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Abstract

We describe an algorithm to subdivide automatically a given set of PL n-
manifolds (via coloured triangulations or, equivalently, via crystallizations) into
classes whose elements are PL-homeomorphic. The algorithm, implemented in the
case n = 4, succeeds to solve completely the PL-homeomorphism problem among
the catalogue of all closed connected PL 4-manifolds up to gem-complexity 8 (i.e.,
which admit a coloured triangulation with at most 18 4-simplices).

Possible interactions with the (not completely known) relationship among the
different classifications in the TOP and DIFF=PL categories are also investigated.
As a first consequence of the above PL classification, the non-existence of exotic
PL 4-manifolds up to gem-complexity 8 is proved. Further applications of the tool
are described, related to possible PL-recognition of different triangulations of the
K3-surface.

Keywords: 4-manifold; crystallization; coloured triangulation; gem-complexity;
combinatorial move;

1 Introduction and main results

One of the most interesting features of piecewise-linear (PL) topology is the possibility
of representing manifolds by combinatorial structures; the main developed theories con-
cern the 3-dimensional case, where – thanks to recent advances in computing power –
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topologists succeeded in constructing exhaustive tables of “small” 3-manifolds based on
different representation methods (see [42] and its bibliography for successive results about
closed orientable irreducible 3-manifolds up to Matveev’s complexity 11, and [3], [12] for
analogous studies about closed non-orientable P2-irreducible 3-manifolds up to Matveev’s
complexity 10).

In dimension four, fewer combinatorial tools are available to represent PL-manifolds.
On the other hand, classification results for topological (TOP) simply-connected 4-mani-
folds are well-known, though more attention must be paid when considering equivalence
of PL-structures.

Crystallization theory is a representation theory for PL-manifolds of arbitrary dimen-
sion by means of suitable edge-coloured graphs (called crystallizations), which are dual
to coloured triangulations. Together with the Italian school that gave rise to the graph-
theoretical tool (see [43], [29], [35], [30], [4] and their references), many authors around
the world concurred to its development, with recent significant contributions, too: for
example, [8], [9], [44]. The totally combinatorial nature of the representing objects and
the generality with respect to dimension are among the strong points of crystallization
theory: topological and PL properties are reflected into combinatorial ones, and the prob-
lem of distinguishing manifolds (both in TOP and in PL category) can be simplified by
combinatorial invariants computed on the graphs.

In particular, in dimension four and five the best achievements have been obtained as
regards the attempts of classifying PL-manifolds via a suitable graph-defined invariant,
called regular genus1: they concern both the case of “low” regular genus, and the case of
“restricted gap” between the regular genus of the manifold and the regular genus of its
boundary, and the case of “restricted gap” between the regular genus and the rank of the
fundamental group of the manifold (see, for example, [24], [14] and [26]).

More recently, the interest focused on other combinatorial invariants internal to crys-
tallization theory, i.e. GM-complexity and gem-complexity, which are related in dimension
three to Matveev’s complexity, too (see [16], [18], [23], [21]). In particular, gem-complexity
is the natural invariant used to create automatic catalogues of PL-manifolds via crystal-
lizations: in fact, it is related to the minimum order of a crystallization of the manifold.
On the other hand, suitable moves on edge-coloured graphs are defined, which preserve
the represented manifold up to PL-homeomorphisms; even if they are not able to solve
algorithmically the recognition problem for general PL-manifolds, they are a powerful tool
to face the problem itself, for a given set of PL-manifolds. In dimension three, this ap-
proach already allowed the development of a classification algorithm, which succeeded to
completely recognize PL-homeomorphism classes of all 3-manifolds up to gem-complexity
14 (i.e. representable by coloured triangulations with at most 30 tetrahedra): see [39],
[18] and [19] for the orientable case and [15], [16] and [5] for the non-orientable one.

The present paper describes the n-dimensional extension of the above classifying al-
gorithm, together with the results obtained by applying it to the crystallization catalogue
representing all PL 4-manifolds up to gem-complexity 8 (i.e. whose associated coloured

1In the orientable case, it is the minimum genus of a surface where a graph representing the manifold
regularly embeds: see [35] for details.
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triangulations have at most 18 4-simplices).
The main classification results are collected into the following theorem, where k(M4)

denotes the gem-complexity of M4; the last statement makes use also of a partial analysis
(whose completion is in progress) of the crystallization catalogue representing all PL 4-
manifolds with gem-complexity 9, which has been generated, too.

Theorem 1. Let M4 be a handle-free closed connected PL 4-manifold. Then:

• k(M4) = 0 ⇐⇒ M4 is PL-homeomorphic to S4;

• k(M4) = 3 ⇐⇒ M4 is PL-homeomorphic to CP2;

• k(M4) = 6 ⇐⇒ M4 is PL-homeomorphic to either S2 × S2 or CP2#CP2 or
CP2#(−CP2);

• k(M4) = 7 ⇐⇒ M4 is PL-homeomorphic to RP4.

Moreover:

• no handle-free PL 4-manifold M4 exists with k(M4) ∈ {1, 2, 4, 5, 8};

• no exotic PL 4-manifold exists, with k(M4) 6 8;

• any PL 4-manifold M4 with k(M4) = 9 is simply-connected (with second Betti
number β2 6 3).

As far as the TOP category is concerned, the combinatorial properties of crystalliza-
tions, together with well-known results on TOP simply-connected 4-manifolds, yield the
following interesting result related to the topological classification of simply-connected PL
4-manifolds with respect both to gem-complexity and to regular genus:

Theorem 2. Let M4 be a simply-connected PL 4-manifold M4. If either gem-complexity
k(M4) 6 65 or regular genus G(M4) 6 43, then M4 is TOP-homeomorphic to

(#rCP2)#(#r′(−CP2)) or #s(S2 × S2),

where r + r′ = β2(M4), s = 1
2
β2(M4) and β2(M4) is the second Betti number of M4.

Theorem 2 summarizes Proposition 20 (for gem-complexity) and Proposition 23 (for
regular genus) of Section 4.

As it is well-known, up to now there is no classification of smooth structures on any
given smoothable topological 4-manifold; on the other hand, finding non-diffeomorphic
smooth structures on the same closed simply-connected topological manifold has long
been an interesting problem.

We hope that further advances in the generation and classification of crystallization
catalogues for PL 4-manifolds, according to gem-complexity, could produce examples of
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non-equivalent PL-structures on the same TOP 4-manifold. For example, if at least one
among the infinitely many PL 4-manifolds TOP-homeomorphic but not PL-homeomorphic
to CP2#2(−CP2) (which are proved to exist in [1]) admits a so called simple crystallization
(according to [9]), then it will appear in the catalogue of order 20 crystallizations.

Moreover, we point out that the program performing automatic recognition of PL-
homeomorphic 4-manifolds may be a useful tool to approach open problems related to
different triangulations of the same TOP 4-manifold, which are conjectured to represent
the same PL 4-manifold, too. The first candidates are the two known 16-vertices and
17-vertices triangulations of the K3-surface: see [27] and [45], together with the attempts
to settle the conjecture described in [10], [11] and [9].

