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Abstract

A digraph is k-traceable if its order is at least k and each of its subdigraphs
of order k is traceable. An oriented graph is a digraph without 2-cycles. The
2-traceable oriented graphs are exactly the nontrivial tournaments, so k-traceable
oriented graphs may be regarded as generalized tournaments. It is well-known that
all tournaments are traceable. We denote by t(k) the smallest integer bigger than
or equal to k such that every k-traceable oriented graph of order at least t(k) is
traceable. The Traceability Conjecture states that t(k) 6 2k − 1 for every k > 2
[van Aardt, Dunbar, Frick, Nielsen and Oellermann, A traceability conjecture for
oriented graphs, Electron. J. Combin., 15(1):#R150, 2008]. We show that for
k > 2, every k-traceable oriented graph with independence number 2 and order at
least 4k − 12 is traceable. This is the last open case in giving an upper bound for
t(k) that is linear in k.
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1 Introduction and Background

A digraph is hamiltonian if it contains a cycle that visits every vertex, traceable if it
contains a path that visits every vertex.

A digraph is k-traceable if its order is at least k and each of its subdigraphs of order
k is traceable. A digraph without 2-cycles is called an oriented graph. It is easily seen
that an oriented graph is 2-traceable if and only if it is a nontrivial tournament. Thus
k-traceable oriented graphs may be regarded as generalized tournaments. It is well-known
that every nontrivial strong tournament is hamiltonian and every tournament is traceable.
The following theorem, which follows from results in [3, 5, 12], shows that these properties
are retained by k-traceable oriented graphs for small values of k.

Theorem 1.1. [3, 5, 12]

1. For k = 2, 3, 4, every strong k-traceable oriented graph of order at least k + 1 is
hamiltonian.

2. For k = 2, 3, 4, 5, 6, every k-traceable oriented graph is traceable.

However, it is shown in [5] that for k > 5 there exists a nonhamiltonian strong k-
traceable oriented graph of order n for every n > k. Furthermore, it is shown in [7] that
for k = 7 and for every k > 9 there exist k-traceable oriented graphs of order k + 1 that
are nontraceable. (Such graphs are called hypotraceable). There also exist nontraceable
k-traceable oriented graphs of order k + 2 for infinitely many k, as shown in [6]. These
observations lead naturally to the following question, posed in [3].

Question 1. For k > 2, what is the smallest integer t(k) such that t(k) > k and every
k-traceable oriented graph of order at least t(k) is traceable?

The Traceability Conjecture (or TC for short), which is studied in [1, 3, 4, 5, 12] may
be stated as follows.

Conjecture 1. (TC) t(k) 6 2k − 1 for every k > 2.

As explained in [5], settling the TC could be an important step towards settling the
Path Partition Conjecture for Digraphs. The latter conjecture was motivated by the paper
[14] by Laborde, Payan and Xuong and is discussed in [2, 8, 9].

Theorem 1.1 and results in [1, 3, 10] imply the following.

Theorem 1.2. [1, 3, 10]
t(k) = k for 2 6 k 6 6
t(7) = 9
t(8) 6 14
t(k) 6 2k2 − 20k + 59 for every k > 9.

The TC motivated us to search for an upper bound for t(k) that is linear in k. Van
Aardt, Dunbar, Frick and Nielsen [5] proved the following result with respect to oriented
graphs with independence number greater than 2.
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Theorem 1.3. [5] If k > 4 and D is a k-traceable oriented graph with α(D) > 3 and
n(D) > 6k − 20, then D is traceable.

In this paper we show that for k > 4, every k-traceable oriented graph with indepen-
dence number 2 and order at least 4k−12 is traceable. This then proves that t(k) 6 6k−20
for every k > 4 and thus brings us significantly closer to settling the TC.

2 Notation and Auxilliary Results

For undefined concepts we refer the reader to [8].
The set of vertices and the set of arcs of a digraph D are denoted by V (D) and A(D),

respectively, and the order of D is denoted by n(D). If X ⊂ V (D), then 〈X〉 denotes the
subdigraph induced by X in D. The independence number of D, denoted by α(D), is the
cardinality of a largest set X ⊂ V (D) such that 〈X〉 has no arcs.

