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Abstract

Mantel’s theorem says that among all triangle-free graphs of a given order the
balanced complete bipartite graph is the unique graph of maximum size. We
prove an analogue of this result for 3-graphs. Let K−4 = {123, 124, 134}, F6 =
{123, 124, 345, 156} and F = {K−4 , F6}: for n 6= 5 the unique F-free 3-graph of or-
der n and maximum size is the balanced complete tripartite 3-graph S3(n) (for n = 5

it is C
(3)
5 = {123, 234, 345, 145, 125}). This extends an old result of Bollobás that

S3(n) is the unique 3-graph of maximum size with no copy of K−4 = {123, 124, 134}
or F5 = {123, 124, 345}.

1 Introduction

If r > 2 then an r-graph G is a pair G = (V (G), E(G)), where E(G) is a collection of
r-sets from V (G). The elements of V (G) are called vertices and the r-sets in E(G) are
called edges. The number of vertices is the order of G, while the number of edges, denoted
by e(G), is the size of G.

Given a family of r-graphs F , an r-graph G is F-free if it does not contain a subgraph
isomorphic to any member of F . For an integer n > r we define the Turán number of F
to be

ex(n,F) = max{e(G) : G an F -free r-graph of order n}.

The related asymptotic Turán density is the following limit (an averaging argument due
to Katona, Nemetz and Simonovits [7] shows that it always exists)

π (F) = lim
n→∞

ex (n,F)(
n
r

) .

The problem of determining the Turán density is essentially solved for all 2-graphs by
the Erdős–Stone–Simonovits Theorem.
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Theorem 1 (Erdős and Stone [5], Erdős and Simonovits [4]) Let F be a family
of 2-graphs. If t = min {χ(F ) : F ∈ F} > 2, then

π (F) =
t− 2

t− 1
.

It follows that the set of all Turán densities for 2-graphs is {0, 1/2, 2/3, 3/4, . . .}.
There is no analogous result for r > 3 and most progress has been made through deter-

mining the Turán densities of individual graphs or families of graphs. A central problem,
originally posed by Turán, is to determine ex(n,K

(3)
4 ), where K

(3)
4 = {123, 124, 134, 234}

is the complete 3-graph of order 4. This is a natural extension of determining the Turán
number of the triangle for 2-graphs, a question answered by Mantel’s theorem [9]. Turán
gave a construction that he conjectured to be optimal that has density 5/9 but this ques-
tion remains unanswered despite a great deal of work. The current best upper bound for
π(K

(3)
4 ) is 0.561666, given by Razborov [11].

A related problem due to Katona is given by considering cancellative hypergraphs. A
hypergraph H is cancellative if for any distinct edges a, b ∈ H, there is no edge c ∈ H
such that a4b ⊆ c (where 4 denotes the symmetric difference). For 2-graphs, this is
equivalent to forbidding all triangles. For a 3-graph, it is equivalent to forbidding the two
non-isomorphic configurations K−4 = {123, 124, 134} and F5 = {123, 124, 345}.

An r-graph G is k-partite if there is a partition of its vertices into k classes so that all
edges of G contain at most one vertex from each class. It is complete k-partite if there is
a partition into k classes such that all edges meeting each class at most once are present.
If the partition of the vertices of a complete k-partite graph is into classes that are as
equal as possible in size then we say that G is balanced.

Let S3(n) be the complete balanced tripartite 3-graph of order n.

Theorem 2 (Bollobás [3]) For n > 3, S3(n) is the unique cancellative 3-graph of order
n and maximum size.

This result was refined by Frankl and Füredi [6] and Keevash and Mubayi [8], who proved
that S3(n) is the unique F5-free 3-graph of order n and maximum size, for n sufficiently
large.