2 Basic notions of crystallization theory

As already pointed out, crystallization theory allows to represent combinatorially PL man-
ifolds of arbitrary dimension, without restrictions concerning orientability, connectedness
or boundary properties, by means of suitable edge-coloured graphs or - equivalently - by
means of coloured triangulations. A detailed account of the theory may be found in [32],
[39] and [4], together with their references.

In the present paper, when not otherwise stated, we will restrict our attention to the
case of closed, connected PL n-manifolds.

Definition 3. An (n+1)-coloured graph is a pair (Γ, γ), where Γ = (V (Γ), E(Γ)) is a
regular multigraph2 of degree n + 1 and γ : E(Γ) → ∆n = {0, 1, . . . , n} is injective on
adjacent edges.

The elements of the set ∆n = {0, 1, . . . , n} are called colours ; moreover, for each
i ∈ ∆n, we denote by Γî the n-coloured graph obtained from (Γ, γ) by deleting all edges
coloured by i.

Definition 4. An (n + 1)-coloured graph (Γ, γ) is said to be contracted if the subgraph
Γî is connected, for each i ∈ ∆n.

Each (n+1)-coloured graph uniquely determines an n-dimensional CW-complex K(Γ),
which is said to be associated to Γ:

• for every vertex v ∈ V (Γ), take an n-ball σ(v) abstractly isomorphic to an n-simplex,
and label injectively its n+ 1 vertices by the colours of ∆n;

• for every i-coloured edge between v, w ∈ V (Γ), identify the (n−1)-faces of σ(v) and
σ(w) opposite to i-labelled vertices, so that equally labelled vertices coincide.

2According to [47], this means that all vertices of V (Γ) have the same degree, that loops are forbidden,
while multiple edges are allowed.
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It is easy to check that the properties of (Γ, γ) imply K(Γ) to be actually a pseudo-
complex: in particular, its balls may intersect in more than one face, but self-identifications
of faces are not allowed.3

Definition 5. An (n + 1)-coloured graph (Γ, γ) is said to represent a PL n-manifold
Mn (briefly, it is a gem of Mn) if Mn is PL-homeomorphic to |K(Γ)|. If, in addition,
(Γ, γ) is contracted, then it is called a crystallization of Mn. In both cases, the pseudo-
complex K(Γ), equipped with the vertex-labelling inherited from γ, is said to be a coloured
triangulation of Mn.

Remark 6. It is easy to prove that each PL n-manifold admits an (n+ 1)-coloured graph
representing it: just take the barycentric subdivision H ′ of any (simplicial) triangulation
H of Mn, label any vertex of H ′ with the dimension of the open simplex containing it in
H, and then consider the 1-skeleton of the dual cellular complex of H ′, with each edge
coloured by i iff it is dual to an (n− 1)-face whose vertices are labelled by ∆n − {i}.

The following proposition collects some well-known facts in crystallization theory:

Proposition 7. Let (Γ, γ) be an (n+ 1)-coloured graph.

(a) |K(Γ)| is orientable iff Γ is bipartite.

(b) ∀B ⊂ ∆n, with #B = h, there is a bijection between (n−h)-simplices of K(Γ) whose
vertices are labelled by ∆n−{B} and connected components of the h-coloured graph
ΓB = (V (Γ), γ−1(B)) (which are called h-residues involving colours B, or B-residues
of Γ, and whose number will be denoted by gB).

In particular: c-labelled vertices of K(Γ) are in bijection with connected components
of Γĉ = Γ∆n−{c}.

(c) If #V (Γ) = 2p and
∑

#B=h gB denotes the total number of h-residues of Γ, then

χ(|K(Γ)|) = (−1)n−1 · p · (n− 1) +
n∑
h=2

(−1)h ·
∑

#B=h

gB.

(d) |K(Γ)| is an n-manifold if and only if, for every c ∈ ∆n, each connected component
of Γĉ represents Sn−1.

(e) If (Γ, γ) is a crystallization of an n-manifold Mn, then

rk(π1(Mn)) 6 min{gB − 1 | #B = n− 1}.

Moreover:

3Even if, in general, K(Γ) fails to be a simplicial complex, we will always call h-simplices its h-balls,
for every h 6 n.
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Proposition 8 (Pezzana Theorem). Each PL n-manifold admits a crystallization.

It is not difficult to understand that, generally, many crystallizations of the same PL
n-manifold exist; hence, it is a basic problem how to recognize crystallizations (or, more
generally, gems) of the same PL n-manifold.

The easiest case is that of two colour-isomorphic gems, i.e. if there exists an isomor-
phism between the graphs, which preserves colours up to a permutation of ∆n. It is quite
trivial to check that two colour-isomorphic gems produce the same polyhedron.

The following result assures that colour-isomorphic graphs can be effectively detected
by means of a suitably defined numerical code, which can be directly computed on each
of them (see [25]).

Proposition 9. Two (n+1)-coloured graphs are colour-isomorphic iff their codes coincide.

The problem of recognizing non-colour-isomorphic gems representing the same man-
ifold is also solved, but not algorithmically: a finite set of moves - the so called dipole
moves - is proved to exist, with the property that two gems represent the same manifold
iff they can be related by a finite sequence of such moves. A dipole move consists in
the insertion or elimination of particular configurations involving h parallel edges, called
h-dipoles (1 6 h 6 n): see [30] for details, or Figure 1 for an example in dimension n = 4,
with h = 2.

Figure 1: dipole move

In this paper, however, we will also make use of another set of moves, which appears to
be more suitable for algorithmic procedures (see the notion of blob and flip in Section 5).
Even if they still do not solve algorithmically the problem for general PL n-manifolds
(nor for general PL 4-manifolds), nevertheless we will prove that a fixed sequence of blobs
and flips is sufficient to classify - via PL-homeomorphism - all PL 4-manifolds admitting
a coloured triangulation with at most 18 4-simplices (see Section 6).

In order to define the class of gems involved in our catalogues, further preliminary
notions are required.

Definition 10. A pair (e, f) of equally coloured edges in an (n+1)-coloured graph (Γ, γ)
is said to form a ρs-pair iff e and f both belong to exactly s common bicoloured cycles
of Γ.
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Figure 2: ρ-pair switching

Figure 2 shows the combinatorial move called ρ-pair switching.
The effect of ρ-pair switching on crystallizations is explained by the following result,

where H denotes an n-dimensional handle, i.e. either the orientable or non-orientable
Sn−1-bundle over S1 (respectively denoted by S1 × Sn−1 and S1×̃Sn−1), according to the
orientability of Mn:

Proposition 11. ([7]) Let (Γ, γ) be a crystallization of a PL n-manifold Mn, n > 3 and
let (Γ′, γ′) be obtained by switching a ρs-pair in Γ. Then:

(a) if s = n− 1, (Γ′, γ′) is a gem of Mn, too;

(b) if s = n, (Γ′, γ′) is a gem of an n-manifold Nn such that Mn ∼=PL N
n#H.

