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Abstract

We will study the inversion statistic of 321-avoiding permutations, and obtain
that the number of 321-avoiding permutations on [n| with m inversions is given by

n_ AG)
|Snm (32) =) ( l(b)2 >
bFm
where the sum runs over all compositions b = (by, be, ..., bg) of m, i.e.,
m=>by+by+---+b, and b, >1,

[(b) = k is the length of b, and A(b) := |by| + |b2 — b1| + -+ + |bk — bg—1| + |bk|-
We obtain a new bijection from 321-avoiding permutations to Dyck paths which
establishes a relation on inversion number of 321-avoiding permutations and valley
height of Dyck paths.
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1 Introduction

Let S, denote the permutation group on [n] = {1,2,...,n}. Write ¢ € S, in the
form ¢ = 0y09---0,. Form < n,ifoc e S, and 7 =m---m, € S, we say that
o contains the pattern m if there is an index subsequence 1 < 17 < 19 < -+ < 4y, < N
such that o;, < oy, iff m; < m for 1 < j,k < m, that is, o has a subsequence which is
order isomorphic to w. Otherwise, ¢ avoids the pattern , or say, o is m-avoiding. We
denote by S, (m) the set of all permutations o € S, that are m-avoiding, i.e.,

Sp(m) ={o € S, | o avoids the pattern 7}.

For example, the permutation 41253 avoids the pattern 321, but contains the pattern
132 since its subsequence 153 is order isomorphic to 132, hence 41253 € S5(321) and
41253 ¢ S5(132).

In 1970’s, Knuth [12, 13] obtained a well known result on permutations avoiding
patterns, that is for any 7 € Ss,

1 2n
5.1 = = (%)

where C,, is the n-th Catalan number which counts the number of Dyck paths of length
2n. In past decades, various articles considered the bijections between 321-avoiding per-
mutations and Dyck paths, see [4, 7, 10, 11, 14, 15, 17, 18, 19, 21, 22].

In this paper, we will study the inversion distribution of 321-avoiding permutations.
For 0 = 0109 -+ -0, € S, (), we define the inversion set Inv(o) to be

Inv(o) = {(04,05) | i < j and 0; > 0;},

and denote by inv(c) = #Inv(c), called the inversion number of o, where the hash sign
denotes cardinality. The generating function I, (7, q) of the inversion numbers is

oE€Sn(m)

for o € S,,(7). This generating function was first introduced and explored in [8, 20] and
some recurrence formulae have been obtained for m € S5 and 7 # 321. Conjecture 3.2 of
8] states that, for all n > 1,

n—2

I,(321,q) = I,_1(321,q) + > _ ¢ Ii(321,q) 1, —;—1(321, q). (1)
i=0

Soon afterwards a bijective proof of the recursive formula (1) was obtained by Szu-En
Cheng et al. [6]. There are some other works on inversions of restricted permutations,
see [1, 3, 5,9, 15, 16]. In 2014, M. Barnabei, F. Bonetti, S. Elizalde and M. Silimbani [2]
studied the distribution of descents and major indexes of 321-avoiding involutions.
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Motivated by [2, 6], in this paper we will study the inversion distribution of 321-
avoiding permutations. As the main result, we give an explicit formula counting the
number of 321-avoiding permutations with the fixed inversion number. We also find a
bijection between 321-avoiding permutations and Dyck paths, which is new to the best of
our knowledge. From this bijection, we show that the inversion number of 321-avoiding
permutations and the valley-sum of Dyck paths are equally distributed.

2 Inversions of Permutations Avoiding 321

For 1 < k < n, let 8¥(321) be the collection of 321-avoiding permutations of [n] and
containing 12 - - -k as a subsequence,

Sk321)={oeS,(321) | o7 (1) <o (2) < --- <o (k)}.

More precisely, if 0 = o105---0, € S¥(321) and oy, = 1,04, = 2,...,04, = k, then

11 < iy < --- < 1. Obviously, we have

k

S,(321) = S}(321) D §%(321) D --- D 8™(321) = {id}.

For 1 < k < n, let I¥(321, ¢) be the generating function defined by

Ik; 321 q Z qan

oeSk(321)
Then we have I,,(321, ¢) = I'(321,q) and I"(321,q) =1 for all n > 1

Lemma 1. For 1 < k < n, we have

k
I6(321,q) = IF7'(321,q) + Y _q'Tys 4 1(321,0).