The blow-up of an r-graph H is the r-graph H(t) obtained from H by replacing each
vertex a ∈ V (H) with a set of t vertices Va in H(t) and inserting a complete r-partite
r-graph between any r vertex classes corresponding to an edge in H. The following result
is an invaluable tool in determining the Turán density of an r-graph that is contained in
the blow-ups of other r-graphs:

Theorem 3 (Brown and Simonovits [1], [2]) If F is a k-graph that is contained in
a blow-up of every member of a family of k-graphs G, then π (F ) = π (F ∪ G).

Since F5 is contained in K−4 (2), Theorems 2 and 3 imply that π(F5) = 2/9.
A natural question to ask is which 3-graphs (that are not subgraphs of blow-ups of

F5) also have Turán density 2/9? Baber and Talbot [2] considered the 3-graph F6 =
{123, 124, 345, 156}, which is not contained in any blow-up of F5. Using Razborov’s flag
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algebra framework [10], they gave a computational proof that π (F6) = 2/9. In this paper,
we obtain a new (non-computer) proof of this result. In fact we go further and determine
the exact Turán number of F = {F6, K

−
4 }.

Theorem 4 If n > 3 then the unique F-free 3-graph with ex(n,F) edges and n vertices

is S3(n) unless n = 5 in which case it is C
(3)
5 = {123, 234, 345, 145, 125}.

As F6 is contained in K−4 (2), we have the following corollary to Theorem 4.

Corollary 5 π (F6) = 2/9.

2 Turán number

Proof of Theorem 4: The underlying proof structure is the same as that employed by
Keevash and Mubayi [8] in their proof of Bollobás’s theorem (Theorem 2).

We use induction on n. Note that the result holds trivially for n = 3, 4. For n =
5 it is straightforward to check that the only F -free 3-graphs with 4 edges are S3(5),
{123, 124, 125, 345} and {123, 234, 345, 451}. Of these the first two are edge maximal

while the third can be extended by a single edge to give C
(3)
5 . Thus we may suppose that

n > 6 and the theorem is true for n− 3.
For k > 2 let Tk(n) be the k-partite Turán graph of order n: this is the complete

balanced k-partite graph. We denote the number of edges in S3(n) and Tk(n) by s3(n)
and tk(n) respectively. Let G be F -free with n > 6 vertices and ex(n,F) edges. Since
S3(n) is F -free we have e(G) > s3(n).

The inductive step proceeds as follows: select a special edge abc ∈ E(G) (precisely
how we choose this edge will be explained in Lemma 6 below). For 0 6 i 6 3 let fi be
the number of edges in G meeting abc in exactly i vertices. By our inductive hypothesis
we have

e(G) = f0 + f1 + f2 + f3 6 ex(n− 3,F) + f1 + f2 + 1. (1)

Note that unless n − 3 = 5 our inductive hypothesis says that ex(n − 3,F) = s3(n − 3)
with equality iff G − {a, b, c} = S3(n − 3). For the moment we will assume that n 6= 8
and so we have the following bound

e(G) 6 s3(n− 3) + f1 + f2 + 1, (2)

with equality iff G− {a, b, c} = S3(n− 3).
Let V − = V (G) − {a, b, c}. For each pair xy ∈ {ab, ac, bc} define Γxy = {z ∈ V − :

xyz ∈ E(G)} and let Γabc = Γab ∪ Γac ∪ Γbc be the link-neighbourhood of abc. Note that
since G is K−4 -free this is a disjoint union, so

f2 = |Γab|+ |Γac|+ |Γbc| = |Γabc|.

For x ∈ {a, b, c} define L(x) to be the link-graph of x, so V (L(x)) = V − and E(L(x)) =
{yz ⊂ V − : xyz ∈ E(G)}. The link-graph of the edge abc is the edge labelled graph Labc
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with vertex set V − and edge set L(a) ∪ L(b) ∪ L(c). The label of an edge yz ∈ E(Labc)
is l(yz) = {x ∈ {a, b, c} : xyz ∈ E(G)}. The weight of an edge yz ∈ Labc is |l(yz)| and
the weight of Labc is w(Labc) =

∑
yz∈Labc

|l(yz)|. Note that f1 = w(Labc). To ease our
presentation we will express the label of an edge as, for example, ab rather than {a, b}.