Definition 12. An (n + 1)-coloured graph is said to be rigid (resp. rigid dipole-free) if
it has no ρs-pairs, with s ∈ {n− 1, n} (resp. if it is rigid and has no dipoles).

Catalogues of PL n-manifolds are obviously constructed with respect to increasing
“complexity” of the representing combinatorial objects. Within crystallization theory,
the following quite natural invariant is considered:

Definition 13. Given a PL n-manifold Mn, its gem-complexity is the non-negative integer
k(Mn) = p− 1, where 2p is the minimum order (i.e. the minimum number of vertices) of
a crystallization of Mn.

In order to generate an exhaustive catalogue of (n + 1)-coloured graphs representing
all closed connected PL n-manifolds up to a fixed gem-complexity, the restriction to the
class of rigid dipole-free crystallizations yields no loss of generality, as Proposition 15
below proves.

In the following, #hM denotes the connected sum of h copies of an n-manifold M .

Definition 14. A PL n-manifold Mn is said to be handle-free if it admits no handles as
connected summands.
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Proposition 15. Let Mn be a PL n-manifold (n > 3). Then:

(a) If Mn is handle-free, then a rigid dipole-free order 2p crystallization (Γ, γ) of Mn

exists, so that k(Mn) = p− 1.

(b) Otherwise, a rigid dipole-free order 2p crystallization of a PL n-manifolds Nn exists,
so that Mn ∼=PL N

n#hH (h > 0) and k(Mn) = p− 1 + n · h.

Proof. Statement (a) directly follows from [7, Theorem 5.3].
Let now Mn ∼=PL N

n#hH be any connected sum decomposition of Mn, with h > 0.4

Since a standard order 2(n + 1) crystallization of S1 × Sn−1 (resp. S1×̃Sn−1) is well-
known (see [38]), and since the so called graph connected sum (see [32]) yields an order
2(p1 + p2 − 1) gem of N1#N2 from any order 2p1 (resp. 2p2) gem of N1 (resp. N2),
inequality k(Mn) 6 p− 1 + n · h easily follows, 2p being the order of any crystallization
of Nn.

Hence, if we set

S =
{
p− 1 + n · h | Mn ∼=PL N

n#hH, 2p = #V (Γ),

Γ rigid dipole-free crystallization of Nn
}
,

it is proved that
k(Mn) 6 minS,

where the minimum is taken over all decompositions Mn ∼=PL N
n#hH (with h > 0) and

over all rigid dipole-free crystallizations of Nn.
In order to prove the reversed inequality (and hence statement (b)), let us consider

an arbitrary crystallization (Γ̄, γ̄) of Mn, with order 2p̄. If (Γ̄, γ̄) is a rigid dipole-free
crystallization, then p̄− 1 ∈ S (with respect to the trivial decomposition of Mn), and so
p̄−1 > minS trivially holds. If (Γ̄, γ̄) contains ρn−1-pairs and/or dipoles, a order 2p̄′ rigid
dipole-free crystallization (Γ̄′, γ̄′) of Mn is easily obtained via a suitable number of ρn−1-
switching, each one followed by a 1-dipole elimination, and/or dipole eliminations; hence,
p̄′−1 ∈ S (with respect to the trivial decomposition of Mn), and so p̄−1 > p̄′−1 > minS
trivially holds.

Finally, let us assume (Γ̄, γ̄) to admit no ρn−1-pairs, no dipoles and h > 1 ρn-pairs.
After each ρn-pair switching, n 1-dipoles appear, one for each colour not involved in the
ρ-pair. Let (Γ̄′′, γ̄′′) be the order 2p̄′′ graph obtained by all ρn-switchings and elimination
of the resulting n·h 1-dipoles; according to Proposition 11(b), (Γ̄′′, γ̄′′) is a rigid dipole-free
crystallization of a PL n-manifold N̄n such that Mn ∼=PL N̄

n#hH. Hence, p̄′′−1+n·h ∈ S.
Relation p̄− 1 = p̄′′ − 1 + n · h > minS easily follows.

4Note that no assumption is made, both on h and on Nn: the decomposition turns out to be “trivial” in
case h = 0 and Nn = Mn. Note also that in dimension n = 3, where the uniqueness of the decomposition
under connected sum holds, the statement is already known: see [15, Proposition 8(b)].
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Elementary notions of crystallization theory - and in particular the graph-connected
sum quoted in the above proof - allow to easily extend to any dimension both the sphere-
recognition property and the finiteness property and the sub-additivity (with respect to con-
nected sum) of gem-complexity, already stated in [15, Proposition 10] for the 3-dimensional
case.

Although the gem-complexity cannot be additive on the whole set of PL 4-manifolds,
as a consequence of Wall theorem ([46]), nevertheless additivity is possible on restricted
classes of manifolds: for example those with small values of gem-complexity (6 8 as shown
by the results of the present paper) or those admitting simple crystallizations (as proved
in [22]).

The invariant regular genus shares with the gem-complexity the properties of sphere
recognition and subadditivity in any dimension. In dimension three it is additive but not
finite-to-one (since it coincides with the Heegaard genus), while in the closed 4-dimensional
case both finiteness and additivity are open problems. However, additivity holds within
the class of 4-manifolds admitting simple crystallizations ([22]).

Remark 16. Note that, as pointed out in [31, Remark 1], additivity of the regular genus
in dimension four would imply the Smooth Poincaré Conjecture.

3 4-dimensional generation algorithm

By Proposition 7(d), the generation of catalogues of crystallizations of n-manifolds with
a fixed number of vertices 2p is essentially inductive on dimension and requires the prior
generation and recognition of all gems (with 2p vertices) representing the (n− 1)-sphere.

It is therefore easy to understand why the first results have been obtained in dimen-
sion three, since 2-sphere recognition can be performed easily by computing the Euler
characteristic, and null Euler characteristic characterizes closed 3-manifolds.

However, the generating algorithm, even in low dimension, becomes quickly very in-
tensive as the number of vertices increases and requires large computing resources. A way
to face this problem is to find combinatorial configurations in the graphs, which can be
eliminated without changing the manifold. Examples of such configurations are dipoles
and ρ-pairs.

Proposition 15 assures that restricting the catalogues to rigid dipole-free crystalliza-
tions does not affect their completeness.

Catalogues of 3-manifold rigid5 crystallizations up to 32 vertices have already been
generated and completely classified [15, 18, 19, 5]. Complete classification was also ob-
tained for genus two 3-manifolds admitting a crystallization with at most 42 vertices
[6].

Let us now fix our attention to the 4-dimensional case. For each p > 1, we will denote
by C(2p) (resp. C̃(2p)) the catalogue of all not colour-isomorphic rigid dipole-free bipartite
(resp. non-bipartite) crystallizations of 4-manifolds with 2p vertices.

5It is easy to see that in dimension three, rigidity and contractedness imply absence of dipoles.
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Note that if Γ ∈ C(2p) ∪ C̃(2p), then Γ4̂ is a (not necessarily contracted, nor rigid) 4-
coloured graph representing S3 and lacking in ρ3-pairs. Let S(2p) denotes the set of such
4-coloured graphs.

