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Abstract

The existence of optimal binary self-dual codes is a long-standing research prob-
lem. In this paper, we present some results concerning the decomposition of binary
self-dual codes with a dihedral automorphism group Ds),, where p is a prime. These
results are applied to construct new self-dual codes with length 78 or 116. We obtain
16 inequivalent self-dual [78, 39, 14] codes, four of which have new weight enumer-
ators. We also show that there are at least 141 inequivalent self-dual [116, 58, 18]
codes, most of which are new up to equivalence. Meanwhile, we give some re-
strictions on the weight enumerators of singly even self-dual codes. We use these
restrictions to exclude some possible weight enumerators of self-dual codes with
lengths 74, 76, 82, 98 and 100.

Keywords: self-dual code, automorphism, weight enumerator

1 Introduction

Binary self-dual codes have been of particular interest for some time now. The extended
Hamming [8, 4, 4] code, the extended Golay [24, 12, 8] code and certain extended quadratic
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residue codes are well-known examples of binary self-dual codes. It is known [31] that if
there is a natural number r» > 1 that divides the weight of all vectors in a binary self-dual
code C, then r = 2 or 4. A binary self-dual code in which all weights are divisible by
4 is called a doubly even self-dual (or Type II) code, otherwise we call it a singly even
self-dual (or Type I) code. All doubly even self-dual codes of length up to 40 have been
classified [34], [35], [13], [2] and a classification of singly even self-dual codes of length up
to 38 is also known [34], [35], [13], [4], [3], [28], [6].

Let C' be a binary self-dual code of length n and minimum distance d. By results of
Mallows-Sloane [33] and Rains [36], we have

d< 4| 55] +4; if n # 22 (mod 24),
4)45] +6; if n=22 (mod 24).

The code C is called extremal if the above equality holds. If d = 4|3%] + 2 and n # 22
(mod 24) or if d = 4| 55 | +4 and n = 22 (mod 24) then we say C is near extremal. If there
is no extremal code with a given length, then we are interested in the code that attains
the largest possible minimum distance. Such a code is called an optimal code. A list of
possible weight enumerators of extremal self-dual codes of length up to 72 was given by
Conway and Sloane in [14]. This list was extended by Dougherty, Gulliver, and Harada in
[18], where lengths are listed up to 100. However, the existence of some extremal self-dual
codes is still unknown. For the classification and enumeration of binary self-dual codes,
a survey of known results can be found in [30], [37]. For the database of self-dual codes,
we refer the reader to [26], [19].

For self-dual codes with large length, a complete classification seems to be impossible.
Researchers have focused on self-dual codes with the largest possible minimum weights.
Many methods have been proposed to find new self-dual codes with good parameters.
Searching for such codes with a double circulant form is a very efficient way, which has
led to many good codes [21], [22], [25]. Harada [24] developed a method involving the
double extension of codes. Gaborit and Otmani [20] gave a general experimental method
to construct self-dual codes. Huffman [29] constructed binary self-dual codes by applying
the automorphism of codes.

In recent years there have been extensive efforts on the construction of self-dual codes
by prescribing certain automorphisms. In 1982, Huffman [29] investigated binary self-dual
codes with automorphisms of odd prime order and derived the decomposition of such a
code as a direct sum of two subcodes. In 1983, Yorgov [43] improved this method and
derived necessary and sufficient conditions for codes to be equivalent. In 1997, Buyuklieva
[12] developed a new method for constructing binary self-dual codes having an automor-
phism of order 2. In 2004, Dontcheva et al. [17] extended the results to the decomposition
of binary self-dual codes possessing an automorphism of order pq, where p and ¢ are odd
prime numbers. This technique yields many extremal or optimal codes which possess an
automorphism (see [9], [10], [11], [15], [39], [41], [40], [42]).

Let C be a singly even self-dual [n,n/2,d] code and let Cy be its doubly even subcode
that contains all the codewords of weight divisible by 4. There are three cosets Cy, Cs,
Cs of Cy such that C3 = Co|JC1|JCo|JCs and C = Cy|JCy. The set S = C, |JCs is
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called the shadow of C'. Concerning the weight enumerator for S, the following theorem
was given in [14].

Theorem 1. Let S(y) = XI'_(B,y" be the weight enumerator of S. Then the following
hold:

1. B, = B,,_, forallr,

B, =0 unless r =n/2 (mod 4),

B, <1 forr < 2n/d,

SN

at most one of B, is nonzero for r < (d+4)/2.

It was shown in [18], [27], [22] that the weight enumerator of a binary self-dual
(78,39, 14] code and its shadow weight enumerator have one of the forms

Wigy = 14 (3705 +88)y™ + (62244 + 512c — 243)y*S + (774592 — 4608a — 643)y** +- - -

Srsq = ay’ + (=B —16a)y" + (148 +120a+31616)y™ + (=560 — 913 +4892160)y" +- - - |
with o = 0,1,2 and —448 < 3 < 0, or

Wigo = 14 (3705 + 8a)y™* 4 (71460 — 24a)y"® + (658880 — 64a)y™® + - - - |

Srsa = y* + (—a — 135)y™ + (32960 + 14a)y'™® + (4885140 — 91a)y'? + - - - |

with —468 < o < —135.
Known results on the binary self-dual 78,39, 14] codes are listed as follows.

e The existence of such codes with the weight enumerator of the form Wrg; with
a=0and § = —19 was asserted in [1].

e It was shown in [22] that there are exactly six inequivalent double circulant self-
dual [78,39,14] codes. Five of them have weight enumerators of the form Wrg,
with o = 0 and 8 = 0. The remaining one has weight enumerator of form Wrg

with = 0 and = —78.

e Gaborit and Otmani [20] constructed a code having weight enumerator of form Wrg 4
with o = 0 and = —26.

e In [23], Gulliver, Harada, and Kim constructed more than 50 inequivalent codes.
Among these codes, one has weight enumerator of form Wrg; with o = 0 and
B = =78, one has weight enumerator of form Wrg, with o = —135, and all the
others have weight enumerators of form Wrg; with a =0 and 5 = 0.

We also summarize known results on binary self-dual [116, 58, 18] codes.
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e Gaborit and Otmani [20] constructed a self-dual [116, 58, 18] code.

e Yorgova and Wassermann [45] found that there are at least 7 inequivalent self-dual
[116, 58, 18] codes with an automorphism of order 23.

In this paper, we investigate binary self-dual codes with a dihedral automorphism
group Dy, of order 2p, where p is an odd prime. The results will be applied to classify all
binary self-dual [78, 39, 14] codes with a dihedral automorphism group Dss. Some of these
have weight enumerator of form Wrg; with o = 0 and § = —38 (the existence of such
codes was previously unknown). Furthermore, we will show that there exist at least 141
inequivalent binary self-dual [116, 58, 18] codes with dihedral automorphism group Dss.
Since the order of the automorphism group is 58 for all of these codes, almost all of them
are new up to equivalence.