By a subgraph of Labc we mean an ordinary subgraph of the underlying graph where
the labels of edges are non-empty subsets of the labels of the edges in Labc. For example
if xy ∈ E(Labc) has l(xy) = ab then in any subgraph of Labc containing the edge xy it
must have label a, b or ab.

A triangle in Labc is said to be rainbow iff all its edges have weight one and are labelled
a, b, c. Given an edge labelled subgraph H of Labc and an (unlabelled) graph G we say
that H is a rainbow G if all of the edges in H have weight 1 and all the triangles in H
are rainbow.

The following lemma provides our choice of edge abc.

Lemma 6 If G is an F-free 3-graph with n > 6 vertices and ex(n,F) edges then there is
an edge abc ∈ E(G) such that

f1 + f2 = w(Labc) + |Γabc| 6 t3(n− 3) + n− 3,

with equality iff Labc is a rainbow T3(n− 3) and Γabc = V −.

Underlying all our analysis are some simple facts regarding F -free 3-graphs that are
contained in Lemmas 7 and 8.

Lemma 7 If G is F-free and abc ∈ E(G) then the following configurations cannot appear
as subgraphs of Labc. Moreover any configuration that can be obtained from one described
below by applying a permutation to the labels {a, b, c} must also be absent.

(F6-1) The triangle xy, xz, yz with l(xy) = l(xz) = a and l(yz) = b.

(F6-2) The pair of edges xy, xz with l(xy) = ab and l(xz) = c.

(F6-3) A vertex x ∈ Γab and edges xy, yz with labels l(xy) = c and l(yz) = a.

(F6-4) A vertex x ∈ Γab and edges xy, yz, zw with labels l(xy) = l(zw) = a and l(yz) = b.

(F6-5) Vertices x ∈ Γac, y ∈ Γbc, z ∈ Γab and the edge xy with label l(xy) = b.

(K−4 -1) The triangle xy, xz, yz with l(xy) = l(xz) = l(yz) = a.

(K−4 -2) The vertex x ∈ Γab and edge xy with label l(xy) = ab.

(K−4 -3) The vertices x, y ∈ Γab and edge xy with label l(xy) = a.

Lemma 8 If G is F-free and abc ∈ E(G) then the link-graph and link-neighbourhood
satisfy:

(i) The only triangles in Labc are rainbow.
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(ii) The only K4s in Labc are rainbow.

(iii) Labc is K5-free.

(iv) If xy ∈ E(Labc) has l(xy) = abc then x and y meet no other edges in Labc and
x, y 6∈ Γabc.

(v) If V 4
abc = {x ∈ V − : there is a K4 containing x} then Γabc ∩ V 4

abc = ∅.

(vi) There are no edges in Labc between Γabc and V 4
abc.

(vii) If x ∈ V 4
abc then |l(xy)| 6 1 for all y ∈ V −.

(viii) If x ∈ Γac, y ∈ Γbc and l(xy) = ab, then Γbc = ∅. Moreover, if xz ∈ E(Labc) with
z 6= y then z 6∈ Γabc and l(xz) = a, while if yz ∈ E(Labc) with z 6= x then z 6∈ Γabc

and l(yz) = b.

(ix) If xy, xz ∈ E(Labc), l(xy) = ab and z ∈ Γabc then |l(xz)| 6 1.

We also require the following identities, that are easy to verify.

Lemma 9 If n > k > 3 then

(i) s3(n) = s3(n− 3) + t3(n− 3) + n− 2.

(ii) t3(n) = t3(n− 3) + 2n− 3.

(iii) t3(n) = t3(n− 2) + n− 1 + bn/3c.

(iv) tk(n) = tk(n− 1) + n− dn/ke.