S(2p) will be the starting set of the procedure generating C(2p) and C̃(2p), which consists
essentially in adding 4-coloured edges to all elements of S(2p), so as to obtain crystalliza-
tions of 4-manifolds.

The set S(2p) is constructed by a suitable adaptation of the 3-dimensional generation
algorithm; recognition of the 3-sphere is performed by cancelling dipoles and switching
ρ-pairs in order to obtain a rigid crystallization and by comparing the resulting graph
with the list of rigid crystallizations of S3, which appear in the 3-dimensional catalogue.

As a matter of fact, the recognition is very easy for p < 12, since the only rigid
crystallization of S3 up to this order is the standard one with two vertices.

So, the generating algorithm in dimension four runs as follows:

1) Construct the set S(2p) = {Σ(2p)
1 ,Σ

(2p)
2 , . . . ,Σ

(2p)
np }.

2) For each i = 1, 2, . . . , np :

- add to Σ
(2p)
i 4-coloured edges in all possible ways so to produce 4-coloured

graphs;

- for each produced graph Γ, check absence of ρ-pairs and 2-dipoles;

- for each c ∈ ∆3, check that Γĉ represents S3.

3) Compute and compare the codes in order to exclude colour-isomorphic duplicates.

However, the above algorithm is practically useless due to the great computational
time it requires; therefore it needs some modifications in order to be effective. More
precisely, a branch and bound technique is used to prune the tree of possible attachments
of edges on each element of S(2p).

Let Γ̄ be a 5-coloured graph obtained from an element of S(2p) by addition of r < p
4-coloured edges, then Γ̄ will be kept for further additions if and only if:

(i) it contains no three edges with the same endpoints (otherwise there will be ρ-pairs
in the final regular graph);

(ii) for each i ∈ ∆3, Γ̄î represents a 3-sphere with holes.

Unfortunately condition (ii) is very heavy to check, since it implies recognition of 3-
spheres with holes. Instead, we use a weaker condition, which is equivalent to requiring
Γ̄î to be a 3-manifold (with boundary), i.e.

(ii′) for each pair of colours i, j ∈ ∆3, each 3-residue of Γ̄ not involving colours i, j must
represent a disjoint union of 2-spheres, possibly with holes.
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Condition (ii′) can be checked by direct computation on Γ̄ in the following way.
Note that Γ̄ is a so-called 5-coloured graph with boundary, i.e. Γ̄4̂ is a 4-coloured

graph. Then K(Γ̄), which is obtained exactly in the same way as in the closed case, is
a pseudocomplex with non-empty boundary. The 3-simplices which triangulate ∂K(Γ̄)
correspond bijectively to the vertices of Γ̄ missing the 4-coloured edge (boundary vertices).

A 4-coloured graph (without boundary) ∂Γ̄ such that |K(∂Γ̄)| ∼= |∂K(Γ̄)| can be
constructed as follows:

• V (∂Γ̄) is the set of boundary vertices of Γ̄;

• for each c ∈ ∆3, two vertices of ∂Γ̄ are c-adjacent iff they are connected by a
{c, 4}-coloured path in Γ̄.

Then, a suitable extension of the Euler characteristic computation of Proposition 7(c)
implies that condition (ii’) is equivalent to requiring the following equality to hold:∑

k,t∈∆4\{i,j}

gkt −
p̄

2
= 2gîĵ − ḡîĵ , (1)

where gkt is the number of {k, t}-coloured cycles of Γ̄, p̄ is the number of boundary vertices
of Γ̄ and gîĵ (resp. ḡîĵ) is the number of (∆4 − {i, j})-residues of Γ (resp. ∂Γ).

The above described restrictions succeed in reducing considerably both the computa-
tion time and the size of the resulting catalogues. Moreover, a parallelization strategy,
which has been adopted in the implementation, has allowed to reduce further the compu-
tation time: see [41] for details.

As a consequence we could produce catalogues C(2p) and C̃(2p) for each p 6 10 (see
Table 1 below).

2p 2 4 6 8 10 12 14 16 18 20

#S(2p) 1 0 2 9 39 400 5.255 95.870 1.994.962 45.654.630

# C(2p) 1 0 0 1 0 0 1.109 4.511 44.803 47.623.129

# C̃(2p) 0 0 0 0 0 0 0 1 0 0

Table 1

Remark 17. We point out that the unique rigid dipole-free crystallization of C(2) (resp.
of C(8)) is the standard crystallization of S4 (resp. CP2: see [36]), while the unique non-
bipartite rigid dipole-free crystallization appearing up to 20 vertices is the standard one
of RP4 with 16 vertices ([37]).
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Remark 18. A further restriction on the catalogues could be imposed: if Γ ∈ C(2p) ∪ C̃(2p)

is a graph connected sum (see [32], or the proof of Proposition 15) of two graphs Γ1

and Γ2, then |K(Γ)| ∼=PL |K(Γ1)|#|K(Γ2)| and we call Γ splittable. The problem of
recognizing the manifold |K(Γ)| is thus traced back to the (easier) problem of recognizing
|K(Γ1)| and |K(Γ2)|. However, the low number of splittable crystallizations (about 0.6%
of the elements for the catalogues with up to 18 vertices) forces to directly recognize the
crystallizations by moves keeping the PL-homeomorphism of |K(Γ)| (see Section 5).

4 TOP classification via combinatorial invariants

Before describing the classification performed in our crystallization catalogues via suitable
sequences of moves which realize PL-homeomorphisms of the represented PL 4-manifolds,
we devote the present section to the much weaker problem of classifying the involved PL
4-manifolds within the TOP category.

The starting point is the direct computation of the Betti numbers and of the rank
of the fundamental group for each PL 4-manifold represented by a crystallization of our
catalogues.

Proposition 19. All orientable PL 4-manifolds represented by elements of C(2p), 1 6 p 6
10, are simply-connected. The unique elements of C(2) and C(8) are known crystallizations
representing S4 and CP2 respectively. Moreover:

(a) Among the 1.109 crystallizations of C(14) :

– exactly one represents a (simply-connected) PL 4-manifold M4 with β2 = 1;

– all the remaining ones represent (simply-connected) PL 4-manifolds M4 with
β2 = 2.

(b) All 4.511 crystallizations of C(16) represent (simply-connected) PL 4-manifolds M4

with β2 = 2.

(c) Among the 44.803 crystallizations of C(18) :

– ten represent (simply-connected) PL 4-manifolds M4 with β2 = 1;

– all the remaining ones represent (simply-connected) PL 4-manifolds M4 with
β2 = 2.