In [8], Bouyuklieva and Willems introduced the definition of singly even self-dual codes
with minimal shadow.

Definition 2. We say a self-dual code C' of length n = 24m + 81 + 2r with [ = 0,1, 2,
r=20,1,2,3, is a code with minimal shadow if:

1. wt(S) =rif r > 0; and
2. wt(S)=4ifr=0.

They proved that extremal self-dual codes of lengths n = 24m + 2, 24m + 4, 24m +
6, 24m+10, and 24m+ 22 with minimal shadow do not exist. Moreover, they give explicit
bounds in case the shadow is minimal. In this work, we consider extremal self-dual codes
with near minimal and near near minimal shadow, and near extremal self-dual codes with
minimal, near minimal, and near near minimal shadow and show nonexistence of such
codes for certain parameters.

This paper is organized as follows. In Section 2 we first recall some results about
binary self-dual codes having an automorphism of odd prime order. Then we extend
these results to the case where the codes have dihedral automorphism group D,,. In
Section 3 we investigate self-dual [78,39, 14] codes with dihedral automorphism group
Dsg and [116, 58, 18] codes with dihedral automorphism group Dsg. In Section 4 we prove
nonexistence of self-dual codes for certain parameters. Section 5 concludes the paper.

2 Preliminaries

Let C be a binary code with an automorphism ¢ of odd prime order p. If ¢ has ¢ cycles of
length p and f fixed points, we say that o is of type p — (¢; f). Without loss of generality
we may write
o= Qi1 Qe s,

where €); is a p-cycle for ¢ = 1,2,--- ¢, whereas for i = c+ 1,--- ,c+ f, ; is a fixed
point. Let F,(C) = {v € Clvo = v} and E,(C) = {v € Clwt(v]g,) = 0 (mod 2),i =
0,1,---,c+ f}, where v|q, is the restriction of v to €;. With this notation, we have the
following lemma.
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Lemma 3. [29/] C = F,(C) @ E,(C).

Clearly v € F,(C) if and only if v € C' and v is constant on each cycle. Let 7 : F,,(C) —
F§+f denote the map defined by 7(v|q,) = v; for some j € Q; and i = 1,2,--- ,c+ f.
Then 7(F,(C)) is a binary self-dual code [29].

By deleting the last f coordinates of E,(C'), we obtain a new code, which is denoted
by E,(C)*. For v € E,(C)* we identify v|g, = (vo,v1,- - ,vp_1) with the polynomial
vy + v1x + -+ + vy_12P~t from P, where P is the set of even weight polynomials in
Fylx] /(2P — 1). Thus we obtain the map ¢ : E,(C)* — P°, where P° denotes the module
of all c-tuples over P. Clearly, ¢o(E,(C)*) is a submodule of the P-module P¢. If the
multiplicative order of 2 modulo p is p—1, then the polynomial 1+z+z2+---4+2P~! of Pis
irreducible over Fy. Hence P is an extension field of Fo with identity e(z) = z+ -+ 2P}
and the following result holds.

Lemma 4. [/3] Assume that the multiplicative order of 2 modulo p is p — 1. Then a
binary code C with an automorphism o of odd prime order p is self-dual if and only if the
following two conditions hold.

(a) ©(F,(C)) is a binary self-dual code of length ¢+ f;

(b) o(E,(C)*) is a self-dual code of length ¢ over the field P under the inner product
w-v =7  uuvl forq= 25

To classify the codes, we need additional conditions for equivalence and we use the
following lemma.

Lemma 5. [44] The following transformations applied to C' lead to equivalent codes with
automorphism o:

(a) a substitution x — ' in o(E,(C)*) where t is an integer, 1 <t < p—1;

(b) a multiplication of any coordinate of p(E,(C)*) by x% where t; is an integer, 0 <
t] gp—lzjzlazu , G5

(¢) a permutation of the first ¢ cycles of o;
(d) a permutation of the last f coordinates of C.

The next definition gives an invariant of a code which was introduced by Dontcheva
and Harada [15].

Definition 6. Let C' be a binary self-dual [n, k, d] code and {cy,¢a, -+ , ¢} be the set of
all codewords of weight d. The intersection numbers of the code C' are defined as

]j = ﬁ{<CS>Ct)|diS(Csa Ct) =51ls<s<t< m}7

where dis(cs, ¢;) denotes the Hamming distance between ¢, and ¢;. Then I; is an invariant
under permutations of the coordinates.
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The following two lemmas are efficient in excluding some types of automorphisms of
a self-dual code.

Lemma 7. [44] Let C be a binary self-dual [n, k,d] code and let o € Aut(C') be of type
s—1

p—(c; f), where p is an odd prime. If g(s) = >_i_ [L], then
(a) pe > g(P57c), and

(b) f=g(L5°) for f>c.

Lemma 8. [7] Let C be a binary self-dual code of length n and let o be an automorphism
of C of type p— (c; f), where p is an odd prime. If the multiplicative order of 2 modulo p
18 even, then c is even.

In order to get our results, we give the following hypothesis.

Hypothesis 9. C'is a binary self-dual [n,n/2,d] code, where n > 52, n =4p+ f, p is an
odd prime number with 2 as a primitive root, f = 0,2,4 and

i> 4|55] +2; if n# 22 (mod 24),
T4l ] +4; ifn=22 (mod 24).

From Hypothesis 9, it is easy to see that p > 13 and d > 10. As a preparation, we
have the following lemma.

Lemma 10. Under Hypothesis 9, if C' has an automorphism o of type p — (4; f), then
O(E,(C)*) is a self-dual [4,2, 3] code over the field P = Fop-1.

Proof. According to Lemma 4, ¢(E,(C)*) is a self-dual [4,2] code over the field P =
Fap-1. Since the minimum distance of ¢(E,(C)*) cannot be 4, we only need to prove that
©(E,(C)*) has minimum distance # 1, 2.

Case 1: ¢(E,(C)*) has minimum weight 1.

Take u € p(E,(C)*) with wt(u) = 1. Then we can assume that u = (v, 0,0,0) with
vy # 0. Since (z4+1)v;'u = (z+1,0,0,0) € o(E,(C)*), we have wt(¢o ™! ((z+1)v; 'u)) = 2
which contradicts the fact d > 10.

Case 2: ¢(E,(C)*) has minimum weight 2.

