A Linear Bound towards the Traceability Conjecture

Susan A. van Aardt^{*}

Department of Mathematical Sciences University of South Africa Gauteng, South Africa

vaardsa@unisa.ac.za

Marietjie Frick[†]

Department of Mathematical Sciences University of South Africa Gauteng, South Africa

marietjie.frick@gmail.com

Jean E. Dunbar

Department of Mathematics Converse College South Carolina, USA

jean.dunbar@converse.edu

Nicolas Lichiardopol

Lycee A. de Capronne Salon France

nicolas.lichiardopol@neuf.fr

Submitted: Oct 4, 2014; Accepted: Nov 3, 2015; Published: Nov 13, 2015 Mathematics Subject Classifications: 05C20, 05C38

Abstract

A digraph is k-traceable if its order is at least k and each of its subdigraphs of order k is traceable. An oriented graph is a digraph without 2-cycles. The 2-traceable oriented graphs are exactly the nontrivial tournaments, so k-traceable oriented graphs may be regarded as generalized tournaments. It is well-known that all tournaments are traceable. We denote by t(k) the smallest integer bigger than or equal to k such that every k-traceable oriented graph of order at least t(k) is traceable. The Traceability Conjecture states that $t(k) \leq 2k - 1$ for every $k \geq 2$ [van Aardt, Dunbar, Frick, Nielsen and Oellermann, A traceability conjecture for oriented graphs, Electron. J. Combin., 15(1):#R150, 2008]. We show that for $k \geq 2$, every k-traceable oriented graph with independence number 2 and order at least 4k - 12 is traceable. This is the last open case in giving an upper bound for t(k) that is linear in k.

Keywords: Oriented graph, Generalized tournament, *k*-traceable, Traceability Conjecture, Path Partition Conjecture

^{*}Supported by the National Research Foundation of S.A, Grant 81075.

[†]Supported by the National Research Foundation of S.A, Grant 81004.

1 Introduction and Background

A digraph is *hamiltonian* if it contains a cycle that visits every vertex, *traceable* if it contains a path that visits every vertex.

A digraph is k-traceable if its order is at least k and each of its subdigraphs of order k is traceable. A digraph without 2-cycles is called an *oriented graph*. It is easily seen that an oriented graph is 2-traceable if and only if it is a nontrivial tournament. Thus k-traceable oriented graphs may be regarded as generalized tournaments. It is well-known that every nontrivial strong tournament is hamiltonian and every tournament is traceable. The following theorem, which follows from results in [3, 5, 12], shows that these properties are retained by k-traceable oriented graphs for small values of k.

Theorem 1.1. [3, 5, 12]

- **1.** For k = 2, 3, 4, every strong k-traceable oriented graph of order at least k + 1 is hamiltonian.
- **2.** For k = 2, 3, 4, 5, 6, every k-traceable oriented graph is traceable.

However, it is shown in [5] that for $k \ge 5$ there exists a nonhamiltonian strong ktraceable oriented graph of order n for every $n \ge k$. Furthermore, it is shown in [7] that for k = 7 and for every $k \ge 9$ there exist k-traceable oriented graphs of order k + 1 that are nontraceable. (Such graphs are called *hypotraceable*). There also exist nontraceable k-traceable oriented graphs of order k + 2 for infinitely many k, as shown in [6]. These observations lead naturally to the following question, posed in [3].

Question 1. For $k \ge 2$, what is the smallest integer t(k) such that $t(k) \ge k$ and every k-traceable oriented graph of order at least t(k) is traceable?

The Traceability Conjecture (or TC for short), which is studied in [1, 3, 4, 5, 12] may be stated as follows.

Conjecture 1. (TC) $t(k) \leq 2k - 1$ for every $k \geq 2$.

As explained in [5], settling the TC could be an important step towards settling the Path Partition Conjecture for Digraphs. The latter conjecture was motivated by the paper [14] by Laborde, Payan and Xuong and is discussed in [2, 8, 9].

Theorem 1.1 and results in [1, 3, 10] imply the following.