Let abc ∈ E(G) be a fixed edge given by Lemma 6.
By assumption e(G) > s3(n) so Lemma 9 (i) and Lemma 6 together with the bound

on e(G) given by (2) imply that e(G) = s3(n) and hence G − {a, b, c} = S3(n − 3), Labc

is a rainbow T3(n − 3) and Γabc = V −. To complete the proof we need to show that
G = S3(n). First note that since Labc is a rainbow T3(n− 3) and Γabc = V −, Lemma 8 (i)
and Lemma 7(F6-3) imply that no vertex in Γab is in an edge with label c and similarly
for Γac,Γbc. Hence Labc is the complete tripartite graph with vertex classes Γab, Γac and
Γbc and the edges between any two parts are labelled with the common label of the parts
(e.g. all edges from Γab to Γac receive label a). So Labc is precisely the link graph of an
edge abc ∈ S3(n).

In order to deduce that G = S3(n) we need to show that G−{a, b, c} = S3(n− 3) has
the same tripartition as Labc. This is straightforward: any edge xyz ∈ E(G−{a, b, c}) not
respecting the tripartition of Labc meets one of the parts at least twice. But if x, y, z ∈ Γab

then |Γac| > 2 so let u ∈ Γac. Setting a = 1, b = 2, x = 3, y = 4, z = 5, u = 6 gives a copy
of F6. If x, y ∈ Γab and z ∈ Γac then a = 1, x = 3, y = 4, z = 2 gives a copy of K−4 .

Hence G = S3(n) and the proof is complete in the case n 6= 8.
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For n = 8 we note that if G−{a, b, c} is F5-free then Theorem 2 implies that the result
follows as above, so we may assume that G− {a, b, c} contains a copy of F5. In this case
it is sufficent to show that e(G) 6 17 < 18 = s3(8).

If V (G − {a, b, c}) = {s, t, u, v, w} then we may suppose that stu, stv, uvw, abc ∈ G.
Since G is K−4 -free it does not contain suv or tuv. Moreover it contains at most 3 edges
from {u, v, w}(2) × {a, b, c} and at most 5 edges from {s, t, u, v, w} × {a, b, c}(2). Since G
is F6-free it contains no edges from {s, t} × {w} × {a, b, c}.

The only potential edges we have yet to consider are those in {st, su, tu, sv, tv} ×
{w, a, b, c}. Since G is K−4 -free it contains at most 2 edges from std, sud, tud, svd, tvd, for
any d ∈ {w, a, b, c}. Moreover, since G is F6-free, if it contains 2 such edges for a fixed
d then it can contain at most 3 such edges in total for the other choices of d. Hence at
most 5 such edges are present.

Thus in total e(G) 6 4 + 3 + 5 + 5 = 17, as required. �
In order to prove Lemma 6 we first need an edge with large link-neighbourhood.

Lemma 10 If G is K−4 -free 3-graph of order n with s3(n) edges, then there is an edge
abc ∈ E(G) with |Γabc| > n− bn/3c − 3.

Proof of Lemma 10: Let G be K−4 -free with n vertices and s3(n) edges. For x, y ∈ V (G)
let dxy = |{x : xyz ∈ E(G)}. If uvw ∈ E(G) then Γuvw = Γuv ∪ Γuw ∪ Γvw is a union of
pairwise disjoint sets and |Γuvw| = duv + duw + dvw − 3. Thus if the lemma fails to hold
then for every edge uvw ∈ E(G) we have duv + duw + dvw 6 n − bn/3c − 1. Note that
since

∑
xy∈(V

2)
dxy = 3e(G), convexity implies that

e(G)(n−
⌊n

3

⌋
− 1) >

∑
uvw∈E(G)

duv + duw + dvw =
∑

xy∈(V
2)

d2
xy >

9e2(G)(
n
2

) .

Thus

e(G) 6
1

18
n(n− 1)(n− bn/3c − 1).

But it is easy to check that this is less than s3(n). �
Our next objective is to describe various properties of the link-graph Labc and link-

neighbourhood Γabc.
Lemma 8 (v) allows us to partition the vertices of Labc as V − = Γabc ∪ V 4

abc ∪ Rabc,
where V 4

abc = {x ∈ V − : there is a K4 containing x} and Rabc = V − − (Γabc ∪ V 4
abc). To

prove Lemma 6 we require the following result to deal with the part of Labc not meeting
any copies of K4.

