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Abstract

We will study the inversion statistic of 321-avoiding permutations, and obtain
that the number of 321-avoiding permutations on [n] with m inversions is given by

|Sn,m(321)| =
∑

b⊢m

(

n− ∆(b)
2

l(b)

)

.

where the sum runs over all compositions b = (b1, b2, . . . , bk) of m, i.e.,

m = b1 + b2 + · · ·+ bk and bi > 1,

l(b) = k is the length of b, and ∆(b) := |b1| + |b2 − b1| + · · · + |bk − bk−1| + |bk|.
We obtain a new bijection from 321-avoiding permutations to Dyck paths which
establishes a relation on inversion number of 321-avoiding permutations and valley
height of Dyck paths.
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1 Introduction

Let Sn denote the permutation group on [n] = {1, 2, . . . , n}. Write σ ∈ Sn in the
form σ = σ1σ2 · · ·σn. For m 6 n, if σ ∈ Sn and π = π1 · · ·πm ∈ Sm, we say that
σ contains the pattern π if there is an index subsequence 1 6 i1 < i2 < · · · < im 6 n
such that σij < σik iff πj < πk for 1 6 j, k 6 m, that is, σ has a subsequence which is
order isomorphic to π. Otherwise, σ avoids the pattern π, or say, σ is π-avoiding. We
denote by Sn(π) the set of all permutations σ ∈ Sn that are π-avoiding, i.e.,

Sn(π) = {σ ∈ Sn | σ avoids the pattern π}.

For example, the permutation 41253 avoids the pattern 321, but contains the pattern
132 since its subsequence 153 is order isomorphic to 132, hence 41253 ∈ S5(321) and
41253 /∈ S5(132).

In 1970’s, Knuth [12, 13] obtained a well known result on permutations avoiding
patterns, that is for any π ∈ S3,

|Sn(π)| = Cn =
1

n + 1

(

2n

n

)

,

where Cn is the n-th Catalan number which counts the number of Dyck paths of length
2n. In past decades, various articles considered the bijections between 321-avoiding per-
mutations and Dyck paths, see [4, 7, 10, 11, 14, 15, 17, 18, 19, 21, 22].

In this paper, we will study the inversion distribution of 321-avoiding permutations.
For σ = σ1σ2 · · ·σn ∈ Sn(π), we define the inversion set Inv(σ) to be

Inv(σ) = {(σi, σj) | i < j and σi > σj},

and denote by inv(σ) = #Inv(σ), called the inversion number of σ, where the hash sign
denotes cardinality. The generating function In(π, q) of the inversion numbers is

In(π, q) =
∑

σ∈Sn(π)

qinv(σ).

for σ ∈ Sn(π). This generating function was first introduced and explored in [8, 20] and
some recurrence formulae have been obtained for π ∈ S3 and π 6= 321. Conjecture 3.2 of
[8] states that, for all n > 1,

In(321, q) = In−1(321, q) +

n−2
∑

i=0

qi+1Ii(321, q)In−i−1(321, q). (1)

Soon afterwards a bijective proof of the recursive formula (1) was obtained by Szu-En
Cheng et al. [6]. There are some other works on inversions of restricted permutations,
see [1, 3, 5, 9, 15, 16]. In 2014, M. Barnabei, F. Bonetti, S. Elizalde and M. Silimbani [2]
studied the distribution of descents and major indexes of 321-avoiding involutions.
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Motivated by [2, 6], in this paper we will study the inversion distribution of 321-
avoiding permutations. As the main result, we give an explicit formula counting the
number of 321-avoiding permutations with the fixed inversion number. We also find a
bijection between 321-avoiding permutations and Dyck paths, which is new to the best of
our knowledge. From this bijection, we show that the inversion number of 321-avoiding
permutations and the valley-sum of Dyck paths are equally distributed.

2 Inversions of Permutations Avoiding 321

For 1 6 k 6 n, let Sk
n(321) be the collection of 321-avoiding permutations of [n] and

containing 12 · · ·k as a subsequence,

Sk
n(321) = {σ ∈ Sn(321) | σ

−1(1) < σ−1(2) < · · · < σ−1(k)}.