(d) Among the 47.623.129 crystallizations of C(20) :

– exactly one represents a (simply-connected) PL 4-manifold M4 with β2 = 0;

– 370 represent (simply-connected) PL 4-manifolds M4 with β2 = 1;

– 501.900 represent (simply-connected) PL 4-manifolds M4 with β2 = 2;

– all the remaining ones represent (simply-connected) PL 4-manifolds M4 with
β2 = 3.
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Proof. In virtue of Proposition 7(e), an estimation of rk(π1(M4)), for each PL 4-manifold
M4 represented by our catalogues, may be obtained by computing the number grst of
3-residues involving colours {r, s, t}, with 0 6 r < s < t 6 4, for each element of C(2p),
1 6 p 6 10. The calculation has been done by means of a suitable procedure of the
program DUKE III 6 and the program output ensures that each crystallization of C(2p),
1 6 p 6 10, has grst = 1 for at least a choice of distinct r, s, t ∈ ∆4. Hence, the simply-
connectedness of all involved orientable PL 4-manifolds is proved.

In order to calculate the Betti numbers of the same PL 4-manifolds, it is necessary to
apply Proposition 7(c), yielding the Euler characteristic of M4 by a direct computation
on each order 2p crystallization of M4:7

χ(M4) = 5−
∑
i<j<k

gijk +
∑
i<j

gij − 3p. (2)

Now, the simply-connectedness implies χ(M4) = 2 + β2(M4); hence, β2(M4) follows by a
direct computation of both the number of 3-residues and 2-residues, for each element of
C(2p), 1 6 p 6 10. The statement is proved by making use of suitable procedures of the
program DUKE III.

The fact that all orientable PL 4-manifolds represented by crystallizations of our cat-
alogues are simply-connected has important consequences as regards their classification
in the TOP category.

In fact, the following result proves that, up to a significantly high gem-complexity, the
classification of PL 4-manifolds up to TOP-homeomorphism is quite easy, at least in the
simply-connected case (which - as a matter of fact - turns out to be the most frequent
case):8

Proposition 20. Any simply-connected PL 4-manifold M4, with k(M4) 6 65, is TOP-
homeomorphic to

(#rCP2)#(#r′(−CP2)) or #s(S2 × S2),

where r + r′ = β2(M4), s = 1
2
β2(M4) and β2(M4) 6 k(M4)

3
is the second Betti number of

M4.

Proof. Let Γ be an order 2p crystallization of M4. As already recalled, formula (2) yields
the direct computation of the Euler characteristic of M4.

On the other hand, the planarity of each 3-residue of Γ yields (via Proposition 7(c),
too) 2gijk = gij + gik + gjk − p for each triple (i, j, k) ∈ ∆4, from which the following
relation is obtained:

2
∑
i<j<k

gijk = 3
∑
i<j

gij − 10p.

6“DUKE III: A program to handle edge-coloured graphs representing PL n-dimensional manifolds” is
available on the Web: http://cdm.unimo.it/home/matematica/casali.mariarita/DUKEIII.htm

7Recall that contractedness implies Γ to have exactly one 4-residue involving ∆4−{i}, for each i ∈ ∆4.
8The statement of Proposition 20 was announced in [17] and in [20].
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Hence, the Euler characteristic computation gives

1− β1(M4) + β2(M4)− β3(M4) + 1 = 5− 1

3

∑
i<j<k

gijk +
1

3
p.

Now, if M4 is assumed to be simply-connected, 6+3β2(M4) = 15+p−
∑

i<j<k gijk follows;

since gijk > 1 trivially holds, we have 3β2(M4) 6 p− 1.
So,

k(M4) > 3β2(M4) (3)

may be stated, for each simply-connected PL 4-manifold M4.
Now, the classical theorems of Freedman and Donaldson ([33]) about the TOP clas-

sification of simply-connected closed 4-manifolds, together with more recent results by
Furuta ([34]), ensure that intersection forms of type

±2nE8 ⊕ s
(

0 1
1 0

)
do represent PL 4-manifolds only if s > 2n; hence, only PL 4-manifolds with β2(M4) > 22
occur in this case. The thesis directly follows from the fact that k(M4) 6 65 implies
β2(M4) 6 21; so, only intersection forms of the two simplest types are allowed:

r[1]⊕ r′[−1] or s

(
0 1
1 0

)
where r + r′ = β2(M4) or s = 1

2
β2(M4).

As a consequence of the above result, we can already deduce the complete TOP clas-
sification of all PL 4-manifolds represented in our cystallization catalogues, i.e. up to
gem-complexity 9.

We subdivide the results into two different statements, with respect to orientability
assumptions; in fact, in the non-orientable case, the PL classification of all PL 4-manifolds
up to gem-complexity 9 follows, too (Proposition 22), while in the orientable case the PL
classification is possible only up to gem-complexity 5 (Proposition 21):

Proposition 21. Let M4 be an orientable PL 4-manifold. Then:

• k(M4) = 0 ⇐⇒ M4 is PL-homeomorphic to S4;

• k(M4) = 3 ⇐⇒ M4 is PL-homeomorphic to CP2;

• k(M4) = 4 ⇐⇒ M4 is PL-homeomorphic to S1 × S3;

• no orientable PL 4-manifold M4 exists with k(M4) ∈ {1, 2, 5};

• k(CP2#(S1×S3)) = 7, k(#2(S1×S3)) = 8 and no other PL 4-manifold with handles
M4 exists with k(M4) ∈ {6, 7, 8, 9}.
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Moreover, if M4 is assumed to be handle-free, then:

• k(M4) ∈ {6, 7, 8} =⇒ M4 is TOP-homeomorphic to either S2 × S2 or CP2#CP2

or CP2#(−CP2) or CP2;

• k(M4) = 9 =⇒ M4 is TOP-homeomorphic to either S2 × S2 or (#rCP2)#
(#r′(−CP2)), where 0 6 r + r′ 6 3.

Proof. In virtue of Proposition 15, the gem-complexity of a closed connected orientable
PL 4-manifold M4 is congruent mod 4 to p − 1, 2p being the order of a rigid dipole-
free bipartite crystallization (i.e. an element of C(2p)). Moreover, by Proposition 19, all
elements of

⋃
16p610 C(2p) represent simply-connected PL 4-manifolds, which are obviously

handle-free.
Hence (as far as the PL category is concerned):

- the statements for k(M4) 6 3 are direct consequences of the generation algorithm
output, for p 6 4 (see Proposition 19);

- k(S1 × S3) = 4 (resp. k(CP2#(S1 × S3)) = 7) (resp. k(#2(S1 × S3)) = 8) follows
from Proposition 15(b), with N4 = S4, h = 1 and s = 0 (resp. N4 = CP2, h = 1
and s = 0) (resp. N4 = S4, h = 2 and s = 0), since k(S4) = 0, k(CP2) = 3 and no
element of

⋃
16p69 C(2p) represents a PL 4-manifold with handles;

- for k(M4) ∈ {4, 5}, the statements follow from k(S1 × S3) = 4 and from the fact
that

⋃
56p66 C(2p) = ∅ (see Table 1);

- the statement regarding the non-existence of other PL 4-manifolds with handles
(different from CP2#(S1 × S3) and #2(S1 × S3)) with k(M4) = k ∈ {6, 7, 8, 9}
follows from Proposition 15(b), too, together with the previous analysis concerning
gem-complexity k − 4 and k − 8.

Finally, the statements involving TOP-homeomorphism follow immediately from Propo-
sition 19 and Proposition 20.