=1

Proof. Given o € S8%(321) with 1 < k < n — 1, consider the position of o~ 1(k + 1).
Assuming 0~!(0) = 0, we have either 071 (k) < o7}k + 1), or 07!'(i) < oY (k +1) <

o Yi+1) for some i < k—1. (i): If 0 € 8%(321) and o7 1(k) < o7 1(k+ 1), it follows that
o € S*1(321). So this case contributes a term I**1(321,¢) to the generating function
I%(321,q). (ii): If 0 € Sk(321) and 07 1(i) < oY (k +1) < 07 1(i + 1) for some i < k — 1,
since o avoids the pattern 321, it forces that o71(j) > o=}k + 1) for all j > k + 2.
Otherwise, we have 07(j) < 07! (k+ 1) < 07!(i + 1) which is obviously a contradiction.
It implies that 0 = o105 - - -0, satisfies 0y = 1,00 = 2,...,0;, = 1,0;41 = k + 1. Denote
by ¢ = 0442043 -0,. Then 7 is a permutation of {i + 1,... k k+2,...,n} satisfying
o li+1) <o (i+2)<---<a (k) and inv(oc) =k — i —|— 1nv( ). Tt 1mphes that case
(i) contributes a term ¢~ Z[’l‘C ' 1(321,q) to I¥(321,q) for 0 < i < k — 1. Changing the

n—i—1

index i to k — i, the proof will be complete by combining (i) and (ii). O
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In the sequel, we always denote by § : R — {0, 1} a function such that

5(u,v):{ (1)’ =

otherwise.

In order to characterize the generating function I,,(321, ¢) as a counting function of lattice
points in a lattice polytope, we introduce the following lemma.

Lemma 2. Assuming xo =0, for all 1 <t < n, we have

t

1 2 "
B3 3 3 s g [
z1=022=21

Tt=Tt—1 =1

Proof. The statement is true for t = 1 by Lemma 1. To use induction on ¢, suppose the
above equality holds for ¢. From Lemma 1, we have

t+1
B = 3T g desn
Tt41=2t
Using above formula to substitute the term I't17% (321, ¢) in the formula of this Lemma,
we can easily conclude that the equality holds for the case ¢t + 1. O

Let ©,, be a convex lattice polytope defined by
Q={(x1...,2,) €Z2"|0<L< 2y <+ <x; <3 forall 1 <i<n}.

Recall that I,4+1(321,¢) = I},,(321,¢) and I)}/{~"(321,¢q) = 1. From above lemma by
taking t = n we can easily obtain

Proposition 3. Assuming v = 0, we have
In+1 321 q Z Hq‘s(xuxz 1)(i+1— x,)
z€Q, i=1

In the following we will give a more explicit interpretation about this formula. Let
invy (o) be the number of inversions of o whose first element is &, i.e,

invy (o) = #{i | (k,i) € Inv(o)}
It is obvious that invy (o) < k — 1. From the definition of I,,;1(321, ¢) and Proposition 3,

we have
Z 1nv(o Z gz S(mi,ai1)(i+1—x;)

c€Sn+1(321) zE€Qy

Below we recursively define a map
0 :8541(321) = Q,, olo) = (z1,...,2,) = x, (2)
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Figure 1: ¢ : o = 312579468 — (0,0,2,0,1,0,2,0,3) — 2 = (0,1,1,4,4, 5,5, 6)

such that x; = inve(o) and for k > 2,

S Th_1, if invg (o) = 0;
T k41— invey (o), otherwise.
Figure.1 shows an example, where the second vector is (invy(c), ..., invy(0)).

Theorem 4. The map ¢ defined above is a bijection. Moreover, if (o) = (x1,...,%,),
then

inv(o) = Y d(aszim1) (i + 1 — 7).

i=1

Proof. We first show that ¢ is well defined in the sense that if z = ¢(o) then x € Q,, =
{(x1,...,2p) €Z2" |0 < 2y < -+- < x; < i forall 1 <4< n}. We use induction on
i. For i = 1, it is obvious x; = invy(c) < 1. Suppose 0 < x; < -+ < w;oy <i— 1. If
inv,;1(o) = 0, then z; = ;-1 < i by the induction hypothesis. If inv;;1(0) # 0, then
x; =1+ 1 —inv;y1(0) < 4. It remains to show that if inv,, (o) # 0, then ;1 < ;.
Let £ < i be maximal such that invg(o) # 0, i.e., invgq(0) = -+ = invy(o) = 0. Tt
follows that there exists an inversion (k,l) € Inv(o). Since o is 321-avoiding, we have
o (k) < o7 (i+ 1), otherwise (i + 1,k,) is a subsequence of o and of type 321. Hence
we obtain inv;,1(0) < invg(o) + i — k, and

ri=i+1—invyy(0) 2 k+1—invg(o) = a1 + 1 > z5_1.