Theorem 1.2. [1, 3, 10] $t(k) = k \text{ for } 2 \le k \le 6$ t(7) = 9 $t(8) \le 14$ $t(k) \le 2k^2 - 20k + 59 \text{ for every } k \ge 9.$

The TC motivated us to search for an upper bound for t(k) that is linear in k. Van Aardt, Dunbar, Frick and Nielsen [5] proved the following result with respect to oriented graphs with independence number greater than 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(4) (2015), #P4.26

Theorem 1.3. [5] If $k \ge 4$ and D is a k-traceable oriented graph with $\alpha(D) \ge 3$ and $n(D) \ge 6k - 20$, then D is traceable.

In this paper we show that for $k \ge 4$, every k-traceable oriented graph with independence number 2 and order at least 4k-12 is traceable. This then proves that $t(k) \le 6k-20$ for every $k \ge 4$ and thus brings us significantly closer to settling the TC.

2 Notation and Auxilliary Results

For undefined concepts we refer the reader to [8].

The set of vertices and the set of arcs of a digraph D are denoted by V(D) and A(D), respectively, and the order of D is denoted by n(D). If $X \subset V(D)$, then $\langle X \rangle$ denotes the subdigraph induced by X in D. The *independence number* of D, denoted by $\alpha(D)$, is the cardinality of a largest set $X \subset V(D)$ such that $\langle X \rangle$ has no arcs.

If $v \in V(D)$, we denote the sets of *out-neighbours* and *in-neighbours* of v in D by $N^+(v)$ and $N^-(v)$, respectively. The set $N(v) = N^+(v) \cup N^-(v)$ is simply called the *neighbourhood* of v. If S is a subset of V(D) or a subdigraph of D, we denote the set of neighbours, in-neighbours and out-neighbours of v in S by $N_S(v)$, $N_S^-(v)$ and $N_S^+(v)$, respectively.

A digraph D is strong (or strongly connected) if for every pair of distinct vertices u, v in D there is a path from u to v. A maximal strong subdigraph of a digraph D is called a strong component of D. The strong components of D have an acyclic ordering D_1, D_2, \ldots, D_h such that if there is an arc from D_i to D_j , then $i \leq j$. If D is k-traceable for some $k \geq 2$, this acyclic ordering is unique since there is at least one arc from D_i to D_{i+1} for $i = 1, 2, \ldots, h - 1$. Throughout this paper we label the strong components of a k-traceable digraph in accordance with this acyclic ordering. We denote by D_r^s the subdigraph of D induced by the vertex set $\bigcup_{i=r}^s V(D_i)$.

Chen and Manalastas [11] proved that every strong digraph with independence number two is traceable. Havet [13] strengthened their result by proving that if D is a strong digraph with $\alpha(D) = 2$, then D has two nonadjacent vertices that are terminal vertices of Hamilton paths in D and two nonadjacent vertices that are initial vertices of Hamilton paths in D. The following theorem, which follows from Havet's result, is proved in [3].

Theorem 2.1. [3] If D is a connected digraph with $\alpha(D) = 2$ and at most two strong components, then D is traceable.

We shall frequently use the following result.

Lemma 2.2. [1] Let G be a k-traceable oriented graph of order n. Then the following hold.

- 1. $|N(x)| \ge n k + 1$ for every $x \in V(G)$.
- 2. $|N^{-}(x) \cup N^{-}(y)| \ge n k + 1$ and $|N^{+}(x) \cup N^{+}(y)| \ge n k + 1$ for every pair of nonadjacent vertices x and y in G.

The following theorem follows from [1], Lemma 10 and Corollary 12.

Theorem 2.3. Let $k \ge 7$ and suppose D is a nontraceable k-traceable oriented graph of order $n \ge 2k - 3$ with independence number 2. Let D_1, \ldots, D_h be the strong components of D. Then $h \ge 3$ and there exists a $t \in \{2, \ldots, h-1\}$ such that D_t is nonhamiltonian, while D_1^{t-1} as well as D_{t+1}^h are tournaments. Moreover, $n(D_t) \ge n - k + 5$.

Next we state a lemma for the particular case h = 3, which is used in our main theorem. It follows from results in [1, 3, 5], but for ease of reference we provide a proof.