Take u € p(E,(C)*) with wt(u) = 2. Suppose u = (vq,v2,0,0) with vy, vy # 0. Let
U = {vu|v € P}. Then dimp,U = p—1. Set W = ¢ }(U) C E,(C)*. Let W* be the
code obtained from W by deleting the last 2p coordinates. Then W* is a [2p,p — 1, d']
code, where d’ > d. To get a contradiction, take g(s) = >, [g—/]

First we consider the case p = 1 (mod 6) and f = 0. We can write p = 6k + 1, for
some integer k > 2. Thenn =24k +4,d > d > 4k+2, g(1) > 4k + 2, g(2) > 6k + 3 and

g(3) =Tk +4. If 2! < 2k +1 <2 for [ € N then f01ri>lwehave2"“2—Jirl < 2T
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and therefore [27] = 1. Hence

p—2 p—3
4k + 2 2k +
—1) > ‘ > 4 :
op=1) > 5] 2 Tk 2[5

If k=2, thenl=2and g(p—1) > 12k + 2.

If k=3, then ! =2and g(p—1) > 12k + 2.

If k>4, then [ > 3. Since (k—1) > (2""' =1 —1) > 0, we get g(p — 1) > 12k + 2.
Consequently, g(p — 1) > 12k + 2 = 2p which contradicts the Griesmer Bound [31].

For the other cases of p and f, a similar discussion leads to a contradiction. Hence,
©(E,(C)*) can not have minimum weight 2. O

Now we are ready to prove our result.

Theorem 11. Under Hypothesis 9, if C has a dihedral automorphism group Ds,, and
o € Dy, is an automorphism of type p — (4; f) then C = F,(C) & E,(C), and there is a
generator matriz of ¢(E,(C)*) that has the form

b*t 0 a" av2bpvs

Ben(e(E (D= | 1)

where a, b are the elements of P of order ¢ — 1 and q%; respectively. And a® + a” = e,

1<y <vy<qg—2,0<y; < %—1 foriv=1,2,3, where g = 2%, Also, the u;’s satisfy
one of the following conditions:

1. uy 4 uy = ug (mod q;%l);
2. uy +ug = uy; (mod q;%l);
3. uy + ug = uy (mod q;%l);

4. U1:U2:’LL3:0.

Proof. Suppose that C' is a self-dual [n,n/2,d] code with dihedral automorphism group
Dy, Let 0 € Dy, be an automorphism of type p — (4; f). Without loss of generality, we
can write
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Then p(E,(C)*) is a self-dual [4,2,3] code over the field P under the inner product
w-v =y uu! for ¢ = 2k by Lemma 10. Let e be the identity element of P, a a
primitive element of P, and set a = a9"! and b = a9~V Then by a computation similar
to that in [44], we have

b“r 0 a" a"2b"s
gen(p(E,(C)")) = , 2
CECN = ®)
where a"' +a” =e, 1 <v; <o <¢g—2,and 0 < wu; < &2 —1fori=1,2,3.
We consider the involution of Dy, acting on C. Let 7 € Dj, be an element of order 2
such that 7o = 07!, that is

(7(1)7"' 77—(p))(7_(p+ 1)7"' ,T(Zp))(7(2p+ 1)7"' ,7‘(3p))(7’(3p—}— 1)7"' ,7'(4]7))
=, D2, p+DBp -+, 20+ D(dp, -+ 3p+ 1),

Then by Lemma 5(b)(d) we may relabel the coordinates so that 7 € S where S is the set
consisting of the following elements:

(3)

(1,3p)---(p,2p+ 1)(p+1,4p) - - (2p,3p + 1),

(1,4p)---(p,3p+ 1)(p+1,3p)--- (2p,2p + 1),

p—1p+3 3p—1 3p+3 w—1 Tp+3

Lp) g 5P+ L.2p) - (g =5 =) B+ Ldp) - (g, =5 ),
(1) (5= 20+ 1.2 (L )00+ 1.4p) - (30,30 + 1),
(1’p)...(1%172%3)(p+173p)...<2p72p—|—1)(3p+1,4p)..,(7p2—1’7]9;‘3),
(1’p)...(1%171%3)(p+174p)...(2p73p—|—1)(2p+1,3p)-..(5p2—1’5p;‘1)’
(1’2p)...(p’p+1)(2p+1,3p)---(5p2_1,5p;_1)(3p—|-1,4p)"'(7p2_1’7p;3)’
(139) (.2 + Do+ 1,20 (P, L1, ) (B2 205,
(1,4p>~~(p,3p+1)<p+1,2p>"'(3p2_1’3p2+3)(2p+1’3p)“'(5p2_1’5p2+1>'

We now consider the action of 7 on ¢(E,(C)*).

Let — : Fop-1 — Fop-1,2 — T = 27 be the nontrivial Galois automorphism of Fop—1
with fixed field F,.

Since the computation of each case is similar, we take 7 = (1,2p)--- (p,p + 1)(2p +
1,4p)---(3p,3p+ 1) as a sample. For the other cases, we just list the results.
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The action of 7 is given by

T(xb T, X3, x4> = (x_27 m_la .1'_4, :U_3)7

where 1, x9, x3, 14 € Fop-1. So

X 0 b a’b a®
T(gen(p(E,(C)Y))) = | ., s : (4)
b 0 a"b a??

Since 7 € Aut(C), then o~ (7(E,(C))) C C, due to the orthogonality of the rows of
matrices (2) and (4), we get the following equations

avl + avg — 6, bu1+u2 + bU3a2’01 _'_ buga2v2 —

)

which imply that u; 4+ us = ug (mod q%l).
If 7= (L 3p) e (pv 2p+ 1)(p + 1a4p) e (2p7 3p+ ]-)7 then Uy + ug = Uy (mOd q+1)
Ifr=1,4p)---(p,3p+ 1) (p+1,3p)--- (2p,2p + 1), then u; + uz = us (mod qH)
Ifr = (Lp) (55 + 1,2p) - (5=, 252)(2p + 1,3p) - - (B~ 5”“><3p +

1,4p)--- (&L, 28 then uy = up = uz = 0.

In the other cases, there is no solution.

]

Remark 12. Our assumptions may seem restrictive, but they make for simple notations
and are sufficient for our purposes.

3 New Optimal Self-Dual Codes with Dihedral Automorphism
Group D,

3.1 Self-Dual [78, 39, 14] Codes with Dihedral Automorphism Group Djss

Theorem 13. There are exactly 16 inequivalent self-dual [78,39,14] codes with dihedral
automorphism group Dsg; they are listed in Table 1.

Proof. Assume that C'is a self-dual [78, 39, 14] code having dihedral automorphism group
Dsg and let 0 € Dsg be an automorphism of order 19. Tt is easy to see that 19 — (4;2)
is the only possible type for ¢ by Lemmas 7 and 8. By Lemma 4, 7(F,(C)) is a binary
self-dual [6, 3] code. Consequently,
1 0 01 0 0
gen(n(F,(C))=101 00 1 0]. (5)
0010 01

Let P be the vector space of even weight polynomials in Fylx]/(2'® — 1), e be the
identity of P,a=ao+ 22 +2° + 28 + 2B + 2" + 2" + 28 and b=a2* + 2" + 28 + 2% +
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20+ 2+ 212 4 2% 4 216 4 217. Tt is easy to verify that the multiplicative orders of a
and b are 2° — 1 and (2% + 1)/19, respectively.