If v ∈ V (D), we denote the sets of out-neighbours and in-neighbours of v in D by
N+(v) and N−(v), respectively. The set N(v) = N+(v) ∪ N−(v) is simply called the
neighbourhood of v. If S is a subset of V (D) or a subdigraph of D, we denote the set
of neighbours, in-neighbours and out-neighbours of v in S by NS(v), N−

S (v) and N+
S (v),

respectively.
A digraph D is strong (or strongly connected) if for every pair of distinct vertices

u, v in D there is a path from u to v. A maximal strong subdigraph of a digraph D is
called a strong component of D. The strong components of D have an acyclic ordering
D1, D2, . . . , Dh such that if there is an arc from Di to Dj, then i 6 j. If D is k-traceable
for some k > 2, this acyclic ordering is unique since there is at least one arc from Di

to Di+1 for i = 1, 2, . . . , h − 1. Throughout this paper we label the strong components
of a k-traceable digraph in accordance with this acyclic ordering. We denote by Ds

r the
subdigraph of D induced by the vertex set

⋃s
i=r V (Di).

Chen and Manalastas [11] proved that every strong digraph with independence number
two is traceable. Havet [13] strengthened their result by proving that if D is a strong
digraph with α(D) = 2, then D has two nonadjacent vertices that are terminal vertices
of Hamilton paths in D and two nonadjacent vertices that are initial vertices of Hamilton
paths in D. The following theorem, which follows from Havet’s result, is proved in [3].

Theorem 2.1. [3] If D is a connected digraph with α(D) = 2 and at most two strong
components, then D is traceable.

We shall frequently use the following result.

Lemma 2.2. [1] Let G be a k-traceable oriented graph of order n. Then the following
hold.

1. |N(x)| > n− k + 1 for every x ∈ V (G).

2. |N−(x) ∪ N−(y)| > n − k + 1 and |N+(x) ∪ N+(y)| > n − k + 1 for every pair of
nonadjacent vertices x and y in G.
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The following theorem follows from [1], Lemma 10 and Corollary 12.

Theorem 2.3. Let k > 7 and suppose D is a nontraceable k-traceable oriented graph of
order n > 2k − 3 with independence number 2. Let D1, . . . , Dh be the strong components
of D. Then h > 3 and there exists a t ∈ {2, . . . , h − 1} such that Dt is nonhamiltonian,
while Dt−1

1 as well as Dh
t+1 are tournaments. Moreover, n(Dt) > n− k + 5.

Next we state a lemma for the particular case h = 3, which is used in our main
theorem. It follows from results in [1, 3, 5], but for ease of reference we provide a proof.

Lemma 2.4. Let k > 7 and suppose D is a nontraceable k-traceable oriented graph
of order n > 2k − 3 with independence number 2 and exactly three strong components
D1, D2, D3. Let n(Di) = ni, i = 1, 2, 3. Then the following hold.

1. If P is a Hamilton path in D2 whose initial vertex has an in-neighbour in D1, then
the terminal vertex of P does not have an out-neighbour in D3.

2. D2 is (k − n1 − n3)-traceable.

3. |ND2(x)| > n− k + 1 for every x ∈ V (D2).

4. If x and y are two nonadjacent vertices in D2, then
(a) |N+

D2
(x) ∪N+

D2
(y)| > n− k + 1,

(b) |N−
D2

(x) ∪N−
D2

(y)| > n− k + 1.

5. (a) |N+
D2

(D1)| > n− k + 1,
(b) |N−

D2
(D3)| > n− k + 1.

6. (a) If x ∈ V (D2) and x 6∈ N+(D1), then |N−
D2

(x)| > n− k + 1,
(b) If x ∈ V (D2) and x 6∈ N−(D3), then |N+

D2
(x)| > n− k + 1.

Proof.

1. Suppose the initial vertex of P has an in-neighbour y in D1 and the terminal vertex
of P has an out-neighbour z in D3. By Theorem 2.3, each of D1 and D3 is a strong
tournament and hence is either hamiltonian or a single vertex. Thus D1 has a path
Q with y as terminal vertex, and D3 has a path R with z as initial vertex. But
then the path QPR is a Hamilton path of D, contradicting our assumption that D
is nontraceable.

2. From Theorem 2.3 and our assumption that n > 2k − 3 it follows that 0 < k −
n1 − n3 < n2. Now consider any subdigraph H of D2 with n(H) = k − n1 − n3.
Let H∗ = 〈V (H) ∪ V (D1) ∪ V (D3)〉. Then n(H∗) = k, so H∗ is traceable since
D is k-traceable. Let P = v1 . . . vk be a Hamilton path of H∗. Then, due to the
acyclic ordering of the strong components, the intersection of the path P with the
strong component D2 is a Hamilton path of H. This proves that D2 is (k−n1−n3)-
traceable.

the electronic journal of combinatorics 22(4) (2015), #P4.26 4



3. It follows from (2) above and Lemma 2.2(1) that |ND2(x)| > n2−(k−n1−n3)+1 =
n− k + 1.

4. This follows directly from (2) and Lemma 2.2(2).

5. If |N+
D2

(D1)| 6 n − k, then |V (D2) − N+
D2

(D1)| > n2 − (n − k) = k − n1 − n3, so
we can choose a set S ⊆ (V (D2) − N+

D2
(D1)) such that |S| = k − n1 − n3. Then

the subdigraph 〈V (D1)∪S ∪ V (D3)〉 has order k but is nontraceable, contradicting
that D is k-traceable. This proves 5(a). The proof of 5(b) is similar.