Lemma 2.4. Let $k \ge 7$ and suppose D is a nontraceable k-traceable oriented graph of order $n \ge 2k - 3$ with independence number 2 and exactly three strong components D_1, D_2, D_3 . Let $n(D_i) = n_i$, i = 1, 2, 3. Then the following hold.

- 1. If P is a Hamilton path in D_2 whose initial vertex has an in-neighbour in D_1 , then the terminal vertex of P does not have an out-neighbour in D_3 .
- 2. D_2 is $(k n_1 n_3)$ -traceable.
- 3. $|N_{D_2}(x)| \ge n k + 1$ for every $x \in V(D_2)$.
- 4. If x and y are two nonadjacent vertices in D_2 , then (a) $|N_{D_2}^+(x) \cup N_{D_2}^+(y)| \ge n - k + 1$, (b) $|N_{D_2}^-(x) \cup N_{D_2}^-(y)| \ge n - k + 1$.
- 5. (a) $|N_{D_2}^+(D_1)| \ge n-k+1,$ (b) $|N_{D_2}^-(D_3)| \ge n-k+1.$
- 6. (a) If $x \in V(D_2)$ and $x \notin N^+(D_1)$, then $|N_{D_2}^-(x)| \ge n k + 1$, (b) If $x \in V(D_2)$ and $x \notin N^-(D_3)$, then $|N_{D_2}^+(x)| \ge n - k + 1$.

Proof.

- 1. Suppose the initial vertex of P has an in-neighbour y in D_1 and the terminal vertex of P has an out-neighbour z in D_3 . By Theorem 2.3, each of D_1 and D_3 is a strong tournament and hence is either hamiltonian or a single vertex. Thus D_1 has a path Q with y as terminal vertex, and D_3 has a path R with z as initial vertex. But then the path QPR is a Hamilton path of D, contradicting our assumption that Dis nontraceable.
- 2. From Theorem 2.3 and our assumption that $n \ge 2k 3$ it follows that $0 < k n_1 n_3 < n_2$. Now consider any subdigraph H of D_2 with $n(H) = k n_1 n_3$. Let $H^* = \langle V(H) \cup V(D_1) \cup V(D_3) \rangle$. Then $n(H^*) = k$, so H^* is traceable since D is k-traceable. Let $P = v_1 \dots v_k$ be a Hamilton path of H^* . Then, due to the acyclic ordering of the strong components, the intersection of the path P with the strong component D_2 is a Hamilton path of H. This proves that D_2 is $(k - n_1 - n_3)$ -traceable.

- 3. It follows from (2) above and Lemma 2.2(1) that $|N_{D_2}(x)| \ge n_2 (k n_1 n_3) + 1 = n k + 1$.
- 4. This follows directly from (2) and Lemma 2.2(2).
- 5. If $|N_{D_2}^+(D_1)| \leq n-k$, then $|V(D_2) N_{D_2}^+(D_1)| \geq n_2 (n-k) = k n_1 n_3$, so we can choose a set $S \subseteq (V(D_2) N_{D_2}^+(D_1))$ such that $|S| = k n_1 n_3$. Then the subdigraph $\langle V(D_1) \cup S \cup V(D_3) \rangle$ has order k but is nontraceable, contradicting that D is k-traceable. This proves 5(a). The proof of 5(b) is similar.
- 6. If $|N_{D_2}^-(x)| \leq n-k$, then we choose a subset S with $|S| = k n_1 n_3$ such that $x \in S \subseteq (V(D_2) N_{D_2}^-(x))$. But then the subdigraph $\langle V(D_1) \cup S \cup V(D_3) \rangle$ has order k but is nontraceable, since there are no arcs from D_1 to S. This proves 6(a). The proof of 6(b) is similar.

3 Main Result

Theorem 3.1. Let $k \ge 2$ and suppose D is a k-traceable oriented graph such that $\alpha(D) = 2$ and $n(D) \ge 4k - 12$. Then D is traceable.