Since 2 is a primitive root of 19, it is easy to verify Hypothesis 9. By Theorem 11
there is a generator matrix of ¢(E,(C)*) of the form

bt 0 a™ av2bvs

gen(p(Ex(C)")) = : (6)

0 b¥2 g2 g"1p¥s

where a”* + a2 =e, 1 < wv; < vy <510, 0 < u; < 26 for i = 1,2,3, and the u;’s satisfy
one of the following conditions:

1. uy 4+ us = ug (mod 27);
2. uy +ug = uy (mod 27);
3. uy 4+ uz = uy (mod 27);
4. uy = uy =uz =0.

From [16], we have (vq,v2) € V, where V = {(1,93), (6, 13), (7,505), (9, 59), (15, 37),
(19,105), (20,99), (21,87), (25,251), (29, 178), (31,193), (34, 175), (39, 111), (43, 246), (45,
61), (46,255), (49,119), (63, 190), (73, 219), (83, 138), (91, 167), (94, 169), (103, 108), (106,
239), (114, 221), (125, 187), (155, 213), (179, 220), (191, 242)}.

Let G be the automorphism group of the code generated by gen(w(F,(C))). Let
S be the stabilizer of G on the set of fixed points {5,6}. Suppose s belongs to the
symmetric group S;. Then we use C* to denote the self-dual code determined by F,
and the matrix 7 !(s(gen(7(F,(C))))). By [32, Lemma 4.1], if s; and s, are permu-
tations from the group S, and Ss; = Ss, then the codes C*' and C*? are equiv-
alent. So in order to get all inequivalent self-dual [78,39, 14] codes with a dihedral
automorphism group Dsg, we must check 7 (s(gen(7w(F,(C))))), where s € S;/S =
{I,(1,2,3,4),(1,2),(1,3)(2,4),(1,3,4),(1,4,3,2)}.

Now we consider the involution 7 of D3g acting on 7 !(s(gen(7(F,(C))))).

If 7 =(1,38)---(19,20)(39,76)---(57,58), an easy computation shows that s must
be (1,2,3,4).

Similarly, if 7 = (1,57) - -- (19, 39)(20, 76) - - - (38, 58), then s € {(1,3,4),(1,2)}.

If 7 =(1,76)---(19,58)(20,57) - - - (38,39), then s € {I,(1,3)(2,4),(1,4,3,2)}.

If 7 = (1,19)---(9,11)(20,38) ---(28,30)(39,57) - - - (47,49)(58, 76) - - (66 68), then
s€{I,(1,2,3,4),(1,2),(1,3)(2,4), (1,3,4), (1,4,3,2)}.

Therefore, we should analyze the generator matrix

7! (s(gen(n(F,(C)))))
gen(C) = ; (7)
gen(E;)
where gen(m(F,(C))) has been determined in (5) and gen(E,) corresponds to (6) with
(v1,v2) € V, 0 < u; < 26 for i =1,2,3, and the w;’s (1 = 1,2,3) and s satisfy one of the
following conditions:
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1. uy +up = uz (mod 27),s = (1,2,3,4);

2. us +uz =uy (mod 27),s € {(1,3,4),(1,2)};

3. up +uz = up (mod 27),s € {I,(1,3)(2,4),(1,4,3,2)};

4. up =uy =uz =0,s € {I,(1,2,3,4),(1,2),(1,3)(2,4),(1,3,4),(1,4,3,2)}.

Using MAGMA [5], we found exactly 16 inequivalent self-dual [78,39, 14] codes with
dihedral automorphism group Dsg. Four of them have weight enumerator Wrg 1 with v = 0
and f = —38 which was unknown before. The corresponding values of the parameters are
given in Table 1 (The explicit generator matrices for these self-dual codes can be found at
http://www.math.zju.edu.cn/~ggn/selfdualcodes/Self-Dual-Codes.txt). All the
codes have weight enumerators Wrg; with a = 0, so we just list the values of 3. Here
Ig is the intersection number. [ is the identity permutation in the group S, and fAut
denotes the order of the automorphism group of the corresponding code.

Since all the intersection numbers of the codes listed in Table 1 are different, they are
inequivalent.

]

Table 1: Self-dual [78, 39, 14] codes with dihedral automorphism group Dsg

Code | uy | ug | us | g Vg S 16 Iog fAut
C, 6 | 1521 | 1 93 |(1,2,3,4) 0 | 646285 | 38
Cy 6 | 1218 | 1 93 | (1,2,3,4) 0 | 643910 | 38
Cs; |10 10| 0 [ 215|335 | (1,3,4) 0 | 644537 | 38
Cy, |10]10| 0 | 2151 335 I 0 | 646266 | 38
Cs |10 ]13| 3 | 29 | 178 I 0 | 643815 | 38
Cs 10134124 | 29 | 178 I 0 642428 38
Cy 12919 20| 35 | 231 | (1,3,4) 0 | 642010 | 38
Cs (221318 | 49 | 119 I 0 | 645107 | 38
Coy |25|21| 4 | 8 | 138 (1,3,4) 0 | 650313 | 38
Cyo |24 2 22| 83 | 138 (1,3,4) 0 | 647254 | 38
Cin |20 |25]22] 83 | 138 | (1,3,4) 0 | 645278 | 38
Cio | 172123 | 83 | 138 | (1,3,4) 0 | 648546 | 38
Cis |26 6 | 5 9 59 | (1,2,3,4) | —38 | 547523 | 38
Ci |21 112] 6 | 19 | 105 | (1,2,3,4) | —38 | 546573 | 38
Cis |21 1519 | 19 | 105 (1,2,3,4) | —38 | 546649 | 38
Ci |15 5 | 17| 29 | 178 I —38 | 544882 | 38

Remark 14. It took about 5 hours on a 3 GHz CPU to classify the self-dual [78, 39, 14]
codes with a dihedral automorphism group Dss.
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3.2 Self-Dual [116,58,18] Codes with a Dihedral Automorphism Group Dsg

Theorem 15. There are at least 141 inequivalent self-dual [116, 58, 18| codes with dihedral
automorphism group Dss. They are listed in Table 5.

