by removing a small neighborhood of the
curves near r. Second, we reconnect the severed ends of every Pi on both sides of r, by
new curves drawn close to r. This operation splits every Pi into two components. One of
the components is a curve connecting the former end vertices of Pi, the other component
is a closed curve containing the middle vertex of Pi. By removing the middle vertex of Pi,
we replace each Pi by a single edge ei, still represented as the union of both components
of Pi. Third, we remove the closed curve of every ei. Finally, we contract the remaining
component of each ei towards one of the end vertices, as in Lemma 11.

We claim that the resulting drawing is even. It is easy to see that during the first and
the second phase, the parity of the number of crossings between each pair of edges was
preserved, if we consider the edge ei instead of each path Pi, and count the crossings on
all components of every edge together. Now we show that the closed component of each
ei crosses every other edge an even number of times. This is clearly true for every edge
ej other than ei, since only the closed component of ej can cross the closed component of
ei. Suppose that the closed component of ei crosses some other edge f an odd number of
times. Then f intersects the region containing Va, and so f has one endpoint, w, in Va.
Since the other endpoint of f is not in Va, the vertex w lies “inside” the closed component
of ei (in the same sense as defined in Section 4). If some of the two edges incident to w
had the other endpoint outside Vb, it would cross ei, and thus Pi, an odd number of times.
Therefore, both edges incident to w are incident to both clusters Va and Vb. But every
such pair was replaced by a single edge during the surgery; so there is no such f .
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Figure 15: Illustration for the proof of Theorem 13. The two pairs of vertices u, v, and
u+, v+ are in clusters Vi and Vi+1, respectively. The “inside” of the curves γ(u) and γ(u+)
consists of the shaded regions. Thus, we have u <i v and u+ <i+1 v+.

Theorem 13. Let (Cn, T ) be a cyclic-clustered cycle that is not c-planar but has an even
clustered drawing. Then the winding number of (Cn, T ) is odd and different from 1 and
−1.

Proof. Let k > 3 be the number of clusters of (Cn, T ). By Lemmas 10, 11 and 12, we may
assume that (Cn, T ) is monotone and that it has an even radial clustered drawing. In
particular, the absolute value of the winding number of (Cn, T ) is equal to n/k. Cortese
et al. [8] proved that a cyclic-clustered cycle is c-planar if and only if its winding number
is −1, 0 or 1. This implies that n > 2k if (Cn, T ) is not c-planar.

For every i ∈ [k], we define a relation <i on Vi as follows. Refer to Figure 15. Let
u ∈ Vi, and let uu− and uu+ denote the two edges incident to u so that u− ∈ Vi−1 and
u+ ∈ Vi+1 (the indices are taken modulo k). Let (uu−)i and (uu+)i denote the parts of uu−
and uu+, respectively, contained inside the cone representing Vi. Let r(uu−) and r(uu+)
denote the endpoint of (uu−)i and (uu+)i, respectively, different from u. That is, r(uu−)
and r(uu+) are on the boundary of the cone representing Vi. Let γ(u) denote the closed
curve obtained by concatenating (uu−)i, (uu+)i, and the two line segments connecting
r(uu−) and r(uu+), respectively, with the origin. We say that vertices u, v ∈ Vi are in the
relation u <i v if v is “outside” (in the same sense as defined in Section 4) of the curve
γ(u).

Let v+ be the neighbor of v in Vi+1, and let v− be the other neighbor of v. The relations
<i and <i+1 satisfy the following properties.

(1) the relation <i is antisymmetric, that is, (u <i v)⇒ ¬(v <i u),

(2) u <i v if and only if u+ <i+1 v+.

For part (1), we observe that (vv−)i and (uu+)i cross an even number of times. Suppose
that u <i v. Then (vv−)i and (uu−)i cross an odd number of times if and only if r(vv−)
is on γ(u); equivalently, r(vv−) is closer to the origin than r(uu−). If also v <i u, then
(vv−)i and (uu−)i cross an odd number of times if and only if r(uu−) is closer to the origin
than r(vv−); a contradiction.
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Figure 16: A counterexample to the variant of the Hanani–Tutte theorem with parameters
k = 3 and r = 3; the underlying graph is thus a cycle on 9 vertices. The vertices are
labeled by positive integers in the order of their appearance along the cycle.