Proof. The proof is by induction on k. By Theorem 1.2, the result holds for $k \leq 8$. Now let $k \geq 9$ and let D be a k-traceable oriented graph with independence number 2 and order $n \geq 4k - 12$. Suppose D is nontraceable and let D_1, \ldots, D_h be the strong components of D, with $n(D_i) = n_i$, $i = 1, \ldots, h$. Then, by Theorem 2.3, $h \geq 3$ and D has a nonhamiltonian strong component D_t of order at least n - k + 5 such that $2 \leq t \leq h - 1$. In particular, $n_i < k - 5$ for $i \neq t$. Moreover, D_1^{t-1} and D_{t+1}^h are tournaments.

Now D_2^h is a $(k - n_1)$ -traceable oriented graph with independence number 2 and $n(D_2^h) \ge 4k - 12 - n_1 > 4(k - n_1) - 12$. Hence it follows from our induction hypothesis that D_2^h is traceable and thus has a Hamilton path with initial vertex x in D_2 .

Now suppose $h \ge 4$. Then if $t \ge 3$, Theorem 2.3 implies that $\langle D_1^2 \rangle$ is a tournament. Since D_1 is hamiltonian or a single vertex and every vertex in D_1 is adjacent to x, it follows that D is traceable. If t < 3, we consider D_1^{h-1} instead of D_2^h and deduce in a similar manner that D is traceable. We may therefore assume that h = 3. Thus D_1 and D_3 are tournaments, while D_2 is nonhamiltonian and $n(D_2) \ge n - k + 5$.

By Theorem 2.1, D_1^2 is traceable, so D_2 has a Hamilton path $x_1 \ldots x_{n_2}$ such that $x_1 \in N^+(D_1)$. By Lemma 2.4(1), $x_{n_2} \notin N^-(D_3)$, so it follows from Lemma 2.4(6b) that $d_{D_2}^+(x_{n_2}) \ge n-k+1 \ge 3k-11$, since $n \ge 4k-12$. Let x_j be the out-neighbour of x_{n_2} such that x_{n_2} has exactly k-3 out-neighbours in $\{x_1, \ldots, x_j\}$. Then x_{n_2} has at least n-2k+4 out-neighbours in $\{x_{j+1}, \ldots, x_{n_2}\}$. Hence $n_2 - 2 - j \ge n - 2k + 4$. Since $n_2 \le n-2$, it follows that $j \le 2k-8$.

Claim 1. $x_{j-1} \in N^{-}(D_3)$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(4) (2015), #P4.26

Proof. If $x_s \in N^+(x_{j-1})$ for some $s \ge j+1$, then $x_1 \ldots x_{j-1} x_s \ldots x_{n_2} x_j \ldots x_{s-1}$ is a Hamilton path of D_2 and hence, by Lemma 2.4(1), x_{s-1} has no out-neighbour in D_3 . But, by Lemma 2.4(5b), the number of vertices in D_2 that have no out-neighbours in D_3 is at most $n_2 - (n-k+1) \le k-3$, since $n_2 \le n-2$. Hence $|N^+(x_{j-1}) \cap \{x_{j+1}, \ldots, x_{n_2}\}| \le k-3$ and hence $N^+_{D_2}(x_{j-1}) \le j-1+k-3 \le 3k-12 \le n-k$, since $j \le 2k-8$ and $n \ge 4k-12$. Thus $x_{j-1} \in N^-(D_3)$ by Lemma 2.4(6b).

Claim 2. If $x_i \in N^-(x_1)$, then i < j.

Proof. Suppose, to the contrary that $i \ge j$. Since D_2 is nonhamiltonian, $i \ne n_2$. If $x_s \in N^+(x_{n_2})$, with $s \le j$, then $x_{s-1} \not\in N^-(x_{i+1})$, since otherwise $x_{i+1} \ldots x_{n_2} x_s \ldots x_i x_1 \ldots x_{s-1} x_{i+1}$ is a Hamilton cycle of D_2 . But x_{n_2} has k-3 out-neighbours in $\{x_2, \ldots, x_j\}$ (by our choice of j), so at least k-3 vertices in $\{x_1, \ldots, x_{j-1}\}$ are not in $N^-(x_{i+1})$. Hence $|N_{D_2}^-(x_{i+1})| \le n_2 - 1 - (k-3) \le n-k$. Hence, by Lemma 2.4(6a), $x_{i+1} \in N^+(D_1)$. But $x_{i+1} \ldots x_{n_2} x_j \ldots x_i x_1 \ldots x_{j-1}$ is a Hamilton path of D_2 and, by Claim 1, $x_{j-1} \in N^-(D_3)$. This contradicts Lemma 2.4(1) and thus proves the claim.