Proof. Suppose C'is a self-dual [116, 58, 18] code with dihedral automorphism group Dsg
and let ¢ € Dsg have order 29. A similar discussion to that in the previous subsection

leads to (s(gen(m(F,(C)))))
71 (s(gen(mw(F,
en(C) = ’ i
gen(C) gen(E,(C)) ] "
where
en(m(F,(C))) = o ¥
g ( ( U( - 001 11|’

s € S4/S, where S is the automorphism group of the code generated by gen(w(F,(C))),
and gen(FE,(C)) corresponds to

(10)

bt 0 a”™ av2b"s
gen(p(E,(C)7)) = [ ] )

0 b¥2 g2 g"1p¥s

witha=ao+ 2>+t +2°+ 29+ 20 + ot + 28 219 220 4 228 422 4 2 4 28 e P
of multiplicative order 2! — 1, b =2 + 22 + 23 + 2 + 25 + 27 + 210 + 22 + 213 4 2! +
217+ 219 + 220 4 2% + 222 4 2% € P of multiplicative order (2! +1)/29 and P being the
set of all even weight polynomials in Fy[z]/(z% — 1), a” + a2 = ¢, 1 < vy < vy < 211 -2
and 0 < u; < 564 for i = 1,2,3. The u;’s also satisfy one of the following conditions:

1. uy 4+ us = uz (mod 565);
2. us + uz = uy (mod 565);
3. up + ug = uy (mod 565);
4. u;g = ug = u3z = 0.

Using MAGMA [5], we found at least 141 inequivalent self-dual [116,58, 18] codes
with dihedral automorphism group Dss. The corresponding values of the parameters
are given in Table 5 (The explicit generator matrices for these self-dual codes can be
found at http://www.math.zju.edu.cn/~ggn/selfdualcodes/Self-Dual-Codes. txt).
Here A;g denotes the number of codewords with weight 18, and I34 is the intersection
number. [ is the identity permutation in the group S, and fAut denotes the order of the
automorphism group of the corresponding code.

It is easy to see that all the intersection numbers of the codes listed in Table 5 are
different, hence they are inequivalent. Since all the automorphism groups have order 58,
they are inequivalent with the codes constructed in [45].

O
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4 Nonexistence of Some Self-Dual Codes

4.1 Some Restrictions on Weight Enumerators

In this section, we study the nonexistence of some singly even self-dual codes. According
o [14], if C' is a singly-even self-dual code of length n = 24m + 81 + 2r with [ = 0,1,2
and r =0, 1,2, 3, the weight enumerator of C' and S are given by:

W(y) _ E}i%t-&-u-l—rajy?j — E?;%—i—lci(l + y2)12m+4l+r—4i(y2(1 _ y2>2)i’
o y4)2i.
We can write the ¢; as a linear combination of the a; and as a linear combination of the

(11)

As a preparation, we give the definition of near minimal shadow and near near minimal
shadow.

S(?J) _ Z?T:ng—ﬂbjyllj—i—r — E?;no—l—l(_1)iCi212m+4l+r—6iy12m+4l+7‘—4i(1

_ Yy . 3mAl—ipn 7

Definition 16. We say a self-dual code C' of length n = 24m + 81 + 2r with [ = 0,1, 2,
r=20,1,2,3, is a code with near minimal shadow if:

1. wt(S) =r+4if r > 0; and
2. wt(S) =8ifr =0.
And a code with near near minimal shadow if:
1. wt(S) =r+8if r > 0; and
2. wt(S) =12if r = 0.
Then we have the following theorem.

Theorem 17. An extremal self-dual code of length n = 24m + 81 + 2r with near minimal
shadow does not exist whenever:

I.r=1andl =0,

5m

—12m 5 1
2. r=1,1=1 and =22 (> o

m

1 ) 18 not an integer,

3. r=2,1=0 and %(iﬁ) — %(5;1__21) is not an integer,
4. r=3,1=0 and %(22) — g’ﬁﬁ (5;”:21) is not an integer.
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Proof. Suppose C' is an extremal singly even self-dual code of length n = 24m + 81 4 2r
with near minimal shadow, where r > 0. Then d = 4m + 4, wt(S) =r + 4, ap = 1 and
a; =+ = agms1 = 0.

By Theorem 1, if » > 0 we have by = 0, by = 1 and by = b3 = --- = b,,_o = 0 for
m > 1.

For the case when r = 1 and [ = 0, if b,,_; # 0 then there must exist some v in .S with
wt(u) = 4m — 3 as well as some v in S with wt(v) = 5. But then we have u+v € C with
wt(u 4+ v) < 4m + 2, a contradiction to the minimum weight of C. Then we must have
by—1 = 0. Then by (11) we have

- o m—1
Com+1 = O2m41,0 = ﬁ2m+1,1 + Ej:mﬁ%wrl,jbj'

This gives us camt1 = Q2m+1,0 = Pamt1,1. The a;; and f3;; were computed in [8] and so we

get
_ (12m + 1)(56m + 4) (Sm - 1) 95 am —1 <5m - 1>

Cm+1)m—-1) \m—-2) " 2m+1\m-2

which has no integer solution.
For the case when r = 1 and [ = 1, again we must have b,,,_; = 0. Then (11) gives us

9m+1,0 = Bam+1.1 + Bom+1,mbm,

and so
b — Qom+1,0 — BQm—i—l,l . —12m+5/dm+1 . 3m 5m (12)
" Bomt1,m  —4m -2 m 2m+1\m—-1)’
which must be an integer for such a code to exist.
For the case when r = 2 and [ = 0 we have by = b3 = -+ = b,,,_o = 0 and from (11)
we get
2m41,0 = Bomt1,1 + Bomt1,m—10m—1,
and so
b . O2m+1,0 — B2m+1,1 . 2(6m + 1)(8m + 1) 5m _ 3m—1/bm—1 (13)
T Bomiime 16m@2m+1) \m—1) 2m+1\m-2)

which must be an integer for such a code to exist.
When r =3 and [ = 0, we have by = b3 = --- = b,,_» = 0 and from (11) we get

2m+1,0 = Bom+1,1 + Bom+1,m—10m—1,

which gives

b . Oom+1,0 — 62m+1,1 o 3(4m + 1)(6m + ].) 5m . 3Im—1/bm—1 (14)
T Boitma 8m(@2m+1) \m—1) 2m+1\m-2)
which must be an integer for such a code to exist. O
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For the near extremal self-dual code, we have a similar result.

Theorem 18. A near extremal self-dual code with minimal shadow does not exist when-
ever:

1.r=1,1=0 and MT“(‘T__E) — %(5";:1) is not an integer,

2. r=2,1=0 and 22+ [(W?TQ) + 3(57::;1)] — %(5":”_1) is not an integer.

Proof. Let C' be a near extremal self-dual code of length n = 24m + 8 + 2r with minimal
shadow, where r > 0. Then we have d =4m + 2, wt(S) =r,ap=1and a1 =ay = --- =
A9y = 0.