For part (2), let u++ be the neighbor of u+ other than u. The claim follows from the
fact that vv+ crosses each of the curves (uu−)i, uu+ and (u+u++)i+1 evenly.

Recall that Cn = v1v2 . . . vn. Let i = ϕ(vn) and suppose without loss of generality
that i + 1 = ϕ(v1). Suppose that n/k is even. Then both vn and vn/2 are in Vi. By (2),
we have vn <i vn/2 ⇔ v1 <i+1 vn/2+1 ⇔ · · · ⇔ vn/2 <i vn, but this contradicts (1).
Therefore, n/k is odd.

6.1 Remark.

We will see next that the relations <i are not necessarily transitive. In fact, it is not
hard to see that in every counterexample to the variant of the Hanani–Tutte theorem for
cyclic-clustered cycles, no relation <i is transitive.

6.2 Proof of Theorem 4

For simplicity of the description, we draw the graph on a cylinder, represented by a
rectangle with the left and right side identified.

Let r > 3 be an odd integer and let k > 3. Our counterexample is a drawing of
a monotone cyclic-clustered cycle with kr vertices and k clusters. The corresponding
curve consists of kr + 1 periods of an appropriately scaled graph of the sinus function
winding r times around the cylinder, where the vertices mark the beginning of kr of the
periods. We can describe the curve representing the cycle analytically as a height function
f(α) = sin

(
kr+1
r
α
)

on a vertical cylinder (whose axis is the z-axis) taking the angle as
the parameter. The vertices of the cycle are at points

(
i 2r
kr+1

π, 0
)
, where i = 0, . . . , kr−1,

and the clusters are separated by vertical lines at angles 2ri+1
kr+1

π, for i = 0, . . . k − 1; see
Figure 16. By the result of Cortese et al. [8], the cyclic-clustered cycle is not c-planar
when r > 1.

7 Small faces

In this section we reprove a result of Di Battista and Frati [10] that c-planarity can be
decided in polynomial time for embedded flat clustered graphs whose every face is incident
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to at most five vertices. In our proof, we reduce the problem to computing the largest
size of a common independent set of two matroids. This can be done in polynomial time
by the matroid intersection theorem [11, 28]. See e.g. [30] for further references.

In this section, we will use a shorthand notation (G, T ) instead of (D(G), T ) for an
embedded clustered graph. Let (G, T ) be an embedded flat clustered graph where G =
(V,E).

Since contracting an edge with both endpoints in the same cluster does not affect
c-planarity, we will assume that (G, T ) is an embedded clustered multigraph where every
cluster induces an independent set. If (G, T ) is c-planar and contains a loop at v, then
the whole interior of the loop must belong to the same cluster as v. Hence, either there
is a vertex of another cluster inside the loop, in which case (G, T ) is not c-planar, or we
may remove the loop and everything from its interior without affecting the c-planarity.
The test and the transformation can be easily done in polynomial time. We will thus also
assume that (G, T ) has no loops.

A saturator of (G, T ) is a subset S of
(
V
2

)
\ E such that every cluster of (G ∪ S, T ) is

connected and the edges of S can be added to (G, T ) without crossings.
Let S be a minimal saturator of (G, T ). Then each cluster in (G ∪ S, T ) induces a

spanning tree of the cluster, and so the boundary of each cluster can be drawn easily. We
have thus the following simple fact.

Observation 14 ([13]). An embedded flat clustered graph (G, T ) is c-planar if and only
if (G, T ) has a saturator.

In order to model our problem by matroids we need to avoid two noncrossing saturating
edges in one face coming from two different clusters, which might happen if the boundary
of the face is not a simple cycle. To this end, we modify the multigraph further by a
sequential merging of some pairs of vertices. Assuming that u and v are non-adjacent
vertices incident to a common face f , merging of u and v in f consists in embedding a
new edge uv inside f and then contracting it.

Lemma 15. Let (G, T ) be an embedded flat clustered multigraph all of whose faces are
incident to at most five vertices. Suppose that G has no loops and that every cluster of
(G, T ) induces an independent set. Then there is an embedded flat clustered multigraph
(G′, T ) obtained from (G, T ) by merging vertices such that

1) (G, T ) is c-planar if and only if (G′, T ) is c-planar, and

2) if (G′, T ) is c-planar then (G′, T ) has a saturator S whose edges can be embedded so
that each face of G′ contains at most one edge of S.