Claim 3. $|N^+(x_1) \cap \{x_{j+1}, \dots, x_{n_2}\}| \ge n - 3k + 10.$

Proof. By Lemma 2.4(3), x_1 has at least n - k + 1 neighbours in D_2 . But x_1 has at most j - 1 neighbours in $\{x_2, \ldots, x_j\}$ and, by Claim 2, x_1 has no in-neighbours in $\{x_{j+1}, \ldots, x_{n_2}\}$. Hence, $|N^+(x_1) \cap \{x_{j+1}, \ldots, x_{n_2}\}| \ge n - k + 1 - (j-1) \ge n - 3k + 10$, since $j \le 2k - 8$.

Figure 1: Structure of D

Claim 4. $x_2 \in N^+(D_1)$.

Proof. If $x_i \in N^+(x_1)$ with $i \ge j+1$, then $x_{i-1} \notin N^-(x_2)$, since otherwise $x_1x_i \dots x_{n_2}x_j \dots x_{i-1}x_2 \dots x_{j-1}$ is a Hamilton path of D_2 with initial vertex in $N^+(D_1)$ and terminal vertex in $N^-(D_3)$ (by Claim 1), contradicting Lemma 2.4(1). Thus it follows from

Claim 3 that $|N_{D_2}^-(x_2)| \leq n_2 - 1 - (n - 3k + 10) \leq 3k - 13 < n - k$ since $n \geq 4k - 12$. Hence, by Lemma 2.4(6a), $x_2 \in N^+(D_1)$.

Claim 5. $x_{i-1} \notin N^{-}(x_1)$.

Proof. Since $n \ge 4k - 12$, Claim 3 implies that x_1 has at least k - 2 out-neighbours in $\{x_{j+1}, \ldots, x_{n_2}\}$. But Lemma 2.4(5b) implies that the number of vertices in D_2 that are not in $N^-(D_3)$ is at most $n_2 - (n - k + 1) \le k - 3$. Hence there is an out-neighbour x_s of x_1 , with $x_s \in \{x_{j+1}, \ldots, x_{n_2}\}$, such that $x_{s-1} \in N^-(D_3)$. Now suppose $x_{j-1} \in N^-(x_1)$. Then $x_2 \ldots x_{j-1} x_1 x_s \ldots x_{n_2} x_j \ldots x_{s-1}$ is a Hamilton path of D_2 . But $x_2 \in N^+(D_1)$ by Claim 4, so this contradicts Lemma 2.4(1).

Claim 6. Let r be the largest integer such that $x_r \in N^-(x_1)$. Then $x_{r+1} \in N^+(x_1)$.

Proof. By Claims 2 and 5, $r \leq j-2$. If $x_s \in N_{D_2}^+(x_1) \cap \{x_{j+1}, \ldots, x_{n_2}\}$, then $x_{s-1} \notin N^-(x_{r+1})$, since otherwise $x_2 \ldots x_r x_1 x_s \ldots x_{n_2} x_j \ldots x_{s-1} x_{r+1} \ldots x_{j-1}$ is a Hamilton path of D_2 with initial vertex in $N^+(D_1)$ and terminal vertex in $N^-(D_3)$. Hence, by Claim 3, at least n-3k+10 vertices in $\{x_j, \ldots, x_{n_2-1}\}$ are not in $N^-(x_{r+1})$. By Claim 2, those vertices are also not in $N^-(x_1)$. Hence $|N_{D_2}^-(x_1) \cup N_{D_2}^-(x_{r+1})| \leq n_2 - (n-3k+10) \leq 3k-12 \leq n-k$. Hence, by Lemma 2.4(4b), x_1 and x_{r+1} are neighbours. But $x_{r+1} \notin N^-(x_1)$ by our assumption on r, so Claim 6 is proved.