More precisely, if σ = σ1σ2 · · ·σn ∈ Sk
n(321) and σi1 = 1, σi2 = 2, . . . , σik = k, then

i1 < i2 < · · · < ik. Obviously, we have

Sn(321) = S1
n(321) ⊇ S2

n(321) ⊇ · · · ⊇ Sn
n (321) = {id}.

For 1 6 k 6 n, let Ikn(321, q) be the generating function defined by

Ikn(321, q) =
∑

σ∈Sk
n(321)

qinv(σ).

Then we have In(321, q) = I1n(321, q) and I
n
n (321, q) = 1 for all n > 1.

Lemma 1. For 1 6 k 6 n, we have

Ikn(321, q) = Ik+1
n (321, q) +

k
∑

i=1

qiI in+i−k−1(321, q).

Proof. Given σ ∈ Sk
n(321) with 1 6 k 6 n − 1, consider the position of σ−1(k + 1).

Assuming σ−1(0) = 0, we have either σ−1(k) < σ−1(k + 1), or σ−1(i) < σ−1(k + 1) <
σ−1(i+1) for some i 6 k− 1. (i): If σ ∈ Sk

n(321) and σ
−1(k) < σ−1(k+1), it follows that

σ ∈ Sk+1
n (321). So this case contributes a term Ik+1

n (321, q) to the generating function
Ikn(321, q). (ii): If σ ∈ Sk

n(321) and σ
−1(i) < σ−1(k + 1) < σ−1(i+ 1) for some i 6 k − 1,

since σ avoids the pattern 321, it forces that σ−1(j) > σ−1(k + 1) for all j > k + 2.
Otherwise, we have σ−1(j) < σ−1(k + 1) < σ−1(i+ 1) which is obviously a contradiction.
It implies that σ = σ1σ2 · · ·σn satisfies σ1 = 1, σ2 = 2, . . . , σi = i, σi+1 = k + 1. Denote
by σ̄ = σi+2σi+3 · · ·σn. Then σ̄ is a permutation of {i + 1, . . . , k, k + 2, . . . , n} satisfying
σ̄−1(i+ 1) < σ̄−1(i+ 2) < · · · < σ̄−1(k) and inv(σ) = k − i+ inv(σ̄). It implies that case
(ii) contributes a term qk−iIk−i

n−i−1(321, q) to Ikn(321, q) for 0 6 i 6 k − 1. Changing the
index i to k − i, the proof will be complete by combining (i) and (ii).
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In the sequel, we always denote by δ̄ : R2 → {0, 1} a function such that

δ̄(u, v) =

{

0, u = v;
1, otherwise.

In order to characterize the generating function In(321, q) as a counting function of lattice
points in a lattice polytope, we introduce the following lemma.

Lemma 2. Assuming x0 = 0, for all 1 6 t 6 n, we have

I1n+1(321, q) =
1

∑

x1=0

2
∑

x2=x1

· · ·
t

∑

xt=xt−1

I t+1−xt

n+1−xt
(321, q)

t
∏

i=1

qδ̄(xi,xi−1)(i+1−xi)

Proof. The statement is true for t = 1 by Lemma 1. To use induction on t, suppose the
above equality holds for t. From Lemma 1, we have

I t+1−xt

n+1−xt
(321, q) =

t+1
∑

xt+1=xt

I
t+2−xt+1

n+1−xt+1
(321, q) qδ̄(xt+1,xt)(t+2−xt+1).

Using above formula to substitute the term I t+1−xt

n+1−xt
(321, q) in the formula of this Lemma,

we can easily conclude that the equality holds for the case t+ 1.

Let Ωn be a convex lattice polytope defined by

Ωn = {(x1 . . . , xn) ∈ Z
n | 0 6 x1 6 · · · 6 xi 6 i for all 1 6 i 6 n}.

Recall that In+1(321, q) = I1n+1(321, q) and In+1−xn

n+1−xn
(321, q) = 1. From above lemma by

taking t = n we can easily obtain

Proposition 3. Assuming x0 = 0, we have

In+1(321, q) =
∑

x∈Ωn

n
∏

i=1

qδ̄(xi,xi−1)(i+1−xi).