Since r > 0, then by Theorem 1, we have by = 1 and by = by = --- = b,,_5 = 0 for
m > 1, otherwise there will be v in S with wt(v) < 4m —8+r, and u in S with wt(u) =r
so that u 4+ v is in C' and wit(u +v) < 4m — 8 + 2r < 4m — 2, a contradiction to the
minimum weight of C.

Now suppose r = 1,2 and [ = 0. If b,,_1 # 0 there will be u and v in S with
wt(u +v) < 4m — 3 +1r < 4m, a contradiction to the minimum weight of C. Then
by—1 = 0. From (11) we have

Q2m,0 = Bom,0 + Bomm-

According to [36] we have

%mQMn+mﬂ:‘£2%;Ik%ﬁcﬂfm1HM1+y>%1r%1—w4ﬂ
— —mzl#[coeff. of y*tin (1+y)" 11 —y*) ™"
= —m;n#[coeff. of y*™ 1 in (1 —y?) ™" 11 —y) ]
_ _m;n#[coeﬂp_ of 4™ in (1 — YE™, (4m —ZT + j) el
_{—Q%ﬂﬁiﬁ; ifr=1,
e el =2

We also have £y, 0 = 2_T%(5":n_1) and Bomm = 27". Then if r = 1, (11) gives us

24m +2 (5m —1\ 3 (5m—1
e e I e (15)
m m—1 2 m

which must be an integer for such a code to exist, and if » = 2, (11) gives us

cm )

which must also be an integer for a code to exist. O
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If C' is an extremal self-dual code of length 24m + 8] + 2r with near near minimal
shadow we get by a similar argument as above that

bm—l —

s (12m + 1)(56m + 4) (5m — 1)’

2m+1)(m—-1) \m-—2

whence the following.

Theorem 19. An extremal self-dual code of length 24m + 81 + 2r with near near minimal

shadow does not exist whenever r =1 and [ = 0 and 2_5%(5;”:;) 15 not an
mnteger.

We will also make use of the following lemma, which was originally proved by Ray-
Cahaudhuri and Wilson in [38].

Lemma 20. Let X be a set of cardinality v. For s < k < v — s let B be a collection
of subsets of X each having cardinality k and having the property that, for B, B’" € B,
B # B', the cardinality of BN B’ takes only s distinct values. Then |2B| < (2)

Remark 21. Let C be a self-dual code of length n = 24m + 81+ 2r with m > 2 not having
minimal shadow, let s := wt(S) and denote the set of vectors of S of minimum weight
by Bs. Suppose that 2s —d < 2. It follows that if v and v are members of B, then
wt(uNo) < 1. If 2s — d = 2 then the members of S of minimum weight can intersect in
either 0 or 1 nonzero coordinate positions. Because of the orthogonality relations among
the cosets of Cy in Cf-, i.e. since C; L C3 and C; £ C; for i = 1,3, we have any two
members of C; intersecting in one nonzero coordinate position for ¢ = 1,2. We also have
that if u € Cy and v € C5 then wt(uNwv) = 0. Let B; be the set of vectors in C; of weight
s. Then we have B, and B3 are disjoint. Let m; be the effective length of B;. Then by
Lemma 20 we have B, < my + ms < n.

4.2 Application to Self-Dual Codes of Lengths 74, 76, 82, 98, and 100

In [18] several weight enumerators are computed for binary singly even self-dual codes of
length n for 66 < n < 100. For each length they give a combination of weight enumerators
for that of a code with minimal, near minimal, and near near minimal shadow. We have
eliminated several of the possibilities by using (12)-(16) either to show the value is not
an integer, or that it does not agree with the value computed in [18]. For n = 74 and
n = 98 we get resp. 5447/3 and 38301/2 as the value b, and so Part 1 of Theorem 18
applies. For n = 76, 82, 100 we use resp. (16), (12), (16) to get values (Table 4) that do
not agree with those given in [18], which were computed using the method introduced by
Conway and Sloane in [14]. We also use the comment following Lemma 20 to narrow the
possible range for the parameter in the near near extremal weight enumerators for cases
n = 82 and 100. These restrictions are summarized in Tables 2 and 3 below.

We now list the possible weight enumerators of extremal and near extremal singly
even self-dual codes of lengths n = 74, 76, 82, 98, and 100.
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Table 2: Summary of restrictions on possible weight enumerator for lengths

74,76, 82,98, 100

’ n ‘ Weight Enumerator Eliminated ‘ b ‘ Reference ‘
74 Minimal Shadow 5447/3 | Part 1 of Theorem 18
76 Minimal Shadow 1050 Equation (16)

82 Near Minimal Shadow 1105 Equation (12)
98 Minimal Shadow 38301/2 | Part 1 of Theorem 18
100 Minimal Shadow 14686 Equation (12)

Table 3: Summary of restrictions on possible range for «, 3 in the near near minimal

shadow case for lengths 82, 100

’ n ‘ New range for a,

‘ Reference

82 0< <82

Remark 21

100 | 0 < o < min{100, —%6} where — 3265 < 5 <0 | Remark 21

e The possible weight enumerators for self-dual [74, 37, 14] codes are

Sy = —ay® + (2590 + 14a)y™® + (674584 — 91a)y'7 + (364 + 44035772)y?! + - - -

Wi =1+ (6364 + 32a)y** + (100603 — 160a)y*6 + (32 + 1061678)y*8 + - - - |

(—185 < a < 0),

and

Sy =19° + (=16 — a)y? + (2710 + 14a)y'3 + (674024 — 91a)y'" + -+,

Wy = 1+ (6346 + 320a)y™* + (102651 — 160a)y'® + (32a + 1039150)y8 + - - -

(—19 < o < —16).

?

The weight enumerator for the minimal shadow case was eliminated in this paper.

There is no known code for either case.

e The possible weight enumerators for self-dual [76, 38, 14] codes are

9

Sy = oy + (9500 — 14a)y™ + (1831600 + 91a)y'® + (105689400 — 364c)y** + - - -

Wy =1+ (4750 — 16a)y™ + (79895 + 64a)y'® + (64 + 915800)y™® + - - - |

(0 < a < 296),

and

Sy =y° + (=16 — a)y'® + (9620 + 14a)y' + (1831040 — 91a)y*® + - - - |
Wy =1+ (4750 + 16a)y™ + (80919 — 64a)y* + (905560 — 64 )y™® + - - -

(—296 < a < —16).
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Table 4: Contradictory values of b,, for cases n = 76,82 and 100
n | by, computed using above method | b, computed using method of [14]

76 1050 2590
82 1105 1505
100 14686 98686

The weight enumerator for the minimal shadow case was eliminated in this paper.
In [1], a code with weight enumerator W; for « = 0 was constructed by assuming
an automorphism of order 19. It is shown in [16] that there are exactly three
inequivalent self-dual [76, 38, 14] codes having an automorphism of order 19. All of
these have weight enumerator W; with a = 0.

e The possible weight enumerator for self-dual [82,41, 16] codes is

S1 = ay? + (1640 — a)y* + (281424 + 120a)y'" + (—=560c + 33442552)y*L + -+ |
Wi =1+ (39524 + 128a)y'0 + (556985 — 896a)y'® + (1536a + 5628480)y?" + - - - |
(0 < a<82).