Note that invyy1(0) = - - - = inv;(0) = 0. By definitions, we have x5, = - - - = ;1 which
proves that ¢ is well defined. To prove the map ¢ is a bijection, note that each permutation
o can be uniquely recovered from its inversion vector (invy(c),...,inv,41(0)). Now we
construct an inverse map ¢ : Q, — S,11(321) of ¢ recursively as follows. Given z =
(1,...,2,), define ¢¥(x) = 0 = 07 - - - 05,41 such that invy(0) =0 and for 2 <k <n+1,

. B 0 if 2y = xp9;

invi(o) = { k— x5 otherwise.
It is not difficult to see that both 1 o ¢ and ¢ o v are identity map, i.e., ¢ is a bijection.
This completes the proof. O
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Figure 2: z = (0,1,1,4,4,5,5,6) — D = uuduuddduuduududdd

When n = 3, the inversion polynomial of S,,(321) is I3(321,q) = ¢* +4¢*+5¢°> + 3¢+ 1.
Below is the list of the bijection ¢,

¢ : {1234} 2 {(0,0,0)};

¢' - {1243,2134,1324} =5 {(0,0,3),(1,1,1),(0,2,2)};

¢ ¢ {1342,1423,2143,2314, 3124} % {(0,2,3),(0,0,2),(1,1,3),(1,2,2),(0,1,1)};
¢ ¢ {2341,2413,3142,4123} = {(1,2,3),(1,1,2),(0,1,3),(0,0,1)};

¢ ¢ {3412} 5 {(0,1,2)}.

A Dyck path D is a lattice path from (0,0) to (2n,0) in the (x,y)-plane with up-steps
(1,1) (abbreviated as ‘u’) and down-steps (1, —1) (abbreviated as ‘d’), such that D never
falls below the z-axis. A valley du of the Dyck path D is a down-step followed by an
up-step. The height of a valley is defined to be the y-coordinate of its bottom. Denote
by D, the set of all Dyck paths of length 2n. Several bijections between S,,(321) and D,
have been established in the literature, see [4, 7, 10, 11, 14, 15, 17, 18, 19, 21, 22]. Here we
will give a new bijection obtained easily from the above theorem. Morever, this bijection
will allow to read the inversion number of a permutation as the sum of all valley heights
and the number of valleys in the corresponding Dyck path.

Indeed, for x = (z1,...,x,) € Q,, assuming zo = 0 and x,.; = n + 1, we construct a
Dyck path D, as follows. By reading ¢ from 1 to n + 1, for each 7 we add an up-step and
xr; — x;_1 down-steps from left to right. Figure.2 presents an example. It is obvious that
this construction gives an bijection from 2,1 to D, 1.

If all valleys of a Dyck path D have heights a4, ..., ax, denote by

k
v(D) =) (a;+1).
i=1
Combining with Theorem 4, we can easily obtain our first main result.
Theorem 5. The map 0 — Dy is a bijection from S,1(321) to Dy such that
inv(o) = v(Dy(e)),
where ¢ is defined in (2).

As an application of Theorem 5, we will give a counting formula on the number of
321-avoiding permutations with a fixed inversion number. For any D € D,,, we define a
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tunnel of D to be a horizontal segment between two lattice points of D that intersects D
only in these two points, and stays always below D. From Theorem 5, for m > 0, there
is a bijection

Snm(321) :={o € §,(321) : inv(o) = m} — Dy :={D € D,, : v(D) = m}.
Theorem 6. For every m > 0,
Sum(321)] =3 (n - ﬁ)
Snta201 =3 (" )" )
where the sum runs over all compositions b = (by, by, ..., b;) of m, denoted b+ m, i.e.,
m=>b,+by+---+b, and b; > 1,
[(b) =k is the length of b, and A(b) := |by| + |ba — by| 4+ -+ - + |bx — bg—1| + ||

Proof. 1t is sufficient to consider |D,, ,,|. For any D € D, ,,, suppose that D has k valleys
with heights ay, as, -, ax, then m = v(D) = Zle(ai + 1). Let [; be the length of the

path D located between the i-th and (i + 1)-th valley, for i = 0,1,2,--- , k. Then we have
k
li = |(li+1 — (1,2‘| + 2t“ le = 2’/’L, tz > ]_
i=0

Where ¢; is the number of tunnels between the i-th and (i + 1)-th valley. Let ap = 0 and
ar+1 = 0 be the heights of the starting point and the terminal point of the Dyck path D,
respectively. Write

k
Ala) = " laip — ail.
=0

Then
#{D € D, | all valleys of D have heights a;, as, ..., ax}
k
= #{lo. b+ 1) [l =las — ai] + 26, i =2n,t; > 1},
i=0
= #{(to,t1, - ,tx) |to+t1+-~-+tk:n—¥,ti > 1}
e
k
So we have

A(a)
n— —1
N N

(a1+1)+(ag+1)+ - +(ap+1)=m
a;+1>1
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Let b; = a;+1for 1 <i <k, by=bry1 =0, obviously A(b) = Zf:o |biv1 —bi| = A(a)+2.
Hence

n_M

by +bo+--+by=m
b;>1
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