In the following we will give a more explicit interpretation about this formula. Let
invk(σ) be the number of inversions of σ whose first element is k, i.e,

invk(σ) = #{i | (k, i) ∈ Inv(σ)}

It is obvious that invk(σ) 6 k − 1. From the definition of In+1(321, q) and Proposition 3,
we have

∑

σ∈Sn+1(321)

qinv(σ) =
∑

x∈Ωn

q
∑n

i=1 δ̄(xi,xi−1)(i+1−xi)

Below we recursively define a map

ϕ : Sn+1(321) → Ωn, ϕ(σ) = (x1, . . . , xn) = x, (2)
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Figure 1: ϕ : σ = 312579468 7→ (0, 0, 2, 0, 1, 0, 2, 0, 3) 7→ x = (0, 1, 1, 4, 4, 5, 5, 6)

such that x1 = inv2(σ) and for k > 2,

xk =

{

xk−1, if invk+1(σ) = 0;
k + 1− invk+1(σ), otherwise.

Figure.1 shows an example, where the second vector is
(

inv1(σ), . . . , inv9(σ)
)

.

Theorem 4. The map ϕ defined above is a bijection. Moreover, if ϕ(σ) = (x1, . . . , xn),
then

inv(σ) =

n
∑

i=1

δ̄(xi, xi−1)(i+ 1− xi).

Proof. We first show that ϕ is well defined in the sense that if x = ϕ(σ) then x ∈ Ωn =
{(x1, . . . , xn) ∈ Z

n | 0 6 x1 6 · · · 6 xi 6 i for all 1 6 i 6 n}. We use induction on
i. For i = 1, it is obvious x1 = inv2(σ) 6 1. Suppose 0 6 x1 6 · · · 6 xi−1 6 i − 1. If
invi+1(σ) = 0, then xi = xi−1 6 i by the induction hypothesis. If invi+1(σ) 6= 0, then
xi = i + 1 − invi+1(σ) 6 i. It remains to show that if invi+1(σ) 6= 0, then xi−1 6 xi.
Let k 6 i be maximal such that invk(σ) 6= 0, i.e., invk+1(σ) = · · · = invi(σ) = 0. It
follows that there exists an inversion (k, l) ∈ Inv(σ). Since σ is 321-avoiding, we have
σ−1(k) < σ−1(i+ 1), otherwise (i+ 1, k, l) is a subsequence of σ and of type 321. Hence
we obtain invi+1(σ) 6 invk(σ) + i− k, and

xi = i+ 1− invi+1(σ) > k + 1− invk(σ) = xk−1 + 1 > xk−1.

Note that invk+1(σ) = · · · = invi(σ) = 0. By definitions, we have xk−1 = · · · = xi−1 which
proves that ϕ is well defined. To prove the map ϕ is a bijection, note that each permutation
σ can be uniquely recovered from its inversion vector

(

inv1(σ), . . . , invn+1(σ)
)

. Now we
construct an inverse map ψ : Ωn → Sn+1(321) of ϕ recursively as follows. Given x =
(x1, . . . , xn), define ψ(x) = σ = σ1 · · ·σn+1 such that inv1(σ) = 0 and for 2 6 k 6 n+ 1,

invk(σ) =

{

0 if xk−1 = xk−2;
k − xk−1 otherwise.

It is not difficult to see that both ψ ◦ ϕ and ϕ ◦ ψ are identity map, i.e., ϕ is a bijection.
This completes the proof.
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Figure 2: x = (0, 1, 1, 4, 4, 5, 5, 6) 7→ D = uuduuddduuduududdd

When n = 3, the inversion polynomial of Sn(321) is I3(321, q) = q4+4q3+5q2+3q+1.
Below is the list of the bijection ϕ,

q0 : {1234}
ϕ

−−→ {(0, 0, 0)};

q1 : {1243, 2134, 1324}
ϕ

−−→ {(0, 0, 3), (1, 1, 1), (0, 2, 2)};

q2 : {1342, 1423, 2143, 2314, 3124}
ϕ

−−→ {(0, 2, 3), (0, 0, 2), (1, 1, 3), (1, 2, 2), (0, 1, 1)};

q3 : {2341, 2413, 3142, 4123}
ϕ

−−→ {(1, 2, 3), (1, 1, 2), (0, 1, 3), (0, 0, 1)};

q4 : {3412}
ϕ

−−→ {(0, 1, 2)}.