Now, let \mathcal{P} consist of all Hamilton paths in D_2 whose initial vertices are in $N^+(D_1)$. Among all paths in \mathcal{P} , choose one that has the largest possible number of vertices between the initial vertex and its last in-neighbour. Denote this path by $Q_1 = x_1 \dots x_{n_2}$ and let x_r be the last in-neighbour of x_1 on Q_1 . As D_2 is nonhamiltonian we have $r < n_2$. Let C be the cycle $x_1 \dots x_r x_1$. Then x_1 has no in-neighbour in $D_2 - V(C)$. By Claim 6, $x_1 x_{r+1} \in A(D_2)$ and by Claim 4, $x_2 \in N^+(D_1)$. Hence $Q_2 = x_2 \dots x_r x_1 x_{r+1} \dots x_{n_2}$ is also a path in \mathcal{P} . Note that x_1 is the last in-neighbour of x_2 on Q_2 , by the maximality of r. Thus x_2 has no in-neighbour in $D_2 - V(C)$. Repeated applications of this procedure show that no vertex on C has an in-neighbour in $D_2 - V(C)$. This contradicts the fact that D_2 is strong and thus proves the theorem.

By combining Theorems 1.3 and 3.1, we conclude the following.

Corollary 3.2. $t(k) \leq 6k - 20$ for every $k \geq 4$.

References

- S.A. van Aardt, A.P. Burger, J.E. Dunbar, M. Frick, J.M. Harris, J.E. Singleton. An iterative approach to the Traceability Conjecture for Oriented Graphs, *Electronic J. Comb.* 20(1):#P59, 2013.
- [2] S.A. van Aardt, G. Dlamini, J.E. Dunbar, M. Frick, and O.R. Oellermann. The directed path partition conjecture. *Discuss. Math. Graph Theory*, 25:331–343, 2005.
- [3] S.A. van Aardt, J.E. Dunbar, M. Frick, P. Katrenič and M.H. Nielsen, and O.R. Oellermann. Traceability of k-traceable oriented graphs. *Discrete Math.*, 310:1325– 1333, 2010.

- [4] S.A. van Aardt, J.E. Dunbar, M. Frick and M.H. Nielsen. Cycles in k-traceable oriented graphs. Discrete Math., 311:2085–2094, 2011.
- [5] S.A. van Aardt, J.E. Dunbar, M. Frick, M.H. Nielsen, and O.R. Oellermann. A traceability conjecture for oriented graphs. *Electron. J. Combin.*, 15(1):#R150, 2008.
- [6] S. A. van Aardt, A. P. Burger, M. Frick, B. Llano and R. Zuazua. Infinite families of 2-hypohamiltonian/2-hypotraceable oriented graphs. *Graphs and Combinatorics*, 30(4):783–800, 2014.
- [7] S. A. van Aardt, M. Frick, P. Katrenič and M.H. Nielsen. The order of hypotraceable oriented graphs. *Discrete Math.*, 11:1273-1280, 2011.
- [8] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, (Second Edition) Springer-Verlag, London, 2009.
- [9] J. Bang-Jensen, M.H. Nielsen and A. Yeo. Longest path partitions in generalizations of tournaments. *Discrete Math.*, 306:1830–1839, 2006.
- [10] A.P. Burger. Computational results on the traceability of oriented gaphs of small order. *Electronic J. Comb.* 20(4): #P23, 2013.
- [11] C.C. Chen and P. Manalastas Jr. Every finite strongly connected digraph of stability 2 has a Hamiltonian path. *Discrete Math.*, 44:243–250, 1983.
- [12] M. Frick and P. Katrenič. Progress on the traceability conjecture. Discrete Math. and Theor. Comp. Science, 10(3):105–114, 2008.
- [13] F. Havet. Stable set meeting every longest path. Discrete Math., 289:169–173, 2004.
- [14] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs. In *Graphs and other combinatorial topics* (Prague, 1982), 173-177 (Teubner-Texte Math., 59, 1983.)