6. If |N−
D2

(x)| 6 n − k, then we choose a subset S with |S| = k − n1 − n3 such that
x ∈ S ⊆ (V (D2) − N−

D2
(x)). But then the subdigraph 〈V (D1) ∪ S ∪ V (D3)〉 has

order k but is nontraceable, since there are no arcs from D1 to S. This proves 6(a).
The proof of 6(b) is similar.

3 Main Result

Theorem 3.1. Let k > 2 and suppose D is a k-traceable oriented graph such that α(D) =
2 and n(D) > 4k − 12. Then D is traceable.

Proof. The proof is by induction on k. By Theorem 1.2, the result holds for k 6 8.
Now let k > 9 and let D be a k-traceable oriented graph with independence number 2
and order n > 4k − 12. Suppose D is nontraceable and let D1, . . . , Dh be the strong
components of D, with n(Di) = ni, i = 1, . . . , h. Then, by Theorem 2.3, h > 3 and D has
a nonhamiltonian strong component Dt of order at least n−k+5 such that 2 6 t 6 h−1.
In particular, ni < k − 5 for i 6= t. Moreover, Dt−1

1 and Dh
t+1 are tournaments.

Now Dh
2 is a (k − n1)-traceable oriented graph with independence number 2 and

n(Dh
2 ) > 4k − 12− n1 > 4(k − n1)− 12. Hence it follows from our induction hypothesis

that Dh
2 is traceable and thus has a Hamilton path with initial vertex x in D2.

Now suppose h > 4. Then if t > 3, Theorem 2.3 implies that 〈D2
1〉 is a tournament.

Since D1 is hamiltonian or a single vertex and every vertex in D1 is adjacent to x, it
follows that D is traceable. If t < 3, we consider Dh−1

1 instead of Dh
2 and deduce in a

similar manner that D is traceable. We may therefore assume that h = 3. Thus D1 and
D3 are tournaments, while D2 is nonhamiltonian and n(D2) > n− k + 5.

By Theorem 2.1, D2
1 is traceable, so D2 has a Hamilton path x1 . . . xn2 such that

x1 ∈ N+(D1). By Lemma 2.4(1), xn2 6∈ N−(D3), so it follows from Lemma 2.4(6b) that
d+D2

(xn2) > n−k+1 > 3k−11, since n > 4k−12. Let xj be the out-neighbour of xn2 such
that xn2 has exactly k−3 out-neighbours in {x1, . . . , xj}. Then xn2 has at least n−2k+4
out-neighbours in {xj+1, . . . , xn2}. Hence n2 − 2 − j > n − 2k + 4. Since n2 6 n − 2, it
follows that j 6 2k − 8.

Claim 1. xj−1 ∈ N−(D3).
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Proof. If xs ∈ N+(xj−1) for some s > j + 1, then x1 . . . xj−1xs . . . xn2xj . . . xs−1 is a
Hamilton path of D2 and hence, by Lemma 2.4(1), xs−1 has no out-neighbour in D3. But,
by Lemma 2.4(5b), the number of vertices in D2 that have no out-neighbours in D3 is at
most n2−(n−k+1) 6 k−3, since n2 6 n−2. Hence |N+(xj−1)∩{xj+1, . . . , xn2}| 6 k−3
and hence N+

D2
(xj−1) 6 j−1 +k−3 6 3k−12 6 n−k, since j 6 2k−8 and n > 4k−12.

Thus xj−1 ∈ N−(D3) by Lemma 2.4(6b).

Claim 2. If xi ∈ N−(x1), then i < j.

Proof. Suppose, to the contrary that i > j. Since D2 is nonhamiltonian, i 6= n2. If
xs ∈ N+(xn2), with s 6 j, then xs−1 6∈ N−(xi+1), since otherwise xi+1 . . . xn2xs . . . xix1 . . .
xs−1xi+1 is a Hamilton cycle of D2. But xn2 has k − 3 out-neighbours in {x2, . . . , xj} (by
our choice of j), so at least k − 3 vertices in {x1, . . . , xj−1} are not in N−(xi+1). Hence
|N−

D2
(xi+1)| 6 n2 − 1− (k − 3) 6 n− k. Hence, by Lemma 2.4(6a), xi+1 ∈ N+(D1). But

xi+1 . . . xn2xj . . . xix1 . . . xj−1 is a Hamilton path of D2 and, by Claim 1, xj−1 ∈ N−(D3).
This contradicts Lemma 2.4(1) and thus proves the claim.