Lemma 11 Let H be a subgraph of Labc with s > 3 vertices satisfying V (H) ∩ V 4
abc = ∅.

If HΓ = V (H) ∩ Γabc and |HΓ| > s− bs/3c − 1 then

w(H) + |HΓ| 6 t3(s) + s,

with equality iff HΓ = V (H) and H is a rainbow T3(s).
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Proof of Lemma 6: Let G be F -free with n > 6 vertices and ex(n,F) edges. By Lemma
10 we can choose an edge abc ∈ E(G) such that |Γabc| > n− bn/3c − 3. Let V − = Γabc ∪
Rabc∪V 4

abc be the partition of V − given by Lemma 8 (v). If s = |V −|, j = |Γabc|, k = |Rabc|
and l = |V 4

abc| then n− 3 = s = j + k+ l and j > s− bs/3c − 1 > j + k− b(j + k)/3c − 1.
We can apply Lemma 11 to H = Labc[Γabc ∪Rabc], to deduce that

w(Labc[Γabc ∪Rabc]) + |Γabc| 6 t3(j + k) + j + k,

with equality iff Rabc = ∅ and Labc[Γabc] is a rainbow T3(j + k). Now if Labc is K4-free
then V 4

abc = ∅ and the proof is complete, so suppose there is a K4 in Labc. In this case
4 6 |V 4

abc| 6 n− 3− |Γabc| 6 bn/3c, so n > 12.
We now need to consider the edges in Labc meeting V 4

abc. By Lemma 8 (iii) we know
that Labc is K5-free, while Lemma 8 (vii) says that V 4

abc meets no edges of weight 2 or 3,
so by Turán’s theorem w(Labc[V

4
abc]) 6 t4(l).

Lemma 8 (vi) implies that there are no edges from Γabc to V 4
abc so the total weight of

edges between Γabc ∪Rabc and V 4
abc is at most kl. Thus

w(Labc) + |Γabc| 6 t3(j + k) + j + k + t4(l) + kl.

Finally Lemma 12 with s = n− 3 implies that

w(Labc) + |Γabc| 6 t3(n− 3) + n− 3,

with equality iff Rabc = V 4
abc = ∅ and Labc is a rainbow T3(n− 3) as required. �

Lemma 12 If j, k, l > 0 are integers satisfying j + k + l = s > 5 and j > s− bs/3c − 1
then

t3(j + k) + t4(l) + j + k + kl 6 t3(s) + s, (3)

with equality iff l = 0.

Proof of Lemma 12: If l = 0 then the result clearly holds, so suppose that l > 1,
j + k + l = s > 5 and j > s − bs/3c − 1. Let f(j, k, l) be the LHS of (3). We need to
check that ∆(j, k, l) = f(j, k + 1, l − 1)− f(j, k, l) > 0. Since if this holds then we have

f(j, k, l) < f(j, k + 1, l − 1) < · · · < f(j, k + l, 0) = t3(s) + s.

Using Lemma 9 (iv) we have

∆(j, k, l) = j − d(j + k + 1)/3e+ dl/4e+ 1

= j + dl/4e − b(j + k)/3c.

So it is sufficient to check that j+l/4 > (j+k)/3. This follows easily from j > s−bs/3c−1,
k 6 bs/3c+ 1, l > 1 and s > 5. �

Proof of Lemma 11: We prove this by induction on s > 3. The result holds for s = 3, 4
(see the end of this proof for the tedious details) so suppose that s > 5 and the result
holds for s− 2.
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Let H be a subgraph of Labc with s > 5 vertices satisfying V (H) ∩ V 4
abc = ∅. Let

HΓ = V (H) ∩ Γabc and suppose that |HΓ| > s− bs/3c − 1.
Note that if H contains no edges of weight 2 or 3 then the result follows directly from

Turán’s theorem and Lemma 8 (i), so we may suppose there are edges of weight 2 or 3.
With this assumption it is sufficient to show that

w(H) + |HΓ| 6 t3(s) + s− 1.