The weight enumerator for the near minimal shadow case was eliminated, and the
range for the parameter in the near near minimal shadow case was improved in this
paper. There is no known code with this weight enumerator.

e The possible weight enumerators for self-dual [98, 49, 18] codes are

Sy = ay® + (=8 — 20a)y*® + (190c + 183 + 27930)y' " + - - - |
Wy =1+ (70756 + 323)y'® + (2048a + 1256752 — 1608)y*° + - - -,
(0 < oo < min{2, 556} where 0 < 5 < 2211),
and
Sy =y + (=209 — a)y'® + (30570 + 18)y'” + (9101051 — 153a)y* + -+ -,
Wy =1+ (70756 + 32a)y*® + (1301808 — 160)y*° + (—96a + 15231280)y*2 + - - - |,
(—1698 < o < —209).

The weight enumerator for the minimal shadow case was eliminated in this paper.
The range for the parameter in the near near minimal shadow case was improved
in [27]. There is no known code for either case.

e The possible weight enumerators for self-dual [100, 50, 18] codes are

Sy = ay'® + (= — 200)y™ + (185 4 104500 — 190a)y*8 + - - - |,
Wi =1+ (168 + 52250)y'® + (972180 — 645 + 1024a)y® + - -,
(0 < oo < min{100, —55 3} where — 3265 < 8 < 0),
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and

Sy = 4% + (=209 — a)y'* + (107140 + 18a)y'® + (26137435 — 153a)y*> + - - - |
Wy =1+ (52250 + 16a)y'8 + (994708 — 64a)y?® + (—128cr + 12786784)y*% + - - - |,
(—5952 < a < —209).

The weight enumerator for the near minimal shadow case was eliminated, and the
range for the parameter in the near near minimal shadow case was improved in this
paper. There is no known code for either case.

5 Conclusion

This paper demonstrates some results on self-dual codes. We make two contributions
to this topic. The first one is the decomposition of binary self-dual [4p + f,2p + %,d]
(f =0,2,4) codes with dihedral automorphism group Ds,, where p is an odd prime. These
results are applied to classify self-dual [78, 39, 14] codes with dihedral automorphism group
D3s and we obtain some self-dual codes with new weight enumerators. Furthermore,
we also show that there are at least 141 inequivalent self-dual [116,58, 18] codes with
dihedral automorphism group Dss. Up to equivalence, most of these codes are new since
the orders of the automorphism groups of all but one known self-dual [116, 58, 18] code
are divisible by 23. The second one is the restriction on the extremal self-dual codes with
near minimal shadow, and near extremal self-dual codes with minimal, near minimal, and
near near minimal shadow. And using these results, we eliminate some of the possible
weight enumerators of self-dual codes with lengths 74, 76, 82, 98 and 100 determined in
[14] and [18]. Self-dual codes with these weight enumerators have been constructed only
for the length 76 [16], [1]. Constructing the self-dual codes with these weight enumerators
of other lengths seems to be a challenging problem.

Table 5: Self-dual [116, 58, 18] codes with dihedral auto-
morphism group Dsg

Code Uy U9 Uus U1 (%) S A18 136 jjAut
4 9 | 153|144 | 882 | 12183 | (2,3,4) | 2146 | 178205 o8
Cy 37| 8 | 29 | 882 | 12183 I 2378 | 209989 | 58

Cs 14 | 259 | 273 | 259 | 15951 | (2,3,4) | 2610 | 260391 o8
Cy 21 | 34 | 55 | 259 | 15951 | (2,3,4) | 2784 | 287912 o8
Cs 3 1200|203 | 259 | 15951 | (1,2,3,4) | 2842 | 301397 o8
1
(

Cs 116 | 85 | 31 | 259 | 15951 | (1,2,3,4) | 2842 | 307081 o8

C, | 13 | 180 | 176 | 882 | 12183 73,4) | 2842 | 300556 | 58
Cs | 14 | 132|118 | 882 | 12183 I 2842 | 305196 | 58
Co | 28 | 134106 | 259 | 15951 | (2,3,4) | 2842 | 299396 | 58
Cio | 2 | 138140 | 882 | 12183 | (1,2,3,4) | 2900 | 313287 | 58
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Table 5 Continued
‘ Code ‘ Ui ‘ U9 ‘ us ‘ U1 ‘ (%) ‘ S ‘ Alg ‘ 136 ‘ ﬂAut ‘
Ch 19 | 99 | 118 | 882 | 12183 | (1,2,3,4) | 2900 | 318565 o8
Cha 19 | 99 | 118 | 882 | 12183 | (2,3,4) | 2900 | 310880 o8
Ci3 13 | 145 | 158 | 259 | 15951 | (1,2,3,4) | 2900 | 306066 o8
Ca 37 | 33 4 882 | 12183 1 2900 | 312417 58

Cis 1 | 156 | 155 | 882 | 12183 | (2,3,4) | 2900 | 315549 o8
Cie 20 | 143 | 172 | 882 | 12183 | (1,2,3,4) | 2958 | 325119 58
Ci7 23 | 169 | 146 | 882 | 12183 | (2,3,4) | 2958 | 327410 58
Cis 17 | 39 | 56 | 882 | 12183 | (2,3,4) | 3016 | 343360 o8
Clo | 272|245 | 27 | 5469 | 9024 | (1,2,3,4) | 3016 | 342171 58
Ca 44 1 39 | 5 | 259 | 15951 1 3016 | 340547 58
Co 5 2341229 | 882 | 12183 | (2,3,4) | 3016 | 341620 58
Caa 21 [ 120 | 99 | 882 | 12183 | (2,3,4) | 3016 | 337995 o8
Cas 5 | 150 | 155 | 5469 | 9024 | (1,2,3,4) | 3074 | 342983 58
Ca 29 | 200 | 229 | 882 | 12183 | (2,3,4) | 3074 | 358933 o8
Cas 14 | 96 | 110 | 259 | 15951 | (2,3,4) | 3074 | 348174 58
Cae 97 | 67 | 30 | 882 | 12183 I 3074 | 356903 58
Cor 10 | 167 | 157 | 5469 | 9024 1 3074 | 348377 58
Cas 5 | 279 | 284 | 882 | 12183 | (2,3,4) | 3132 | 361717 58
Cag 10 | 83 | 93 | 5469 | 9024 (2,3,4) | 3132 | 372186 58
Cso 39 | 317 | 278 | 882 | 12183 | (2,3,4) | 3132 | 368793 o8
Cs 31 | 25 6 | 882 | 12183 1 3132 | 359716 o8
Cso 16 | 20 | 4 | 882 | 12183 2,3,4 3132 | 367169 o8
Css 2 1265|267 | 259 | 15951 2,3,4 3190 | 381495 58