Moreover, finding G′ and verifying conditions 1) and 2) can be performed in linear time.

A saturating pair of a face f is a pair of vertices incident to f and belonging to the
same cluster. Thus, a cluster with k vertices incident to f has

(
k
2

)
saturating pairs in f .

A saturating edge of f is a simple curve embedded in f and connecting the vertices of
some saturating pair of f .
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Proof of Lemma 15. Clearly, once we find that (G, T ) is not c-planar we can choose G′ =
G.

A face of (G, T ) is bad if it admits two noncrossing saturating edges, even from the
same cluster. If no face of (G, T ) is bad, then the choice G′ = G satisfies both conditions
of the lemma.

Assume that (G, T ) has at least one bad face f . We show that at least two vertices of
f can be merged so that the resulting embedded clustered multigraph is c-planar if and
only if (G, T ) is c-planar. The lemma then follows by induction on the number of vertices.

Suppose that f has only two saturating pairs, {u, v} and {x, y}. In this case, u and
v belong to a different cluster than x and y. Since f is bad, the pairs {u, v} and {x, y}
can be joined by saturating edges e(u, v) and e(x, y), respectively, embedded in f without
crossings. Hence, we can merge u with v along e(u, v) while preserving the c-planarity.

If f has more than two saturating pairs, there is a cluster C that has at least three
vertices incident to f . Let C(f) be the set of these vertices. If all other clusters have at
most one vertex incident to f , all saturating pairs of f have vertices in C(f). In this case,
we can merge any pair of vertices of C(f) while preserving the c-planarity.

In the remaining case, f is incident to exactly five vertices, exactly three of them,
u, v and w, are in C, and the remaining two, x and y, are in another cluster D. In this
case, f has four saturating pairs: {u, v}, {u,w}, {v, w} and {x, y}. If x and y are in
different components of the boundary of f , then it is possible to embed saturating edges
for all the four saturating pairs without crossings. We may thus merge x with y without
affecting the c-planarity. For the rest of the proof we assume that x and y are in the same
component of the boundary of f . In this case, every saturating edge e joining x with y
separates the face f into two components. At least one of the components is incident to
at least two vertices of C(f), and so at least one saturating edge of the cluster C can be
embedded in f while avoiding crossings with e. If at least two saturating edges of C can
be embedded in f while avoiding crossings with e, we may merge x with y along e without
affecting c-planarity. Therefore, we also assume for the rest of the proof that for every
saturating edge e joining x with y in f , exactly one saturating pair of C can be joined
by a saturating edge embedded in f without crossings with e. This implies that for every
minimal saturator of (G, T ), at most two saturating pairs in total can be simultaneously
joined by saturating edges embedded in f without crossings.

If for some of the saturating pairs of C in f , say, {u, v}, no saturating edge embedded
in f joining x with y separates u and v, we can merge u with v without affecting c-
planarity. We may thus assume that every pair of vertices in C(f) can be separated by
some saturating edge joining x with y.

The boundary of f , denoted by ∂f , is a bipartite cactus forest with partitions C(f) =
{u, v, w} and D(f) = {x, y}. We call every connected component of R2 \ ∂f other than
f an enclave. Each enclave is bounded by a simple cycle, of length 2 or 4. Suppose
that each enclave is bounded by a 2-cycle. Since each of the 2-cycles contains only one
vertex of C, every saturating edge joining two vertices of C(f) has to be embedded in f ,
and moreover, every minimal saturator of (G, T ) contains exactly two of the saturating
pairs {u, v}, {u,w}, {v, w}, forming a spanning tree of the triangle uvw. Similarly, every
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Figure 17: Three cases of a bad face f whose boundary contains a 4-cycle. Saturating
edges joining the pairs {x, y} and {u,w} are drawn in the third case. The vertices u and
w can be merged without affecting the c-planarity.

minimal saturator of (G, T ) contains the pair {x, y}, and the saturating edge joining x
with y must be embedded in f . By our assumptions, two of the three saturating edges in
f will cross, so in this case (G, T ) is not c-planar.