A Dyck path D is a lattice path from (0, 0) to (2n, 0) in the (x, y)-plane with up-steps
(1, 1) (abbreviated as ‘u’) and down-steps (1,−1) (abbreviated as ‘d’), such that D never
falls below the x-axis. A valley du of the Dyck path D is a down-step followed by an
up-step. The height of a valley is defined to be the y-coordinate of its bottom. Denote
by Dn the set of all Dyck paths of length 2n. Several bijections between Sn(321) and Dn

have been established in the literature, see [4, 7, 10, 11, 14, 15, 17, 18, 19, 21, 22]. Here we
will give a new bijection obtained easily from the above theorem. Morever, this bijection
will allow to read the inversion number of a permutation as the sum of all valley heights
and the number of valleys in the corresponding Dyck path.

Indeed, for x = (x1, . . . , xn) ∈ Ωn, assuming x0 = 0 and xn+1 = n + 1, we construct a
Dyck path Dx as follows. By reading i from 1 to n+ 1, for each i we add an up-step and
xi − xi−1 down-steps from left to right. Figure.2 presents an example. It is obvious that
this construction gives an bijection from Ωn+1 to Dn+1.

If all valleys of a Dyck path D have heights a1, . . . , ak, denote by

v(D) =

k
∑

i=1

(ai + 1).

Combining with Theorem 4, we can easily obtain our first main result.

Theorem 5. The map σ → Dϕ(σ) is a bijection from Sn+1(321) to Dn+1 such that

inv(σ) = v(Dϕ(σ)),

where ϕ is defined in (2).

As an application of Theorem 5, we will give a counting formula on the number of
321-avoiding permutations with a fixed inversion number. For any D ∈ Dn, we define a
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tunnel of D to be a horizontal segment between two lattice points of D that intersects D
only in these two points, and stays always below D. From Theorem 5, for m > 0, there
is a bijection

Sn,m(321) := {σ ∈ Sn(321) : inv(σ) = m} −→ Dn,m := {D ∈ Dn : v(D) = m}.

Theorem 6. For every m > 0,

|Sn,m(321)| =
∑

b⊢m

(

n− ∆(b)
2

l(b)

)

.

where the sum runs over all compositions b = (b1, b2, . . . , bk) of m, denoted b ⊢ m, i.e.,

m = b1 + b2 + · · ·+ bk and bi > 1,

l(b) = k is the length of b, and ∆(b) := |b1|+ |b2 − b1|+ · · ·+ |bk − bk−1|+ |bk|.

Proof. It is sufficient to consider |Dn,m|. For any D ∈ Dn,m, suppose that D has k valleys

with heights a1, a2, · · · , ak, then m = v(D) =
∑k

i=1(ai + 1). Let li be the length of the
path D located between the i-th and (i+1)-th valley, for i = 0, 1, 2, · · · , k. Then we have

li = |ai+1 − ai|+ 2ti,

k
∑

i=0

li = 2n, ti > 1.

Where ti is the number of tunnels between the i-th and (i+ 1)-th valley. Let a0 = 0 and
ak+1 = 0 be the heights of the starting point and the terminal point of the Dyck path D,
respectively. Write

∆(a) =

k
∑

i=0

|ai+1 − ai|.

Then

#{D ∈ Dn | all valleys of D have heights a1, a2, . . . , ak}

= #{(l0, l1, · · · , lk) | li = |ai+1 − ai|+ 2ti,

k
∑

i=0

li = 2n, ti > 1}.

= #{(t0, t1, · · · , tk) | t0 + t1 + · · ·+ tk = n−
∆(a)

2
, ti > 1}.

=

(

n− ∆(a)
2

− 1

k

)

So we have

|Dn,m| =
∑

(a1+1)+(a2+1)+···+(ak+1)=m

ai+1>1

(

n− ∆(a)
2

− 1

k

)
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Let bi = ai+1 for 1 6 i 6 k, b0 = bk+1 = 0, obviously ∆(b) =
∑k

i=0 |bi+1−bi| = ∆(a)+2.
Hence

|Dn,m| =
∑

b1+b2+···+bk=m

bi>1

(

n− ∆(b)
2

k

)

.
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