Claim 3. |N+(x1) ∩ {xj+1, . . . , xn2}| > n− 3k + 10.

Proof. By Lemma 2.4(3), x1 has at least n − k + 1 neighbours in D2. But x1 has
at most j − 1 neighbours in {x2, . . . , xj} and, by Claim 2, x1 has no in-neighbours in
{xj+1, . . . , xn2}. Hence, |N+(x1) ∩ {xj+1, . . . , xn2}| > n− k + 1− (j − 1) > n− 3k + 10,
since j 6 2k − 8.

D1

x1 x2
xj xj+1

xn2

D2

D3

xj-1

Figure 1: Structure of D

Claim 4. x2 ∈ N+(D1).

Proof. If xi ∈ N+(x1) with i > j + 1, then xi−1 6∈ N−(x2), since otherwise x1xi . . .
xn2xj . . . xi−1x2 . . . xj−1 is a Hamilton path of D2 with initial vertex in N+(D1) and ter-
minal vertex in N−(D3) (by Claim 1), contradicting Lemma 2.4(1). Thus it follows from
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Claim 3 that |N−
D2

(x2)| 6 n2 − 1 − (n − 3k + 10) 6 3k − 13 < n − k since n > 4k − 12.
Hence, by Lemma 2.4(6a), x2 ∈ N+(D1).

Claim 5. xj−1 6∈ N−(x1).

Proof. Since n > 4k− 12, Claim 3 implies that x1 has at least k− 2 out-neighbours in
{xj+1, . . . , xn2}. But Lemma 2.4(5b) implies that the number of vertices in D2 that are
not in N−(D3) is at most n2 − (n − k + 1) 6 k − 3. Hence there is an out-neighbour xs
of x1, with xs ∈ {xj+1, . . . , xn2}, such that xs−1 ∈ N−(D3). Now suppose xj−1 ∈ N−(x1).
Then x2 . . . xj−1x1xs . . . xn2xj . . . xs−1 is a Hamilton path of D2. But x2 ∈ N+(D1) by
Claim 4, so this contradicts Lemma 2.4(1).

Claim 6. Let r be the largest integer such that xr ∈ N−(x1). Then xr+1 ∈ N+(x1).

Proof. By Claims 2 and 5, r 6 j − 2. If xs ∈ N+
D2

(x1) ∩ {xj+1, . . . , xn2}, then
xs−1 6∈ N−(xr+1), since otherwise x2 . . . xrx1xs . . . xn2xj . . . xs−1xr+1 . . . xj−1 is a Hamilton
path of D2 with initial vertex in N+(D1) and terminal vertex in N−(D3). Hence, by
Claim 3, at least n− 3k+ 10 vertices in {xj, . . . , xn2−1} are not in N−(xr+1). By Claim 2,
those vertices are also not in N−(x1). Hence |N−

D2
(x1)∪N−

D2
(xr+1)| 6 n2−(n−3k+10) 6

3k−12 6 n−k. Hence, by Lemma 2.4(4b), x1 and xr+1 are neighbours. But xr+1 6∈ N−(x1)
by our assumption on r, so Claim 6 is proved.

Now, let P consist of all Hamilton paths in D2 whose initial vertices are in N+(D1).
Among all paths in P , choose one that has the largest possible number of vertices between
the initial vertex and its last in-neighbour. Denote this path by Q1 = x1 . . . xn2 and let
xr be the last in-neighbour of x1 on Q1. As D2 is nonhamiltonian we have r < n2. Let
C be the cycle x1 . . . xrx1. Then x1 has no in-neighbour in D2 − V (C). By Claim 6,
x1xr+1 ∈ A(D2) and by Claim 4, x2 ∈ N+(D1). Hence Q2 = x2 . . . xrx1xr+1 . . . xn2 is also
a path in P . Note that x1 is the last in-neighbour of x2 on Q2, by the maximality of r.
Thus x2 has no in-neighbour in D2−V (C). Repeated applications of this procedure show
that no vertex on C has an in-neighbour in D2−V (C). This contradicts the fact that D2

is strong and thus proves the theorem.

By combining Theorems 1.3 and 3.1, we conclude the following.

Corollary 3.2. t(k) 6 6k − 20 for every k > 4.
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