We are left with the case when one enclave is bounded by a 4-cycle, say, uxvy. Clearly,
there is at most one other enclave and it is bounded by a 2-cycle. In total, there are three
possibilities for the subgraph ∂f ; see Figure 17. Every saturator of (G, T ) has to contain
at least one of the two saturating pairs {u,w}, {v, w}, and the corresponding saturating
edge must be embedded in f . Moreover, if there is a saturator containing {x, y} and
{v, w} and no other saturating pair of f , then replacing {v, w} with {u,w} we also get a
saturator, since saturating edges joining the pairs {x, y} and {u,w} can be simultaneously
embedded in f without crossings. Therefore, we can merge u and w while preserving c-
planarity. This finishes the proof of the lemma.

7.1 Proof of Theorem 5

We start with the embedded multigraph (G′, T ′) obtained in Lemma 15. By Observa-
tion 14 and Lemma 15, it is enough to decide whether (G′, T ′) has a minimal saturator.

In order to test the existence of a saturator we define two matroids for which we will
use the matroid intersection algorithm. The ground set of each matroid is a set E ′ of
saturating edges of (G′, T ′) defined as the disjoint union

⋃
f Ef , over all faces of G′, where

Ef is a set containing one saturating edge for each saturating pair of f . By the proof of
Lemma 15, no face f is bad, so every set Ef has at most two saturating edges. Moreover,
if |Ef | = 2, then the two saturating edges in Ef cross and belong to different clusters.

The first matroid, M1, is the direct sum of graphic matroids constructed for each
cluster as follows. Denote the clusters of (G′, T ′) by Ci, i = 1, . . . , k. Let Gi be the
multigraph induced by Ci in G′ = (V,E ′). If Gi is not connected, (G′, T ′) has no saturator.
We thus further assume that Gi is connected. The ground set of the graphic matroid
M(Gi) is the edge set of Gi. Since Gi is connected, the rank of M(Gi) is the number of
vertices of Gi minus one. Since the matroids M(Gi), i = 1, . . . , k, are pairwise disjoint,
their direct sum, M1, is also a matroid and its rank is the sum of the ranks of the matroids
M(Gi).
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Figure 18: A counterexample with GT = K1,3.

The second matroid, M2, is a partition matroid defined as follows. A subset of E ′ is
independent in M2 if it has at most one edge in every face of G′.

Let M be the intersection of M1 and M2. If M has an independent set of size equal to
the rank of M1, then (G′, T ′) has a saturator that has at most one edge inside each face.
Thus, (G′, T ′) is c-planar by Observation 14, and that in turn implies by Lemma 15 that
(G, T ) is c-planar as well. On the other hand, if (G, T ), and hence (G′, T ′), is c-planar,
then (G′, T ′) has a minimal saturator S that has at most one edge inside each face by
Lemma 15. Thus, S witnesses the fact that M has an independent set of size equal to the
rank of M1. Hence, (G′, T ′) is c-planar if and only if M has an independent set of size
equal to the rank of M1, and this can be tested by the matroid intersection algorithm.

8 Concluding remarks

Let GT be the simple graph obtained from (G, T ) by contracting the clusters and deleting
the loops and multiple edges. By the construction in Section 6 we cannot hope for a fully
general variant of the Hanani–Tutte theorem for (G, T ) when GT contains a cycle.

A simple modification of the construction provides a counterexample also for the case
when GT is a tree with at least one vertex of degree greater than 2; see Figure 18. This
disproves our conjecture from the conference version of this paper [17].

Therefore, the only open case for flat clustered graphs is the case when GT is a collec-
tion of paths. We conjecture that the strong Hanani–Tutte theorem holds in this case.

Conjecture 1. If GT is a path and (G, T ) admits an independently even clustered drawing
then (G, T ) is c-planar.

A variant of Conjecture 1 for non-flat two-level clustered graphs in which the clusters
on the bottom level form a path and one additional cluster contains all interior clusters
of the path would provide a polynomial-time algorithm for c-planarity testing for strip
clustered graphs, which is an open problem stated in [1].
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Our proof from Section 7 fails if the graph has hexagonal faces. We wonder if this
difficulty can be overcome or rather could lead to NP-hardness.
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