Proposition 22. Let M4 be a non-orientable PL 4-manifold. Then:

• k(M4) = 4 ⇐⇒ M4 is PL-homeomorphic to S1×̃S3;

• k(M4) = 7 ⇐⇒ M4 is PL-homeomorphic to either RP4 or CP2#(S1×̃S3);

• k(M4) = 8 ⇐⇒ M4 is PL-homeomorphic to #2(S1×̃S3).

Moreover, no non-orientable PL 4-manifold M4 exists with k(M4) ∈ {0, 1, 2, 3, 5, 6, 9}.
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Proof. By Proposition 15, the gem-complexity of a closed connected non-orientable PL
4-manifold M4 is congruent mod 4 to p − 1, 2p being the order of a rigid dipole-free
crystallization (i.e. an element of C(2p)∪C̃(2p)). Moreover, the generation algorithm output

(Table 1) and Proposition 19 ensure that all elements of
⋃

16p610

(
C(2p) ∪ C̃(2p)

)
, except

the standard order 16 crystallization of RP4, represent simply-connected PL 4-manifolds;
hence, no PL 4-manifold with handles appears.

Now, the arguments are exactly the same as in the proof of Proposition 21, when taking
into account also the results of the generation algorithm for the non-bipartite case.

Another interesting consequence of the quoted results by Freedman, Donaldson and
Furuta ([33], [34]) is related to the topological classification of simply-connected PL 4-
manifolds with respect to the invariant regular genus.

First, recall that the genus of a bipartite9 (n+1)-coloured graph (Γ, γ) with respect to
a cyclic permutation ε = (εo, ε1, . . . , εn−1, εn = n) of ∆n is the genus ρε(Γ) of the surface
Fε into which Γ regularly embeds (see [35] for details); moreover, ρε(Γ) may be directly
computed by the following formula:∑

i∈Zn+1

gεiεi+1
+ (1− n) · p = 2− 2ρε(Γ). (4)

Then, the regular genus of Γ is defined as ρ(Γ) = minε{ρε(Γ)}, while the regular genus
of an orientable PL n-manifold Mn is defined as:

G(Mn) = min{ρ(Γ) | (Γ, γ) crystallization of Mn}.

With the above notations, the following statement holds:

Proposition 23. Any simply-connected PL 4-manifold M4, with G(M4) 6 43, is TOP-
homeomorphic to

(#rCP2)#(#r′(−CP2)) or #s(S2 × S2),

where r + r′ = β2(M4), s = 1
2
β2(M4) and β2(M4) is the second Betti number of M4.

Proof. Let Γ be a crystallization of a PL 4-manifold M4, and let ρε (resp. ρε̂i) be the
regular genus of Γ (resp. Γε̂i) with respect to a given cyclic permutation ε of ∆4. By
applying formula (4) both to Γ and to each 4-residue of Γ, and by making use of formula
(2), too, the following relations easily follow (see, for example, formulae (3)-(13) in the
proofs of Lemma 1 and Lemma 2 in [13], where they are given in the more general setting
of crystallizations of bounded PL 4-manifolds):

(a) gεi−1,εi,εi+1
= 1 + ρε − ρ ˆεi+1

− ρ ˆεi+3
∀i ∈ Z4;

(b)
∑

i∈Z4
gεi−1,εi,εi+1

= 5 + 5ρε − 2
∑

i∈Z4
ρε̂i ;

9An analogous definition exists in the non-bipartite case, too (see [35]); for the purpose of the present
work, however, the attention may be restricted to bipartite graphs.
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(c) χ(M4) = 2− 2ρε +
∑

i∈Z4
ρε̂i .

Since gεi−1,εi,εi+1
> 1 trivially holds, inequality 2

∑
i∈Z4

ρε̂i 6 5ρε directly follows from
(b). By substituting it into (c), with the additional hypothesis π1(M4) = 0, we have
2 + β2(M4) = χ(M4) 6 2 + [ρε

2
] (where [x] means the integer part of x), from which

β2(M4) 6 [ρε
2

] follows. As a consequence, relation

β2(M4) 6

[
G(M4)

2

]
(5)

(already obtained in [28, Proposition 2], too) is proved to hold.
Now, the thesis directly follows from the fact that G(M4) 6 43 implies β2(M4) 6

21, and from the already quoted well-known results about the classification of simply-
connected closed 4-manifolds (exactly as in the proof of Proposition 20).

As already pointed out, Proposition 20 and Proposition 23, together, prove Theorem 2
of Section 1, related to the TOP classification of the PL 4-manifolds represented by
crystallizations.

The (more interesting!) PL classification will be independently achieved in Section 6,
by making use of an implementation of the classifying algorithm described in Section 5.

5 Classification algorithm and possible applications

In order to complete the PL classification of the manifolds appearing in our catalogues
of crystallizations, we exploit in the n-dimensional setting an idea already applied in
dimension three.

First of all, let us call admissible a sequence of combinatorial moves which transforms
a rigid dipole-free crystallization of a PL n-manifold M , into a rigid dipole-free crystal-
lization of a PL n-manifold M ′ such that M ∼=PL M

′#hH (h > 0).

Let now X be a list of rigid dipole-free crystallizations; for any given set S of admissible
sequences, it is possible to subdivide X into equivalence classes with regard to S.

More precisely, for each Γ ∈ X and for each ε ∈ S, let θε(Γ) denote the (rigid dipole-
free) crystallization obtained from Γ by applying the admissible sequence ε of moves, and
let us define the class of Γ ∈ X with respect to S as:

clS(Γ) = {Γ′ ∈ X | ∃ε, ε′ ∈ S, θε(Γ) and θε′(Γ
′) have the same code}

The following statement is a direct consequence of the above definition, together with
Proposition 11:

Proposition 24. Given Γ,Γ′ ∈ X, if clS(Γ) = clS(Γ′), then there exist h, k ∈ N ∪ {0}
such that |K(Γ)| ∼=PL M#hH and |K(Γ′)| ∼=PL M#kH (where the handles are orientable
or not according to the bipartition of Γ and Γ′).
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Note that no theoretical proof exists ensuring that |K(Γ)| ∼=PL |K(Γ′)| implies
clS(Γ) = clS(Γ′) (as well as its generalization: |K(Γ)| ∼=PL |K(Γ′)|#hH ⇒ clS(Γ) =
clS(Γ′)).

Nevertheless, in dimension three, existence has been proven of a set of admissible moves
which are sufficient to perform the topological (=PL) classification of all 3-manifolds
admitting a coloured triangulation with at most 30 tetrahedra ([19], [5]).

As we will see in the next section, the same turns out to be true, in the 4-dimensional
setting, for all elements of

⋃
16p69 C(2p), though with respect to a different set of moves.

In fact, the 3-dimensional classification algorithm employs dipole moves and ρ-pairs
switchings (which are available in any dimension), together with generalized dipole moves
([30]), which are defined only for n = 3.

Instead, in the n-dimensional setting we make use of a further set of moves, introduced
by Lins and Mulazzani in [40].