By Lemma 9 (iii) this is equivalent to showing that the following inequality holds:

w(H) + |HΓ| 6 t3(s− 2) + 2s− 2 + bs/3c (4)

Case (i): There exists an edge of weight 3, l(xy) = abc.
Lemma 8 (iv) implies that x, y 6∈ HΓ and x, y meet no other edges in H, so we can

apply the inductive hypothesis to H ′ = H − {x, y} to obtain

w(H) + |HΓ| 6 w(H ′) + |H ′Γ|+ 3 6 t3(s− 2) + s− 2 + 3.

Hence (4) holds as required. So we may suppose that H contains no edges of weight 3.
Case (ii): The only edges of weight 2 are contained in HΓ

Let xy ∈ E(H) have weight 2, say l(xy) = ab. Now Lemma 7 (K−4 -2) implies that
x, y 6∈ Γab, while Lemma 7 (K−4 -3) implies that x, y cannot both belong to Γac or Γbc so
we may suppose that x ∈ Γac and y ∈ Γbc. Lemma 8 (viii) implies that x, y have no
more neighbours in HΓ. If HΓ = V (H) then we can apply the inductive hypothesis to
H ′ = H − {x, y} to obtain

w(H) + |HΓ| 6 t3(s− 2) + s− 2 + 2 + 2,

in which case (4) holds, so suppose V (H) 6= HΓ.
Let z ∈ V (H) − HΓ be a neighbour of x in H if one exists otherwise let z be any

vertex in V (H)−HΓ. By our assumption that all edges of weight 2 are contained in HΓ,
z meets no edges of weight 2. Moreover, by Lemma 8 (viii), all edges containing x (except
xy) have label b, so x is not in any triangles in H. Hence x and z have no common
neighbours in H and so the total weight of edges meeting {x, z} is at most 2 + 1 + s− 3
(if xz is an edge) and at most 2 + s− 2 otherwise. Applying our inductive hypothesis to
H ′ = H − {x, z} we have

w(H) + |HΓ| 6 t3(s− 2) + s− 2 + 1 + s,

and (4) holds.
Case (iii): There is an edge of weight 2 meeting V (H)−HΓ.
So suppose that xy ∈ E(H), l(xy) = ab and y 6∈ HΓ. Lemma 8 (ix) implies that for

any z ∈ HΓ we have |l(xz)|, |l(yz)| 6 1. Let γxy = |{x, y} ∩ HΓ| 6 1. Thus, since xy is
not in any triangles, the total weight of edges meeting {x, y} is at most

2 + s− 2 + |V (H)−HΓ| − (2− γxy).
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Applying the inductive hypothesis to H ′ = H − {x, y} we have

w(H) + |HΓ| 6 t3(s− 2) + s− 2 + s+ s− |HΓ| − 2 + 2γxy,

with equality holding only if |H ′Γ| = s− 2. Now |HΓ| > s− bs/3c − 1 implies that

w(H) + |HΓ| 6 t3(s− 2) + 2s− 3 + bs/3c+ 2γxy, (5)

with equality only if |H ′Γ| = s− 2 and |HΓ| = s− bs/3c − 1. If γxy = 0 then (4) holds as
required, so suppose γxy = 1. In this case (4) holds, unless (5) holds with equality. But
if (5) is an equality then |HΓ| = |H ′Γ| + 1 = s − 1, while |HΓ| = s − bs/3c − 1, which is
impossible for s > 3.

We finally need to verify the cases s = 3, 4. It is again sufficient to prove that if H
contains edges of weight 2 or 3 then w(H) + |HΓ| 6 t3(s) + s− 1, thus we need to show
that w(H) + |HΓ| is at most 5 if s = 3 and at most 8 if s = 4.