Definition 25. Let Γ be a gem of a PL n-manifold Mn. Then:

• A blob is the insertion or cancellation of an n-dipole.

• A t-flip is the switching of a pair (e, f) of equally coloured edges which are both
incident to an h-dipole Ξ (1 6 h 6 n − 1). An s-flip is the inverse move, i.e. the
switching of a pair (e, f) of equally coloured edges where either e or f belong to an
h-dipole, which becomes an (h− 1)-dipole after the transformation. A flip is either
an s- or a t-flip.

Figure 3: blob move

Figure 4: flip move

Flips and blobs on a gem do not change the represented manifold: [40, Proposition 3].
Actually, even if two crystallizations are known to represent the same manifold, there is
no algorithmic procedure to determine a sequence of blobs and flips connecting them, nor
an upper bound to the number of moves to be performed. However, in the next section we
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will show that such an algorithm exists for the crystallizations appearing in our catalogues
and that only one blob is sufficient.

In order to define the set of admissible moves S̄ which have been chosen to work on
the catalogue

⋃
16p69 C(2p), let us introduce some definitions and notations.

Given an order 2p (n+ 1)−coloured graph Γ there is a natural ordering of its vertices
induced by the rooted numbering algorithm generating its code (see [25]); so we can write
V (Γ) = {v1, . . . , v2p}.

If Γ is a rigid dipole-free crystallization of a PL n-manifold, given i ∈ N2p = {1, . . . , 2p},
c ∈ ∆n, an n-tuple x = (x1, . . . , xn) with xi ∈ N2p and a permutation τ of ĉ = ∆n−{c}, we
denote by θi,c,x,τ (Γ) the rigid dipole-free crystallization obtained from Γ in the following
way:

- insert a blob over the c-coloured edge incident with vi;

- for each k ∈ ĉ, consider, if exists, the s-flip on the pair of τ(k)-coloured edges (e, f),
where e belongs to the blob and f is incident to vxk ; then perform the sequence of
all possible s-flips of this type for increasing values of the parameter k;

- cancel dipoles and switch ρ-pairs in the resulting graph.

θi,c,x,τ obviously defines an admissible sequence.

We denote by S̄ the set of all sequences θi,c,x,τ , where i ∈ N2p, c ∈ ∆n, x is an n-tuple
of elements of N2p and τ is a permutation of ĉ.

Remark 26. Note that the above definition of S̄, as well as the classification algorithm
itself, are independent from dimension. As a consequence, the partition into equivalence
classes with respect to S̄ can be performed on any list of crystallizations of n-manifolds, in
order to prove their PL-equivalence. Furthermore, note that the PL manifold represented
by an equivalence class is completely identified once at least one of the crystallizations of
the class is “known”; hence the algorithm can be also effective for the PL recognition of
the manifolds involved in the list.

Remark 27. It is not difficult to prove that ρn-pairs cannot appear when the classification
algorithm with respect to S̄ is applied to a set of bipartite crystallizations representing
simply-connected n-manifolds (see Proposition 11(b)). Hence, in this case, clS(Γ) =
clS(Γ′) surely implies |K(Γ)| ∼=PL |K(Γ′)|.

In order to obtain PL classification results, the classification algorithm, with respect
to S̄ and for n = 4, has been implemented in a C++ program - called “Γ4-class”.

As already pointed out in Section 1, the program Γ4-class can be applied to attempt to
prove PL-equivalence between different (pseudo-)triangulations of the same topological 4-
manifold; in fact, it is very easy to produce automatically a rigid dipole-free crystallization
starting from any (pseudo-)triangulation (see Remark 6 and Proposition 15).

In particular, an application of Γ4-class to the case of the 16-vertices (resp. 17-vertices)
triangulation of the K3-surface (obtained in [27] and [45] respectively) is in progress. The
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idea is similar to the one described in [9], [10] and [11], but the elementary moves involved
in the automatic procedures are different (blob and flips, together with dipole eliminations
and ρ-pair switching, instead of edge-contraction and bistellar moves). Hence, it is possible
that one sequence succeeds when the others fail, or viceversa, with equal computational
time employed.

6 Classification results in PL=DIFF category

The application of the program Γ4-class to the catalogue
⋃

16p69 C(2p) yields the complete
PL classification of the involved crystallizations (or, equivalently, of the dual contracted
triangulations) as shown in the following proposition.10

Proposition 28. There is a bijective correspondence between the partition obtained by

the program Γ4-class and the set of PL 4-manifolds represented by
⋃

16p69

(
C(2p) ∪ C̃(2p)

)
.

Moreover, the PL classification coincides with the TOP classification.

Proof. Since there is only one non-bipartite crystallization in all our catalogues, the state-
ment is trivial for

⋃
16p69 C̃(2p).

Program Γ4-class applied to the set
⋃

16p69 C(2p) produces a partition into five classes,
which coincides with the partition induced by the second Betti number. More precisely,
all crystallizations with β2 = 0 (resp. β2 = 1) belong to the same class as the standard
crystallization of S4 (resp. CP2), while the crystallizations with β2 = 2 are subdivided
into three classes, containing the standard crystallization of CP2#CP2, CP2#(−CP2) and
S2 × S2 respectively.

The following proposition - whose statement already appeared in a partial and prelim-
inary version in [17] and in [20] - summarizes the complete PL classification of orientable
(resp. non-orientable) PL 4-manifolds having gem-complexity up to 8 (resp. up to 9).

Proposition 29. Let M4 be a PL 4-manifold. Then:

• k(M4) = 0 ⇐⇒ M4 is PL-homeomorphic to S4;

• k(M4) = 3 ⇐⇒ M4 is PL-homeomorphic to CP2;

• k(M4) = 4 ⇐⇒ M4 is PL-homeomorphic to either S1 × S3 or S1×̃S3;

• k(M4) = 6 ⇐⇒ M4 is PL-homeomorphic to either S2 × S2 or CP2#CP2 or
CP2#(−CP2);

• k(M4) = 7 ⇐⇒ M4 is PL-homeomorphic to either RP4 or CP2#(S1 × S3) or
CP2#(S1×̃S3);

• k(M4) = 8 ⇐⇒ M4 is PL-homeomorphic to either #2(S1 × S3) or #2(S1×̃S3).

10The proof of Proposition 28 shows that the PL classification performed through Γ4-class does not
rely on the already stated results of Proposition 21.
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Moreover:

• no PL 4-manifold M4 exists with k(M4) ∈ {1, 2, 5};

• no exotic PL 4-manifold exists, with k(M4) 6 8;

• any PL 4-manifold M4 with k(M4) = 9 is simply-connected (with second Betti
number β2 6 3).

Proof. The statements concerning PL 4-manifolds up to gem-complexity 8 are conse-
quences of the previous Proposition 28, together with Proposition 15. The last statement,
concerning gem-complexity 9, directly follows from Proposition 19.

Note that the above Proposition 29 implies Theorem 1 (stated in Section 1), when the
attention is restricted to the handle-free PL 4-manifolds.

As a consequence of the (partial) analysis of the 4-dimensional crystallization catalogue⋃
16p610 C(2p), together with a suitable application of the classification program Γ4-class,

the following result may also be stated:

Proposition 30. A rigid crystallization of S4 exists, with 20 vertices (see Figure 5). Apart
from the standard order-two crystallization, it is the only rigid dipole-free crystallization
of S4 up to 20 vertices.

Proof. As already stated in Proposition 19, there exists exactly one crystallization (Γ̄, γ̄) ∈⋃
76p610 C(2p), with π1(|K(Γ̄)|) = 0 and β2(|K(Γ̄)|) = 0. Moreover, Γ̄ has order 20, while

no element of
⋃

26p66 C(2p) represents a PL 4-manifold with β2 = 0. Finally, by applying

the program Γ4-class to the crystallization Γ̄, the standard order two crystallization of S4

is obtained; hence, |K(Γ̄)| ∼=PL S4 follows.

In [9] the notion of simple crystallization of a (simply-connected) PL 4-manifold is
introduced, which is equivalent to the assumption grst = 1 for any distinct r, s, t ∈ ∆4;
moreover, the existence of simple crystallizations for any “standard” simply-connected
PL 4-manifold (i.e. S4, CP2, S2 × S2 and the K3-surface, together with the connected
sums of them and/or their copies with opposite orientation) is proved.

As a consequence of our catalogues, we can state:

Proposition 31.

• S4 and CP2 admit a unique simple crystallization;

• S2 × S2 admits exactly 267 simple crystallizations;

• CP2#CP2 admits exactly 583 simple crystallizations;

• CP2#(−CP2) admits exactly 258 simple crystallizations.

�
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Figure 5: The order 20 rigid dipole-free crystallization of S4

Moreover, known facts and open problems about exotic structures on “standard”
simply-connected PL 4-manifolds have the following implications on the existence of sim-
ple crystallizations:

Proposition 32.

(a) Let M4 be S4 or CP2 or S2 × S2 or CP2#CP2 or CP2#(−CP2); if an exotic PL-
structure on M4 exists, then the corresponding PL-manifold does not admit a simple
crystallization.

(b) Let M̄ be a PL 4-manifold TOP-homeomorphic but not PL-homeomorphic to
CP2#2(−CP2); then, either M̄ does not admit a simple crystallization, or M̄ admits
an order 20 simple crystallization (i.e.: k(M̄) = 9 = k(CP2#2(−CP2))).

(c) Let r ∈ {3, 5, 7, 9, 11, 13} ∪ {r = 4n − 1 | n > 4} ∪ {r = 4n − 2 | n > 23}; then,
infinitely many simply-connected PL 4-manifolds with β2 = r do not admit a simple
crystallization.

Proof. Statements (a) and (b) directly follow from the fact - proved in [22] - that simply-
connected PL 4-manifolds admitting a simple crystallization are characterized by k(M4) =
3β2(M4).

In order to prove statement (c), it is sufficient to recall the existence of infinitely
many exotic structures TOP-homeomorphic to CP2#4(−CP2), #3CP2#k(−CP2) for k ∈
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{6, 8, 10} and to #2n−1CP2#2n(−CP2) for any integer n > 1 (see [1]), as well as to
#2n−1CP2#2n−1(−CP2) for n > 23 (see [2]). Then, the statement follows from the above
characterization of simply-connected PL 4-manifolds admitting simple crystallizations
(due to [22]), together with the (obvious) finiteness of PL 4-manifolds having a fixed
gem-complexity.

Proposition 32(b) suggests possible interesting consequences of the work in progress on
the catalogue C(20): in fact, the PL-characterization of all PL 4-manifolds represented by
order 20 crystallizations could yield results about exotic structures on simply-connected
4-manifolds with β2 6 3 and/or about the existence of simple crystallizations, in case
β2 = 3.

More generally, we hope that further developments in the generation and classification
of 4-dimensional crystallization catalogues, for increasing gem-complexity, could be useful
to face open problems concerning different PL-structures on the same TOP 4-manifold.
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Géom. Différ. Catég., 38:141–160, 1997.

[27] M. Casella and W. Kühnel. A triangulated K3 surface with the minimum number
of vertices. Topology, 40(4):753–772, 2001.

the electronic journal of combinatorics 22(4) (2015), #P4.25 24

http://arxiv.org/abs/1407.0752
http://arxiv.org/abs/1403.2780
http://arxiv.org/abs/1303.6422
http://dx.doi.org/10.4171/OWR/2012/24
http://dx.doi.org/10.1515/forum-2013-0185
http://arxiv.org/abs/1410.3321v2
http://dx.doi.org/10.1016/j.topol.2012.05.016


[28] A. Cavicchioli. On the genus of smooth 4-manifolds. Trans. Amer. Math. Soc.,
331(1):203–214, 1992.

[29] M. Ferri. Crystallisations of 2-fold branched coverings of S3. Proc. Amer. Math. Soc.,
73:271–276, 1979.

[30] M. Ferri and C. Gagliardi. Crystallization moves. Pacific J. Math., 100:85–103, 1982.

[31] M. Ferri and C. Gagliardi. The only genus zero -manifold is Sn. Proc. Amer. Math.
Soc., 85:638–642, 1982.

[32] M. Ferri, C. Gagliardi and L. Grasselli. A graph-theoretical representation of PL-
manifolds. A survey on crystallizations. Aequationes Math., 31:121–141, 1986.

[33] M. H. Freedman and F. Quinn. Topology of 4-manifolds. Princeton Mathematical
Series, no. 39. Princeton University Press, Princeton, NJ, 1990.

[34] M. Furuta. Monopole equation and the 11
8

conjecture. Math. Res. Lett., 8:279–291,
2001.

[35] C. Gagliardi. Extending the concept of genus to dimension n. Proc. Amer. Math.
Soc., 81:473–481, 1981.

[36] C. Gagliardi. On the genus of the complex projective plane. Aequationes Math.,
37:130–140, 1989.

[37] C. Gagliardi. How to deduce the fundamental group of a closed n-manifold from a
contracted triangulation. J. Comb. Inf. Syst. Sci., 4:237–252, 1979.

[38] C. Gagliardi and G. Volzone. Handles in graphs and sphere bundles over S1. European
J. Combin., 8:151–158, 1987.

[39] S. Lins. Gems, computers and attractors for 3-manifolds. Knots and Everything, no.
5. World Scientific, River Edge, NJ, 1995.

[40] S. Lins and M. Mulazzani. Blobs and flips on gems. J. Knot Theory Ramifications,
15(8):1001–1035, 2006.

[41] A. Marani, M. Rivi and P. Cristofori. Generation of Catalogues of PL n-manifolds:
Computational Aspects on HPC Systems. Scalable Computing. Practice and Experi-
ence, 14(1):5–15, 2013. doi:10.12694/scpe.v14i1.823

[42] S. Matveev. Algorithmic Topology and Classification of 3-manifolds. Algorithms and
Computation in Mathematics, no. 9. Springer-Verlag, 2007.

[43] M. Pezzana. Sulla struttura topologica delle varietà compatte. Atti Semin. Mat. Fis.
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