We note that argument in Case (i) above implies that if H contains an edge of weight
3 then |HΓ| 6 s − 2 and w(H) 6 3 + 3

(
s−2

2

)
, so if s = 3 then w(H) + |HΓ| 6 4 and if

s = 4 then w(H) + |HΓ| 6 8 so the result holds. So we may suppose there are no edges
of weight 3.

Now let xy be an edge of weight 2. Using the fact that xy is not in any triangles and
Lemma 8 (viii) and (ix) we find that for s = 3 we have w(H) + |HΓ| 6 2 + 3− |HΓ|, while
for s = 4 we have w(H) + |HΓ| 6 2 + 6− |HΓ|, so the result holds. �

Finally we need to establish our two stuctural lemmas.
Proof of Lemma 7: In each case we describe a labelling of the vertices of the given

configuration to show that if it is present then G is not F -free.

(F6-1) a = 1, b = 5, c = 6, x = 2, y = 3, z = 4.

(F6-2) a = 3, b = 4, c = 5, x = 1, y = 2, z = 6.

(F6-3) a = 1, b = 2, c = 3, x = 4, y = 5, z = 6.

(F6-4) a = 1, b = 3, x = 2, y = 4, z = 5, w = 6.

(F6-5) a = 5, b = 1, c = 3, x = 4, y = 2, z = 6.

(K−4 -1) a = 1, x = 2, y = 3, z = 4.

(K−4 -2) a = 3, b = 4, x = 1, y = 2.

(K−4 -3) a = 1, b = 2, x = 3, y = 4. �

Proof of Lemma 8: We will make repeated use of Lemma 7.
(i) This follows immediately from (F6-1) and (K−4 -1).
(ii) This follows immediately from (i): if uvwx is a copy of K4 then we may sup-

pose l(uv) = a, l(uw) = b, l(vw) = c, thus l(ux) = c (otherwise (i) would be violated)
continuing we see that uvwx must be rainbow.
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(iii) This follows immediately from (ii): if xyzuv is a copy of K5 then by (ii) we may
suppose that l(xy), l(xz), l(xu), l(xv) are all distinct single labels from {a, b, c} but this is
impossible since there are only 3 labels in total.

(iv) This follows immediately from (F6-2) and (K−4 -2).
(v) If x is in a K4 then by (ii) it lies in edges with labels a, b, c, so (F6-3) implies that

x 6∈ Γabc.
(vi) If x ∈ Γabc, say x ∈ Γab, and y ∈ V 4

abc with xy ∈ E(Labc) then (F6-3) implies
that l(xy) 6= c, while (F6-4) implies that l(xy) 6= a, b (since there are t, u, v, w such that
l(yt) = b, l(tu) = a and l(yv) = a, l(vw) = b).

(vii) This follows immediately from the fact that all v ∈ V 4
abc meet edges with labels

a, b, c and (F6-2).
(viii) (F6-5) implies that Γbc = ∅. If xz ∈ E(Labc) then (F6-3) implies that l(xz) = a.

Now (K4-3) implies that z 6∈ Γac while (F6-3) implies that z 6∈ Γbc. Hence z 6∈ Γabc.
Similarly if yz ∈ E(Labc) then l(yz) = b and z 6∈ Γabc.

(ix) If x ∈ Γabc or y ∈ Γabc then this follows directly from (viii) so suppose that
x, y 6∈ Γabc, l(xy) = ab and |l(xz)| = 2. In this case, (F6-2) implies that l(xz) = ab so
(K4-2) implies that z ∈ Γac ∪ Γbc. But then (F6-3) is violated. Hence |l(xz)| 6 1. �

3 Conclusion

Many Turán-type results have associated “stability” versions, and we were able to obtain
such a result. For reasons of length we state it without proof.

Theorem 13 For any ε > 0 there exist δ > 0 and n0 such that the following holds: if
H is an F-free 3-graph of order n > n0 with at least (1− δ) s3(n) edges, then there is a
partition of the vertex set of H as V (H) = U1 ∪ U2 ∪ U3 so that all but at most εn3 edges
of H have one vertex in each Ui.
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