371809 o8
) | 3190 | 374593 o8

Css 35 | 14 | 49 | 259 | 15951 | (

(
(77

Ca | 27 | 83 [ 110 | 259 | 15951 | (1,2,3
1,2,3
(

~— ,,';:,,E\_/\_/
w
—_
Ne)
@)

Cs 36 | 134 | 170 | 259 | 15951 )3, 3190 | 381031 o8
Csz | 198 | 185 | 13 | 5469 | 9024 1 3190 | 382916 o8
Csg 44 1 29 | 15 | 882 | 12183 1 3190 | 373375 o8
Cs9 | 136 | 105 | 31 | 259 | 15951 | (1,2,3,4) | 3190 | 382568 58
Cao 9 | 189 | 180 | 5469 | 9024 I 3190 | 378276 58
Cu 10 | 167 | 157 | 5469 | 9024 (2,3,4) | 3190 | 382104 58
Cly2 12 | 259 | 247 | 5469 | 9024 (2,3,4) | 3190 | 391123 o8
Cls 22 | 166 | 188 | 5469 | 9024 (2,3,4) | 3248 | 388455 o8
Clua 42 | 16 | 58 | 882 | 12183 | (2,3,4) | 3248 | 386280 o8
Cius 3 1200|203 | 259 | 15951 | (2,3,4) | 3248 | 396778 o8
1 4

Cye | 201|180 | 21 | 259 | 15951 | (1,2,3,4) | 3248 | 389847 58
Car 12 | 259 | 247 | 5469 | 9024 1 3248 | 391645 58
Cls 13 | 189 | 176 | 882 | 12183 1 3248 | 392022 58
Clo 4 | 172 | 176 | 5469 | 9024 | (1,2,3,4) | 3306 | 406522 o8
Cso 40 | 217 | 257 | 5469 | 9024 | (1,2,3,4) | 3306 | 408958 o8
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Table 5 Continued

‘ Code ‘ Ui ‘ U9 ‘ us ‘ U1 ‘ (%) S ‘ Alg ‘ 136 ‘ ﬂAut ‘
Cs1 40 | 217 | 257 | 5469 | 9024 (2,3,4) | 3306 | 408697 o8
Cs2 44 | 29 | 15 | 882 | 12183 | (1,2,3,4) | 3306 | 398750 o8
Css 9 | 153 | 144 | 882 | 12183 1 3306 | 412119 o8
Csq 21 | 120 | 99 | 882 | 12183 1 3306 | 412554 o8
Css 23 | 169 | 146 | 882 | 12183 I 3306 | 404434 o8
Cse 5 | 279 | 284 | 882 | 12183 I 3335 | 412815 o8
Cs7 10 | 83 | 93 | 5469 | 9024 | (1,2,3,4) | 3364 | 417890 o8
Css 22 | 166 | 188 | 5469 | 9024 | (1,2,3,4) | 3364 | 413830 o8
Cs9 29 | 200 | 229 | 882 | 12183 | (1,2,3,4) | 3364 | 417165 o8
Ceo | 208 | 198 | 10 | 5469 | 9024 1 3364 | 428098 58
Ce1 | 272 | 245 | 27 | 5469 | 9024 1 3364 | 425778 o8
Ce2 o5 | 234 | 229 | 882 | 12183 I 3364 | 423777 o8
Ces 2 | 138 | 140 | 882 | 12183 | (2,3,4) | 3422 | 435812 58
Cea 6 | 172 | 278 | 882 | 12183 | (1,2,3,4) | 3422 | 428939 o8
Ces 39 | 272 | 311 | 5469 | 9024 (2,3,4) | 3422 | 442511 o8
Ces 42 | 55 | 97 | 882 | 12183 | (1,2,3,4) | 3422 | 438045 o8
Cer | 125|122 | 3 | 5469 | 9024 1 3422 | 442395 o8
Ces 17 | 49 | 66 | 5469 | 9024 (2,3,4) | 3480 | 449007 o8
Ceo 42 | 55 | 97 | 882 | 12183 | (2,3,4) | 3480 | 452284 o8
Cro 2 | 265 | 267 | 259 | 15951 | (1,2,3,4) | 3480 | 445556 o8
Cn 27 | 83 | 110 | 259 | 15951 | (2,3,4) | 3480 | 458200 o8
Cro | 184|165 | 19 | 5469 | 9024 1 3480 | 454778 o8
Crzs | 140 | 118 | 22 | 5469 | 9024 1 3480 | 447992 o8
Cra 37 8 29 | 882 | 12183 | (1,2,3,4) | 3480 | 447325 o8
Crs 5 | 150 | 155 | 5469 | 9024 (2,3,4) | 3538 | 470641 o8
Cre 34 | 227 | 263 | 882 | 12183 | (2,3,4) | 3538 | 464638 o8
Crr 44 | 237 | 281 | 882 | 12183 | (1,2,3,4) | 3538 | 464928 o8
Crs 14 | 132 | 118 | 882 | 12183 | (2,3,4) | 3538 | 463594 o8
Cro | 210|190 | 20 | 882 | 12183 1 3596 | 484010 o8
Cso 91 | 63 | 28 | 259 | 15951 | (1,2,3,4) | 3596 | 475455 o8
Cs1 9 | 189 | 180 | 5469 | 9024 (2,3,4) | 3596 | 486214 o8
Cso 1 | 156 | 155 | 882 | 12183 I 3596 | 478645 o8
Css 39 | 272 | 311 | 5469 | 9024 | (1,2,3,4) | 3654 | 489346 o8
Csa 34 | 227|263 | 832 | 12183 | (1,2,3,4) | 3654 | 495581 o8
Css 44 | 237 | 281 | 882 | 12183 | (2,3,4) | 3654 | 494943 o8
Cse 14 | 259 | 273 | 259 | 15951 | (1,2,3,4) | 3654 | 495900 o8
Cs; | 125|122 | 3 | 5469 | 9024 | (1,2,3,4) | 3654 | 509820 o8
Css | 184 | 165 | 19 | 5469 | 9024 | (1,2,3,4) | 3654 | 497089 o8
Cso | 210|190 | 20 | 8382 | 12183 | (2,3,4) | 3683 | 516171 o8
Coo 21 | 34 | 55 | 259 | 15951 I 3712 | 499264 o8
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Table 5 Continued
‘ Code ‘ Uy ‘ U9 ‘ Uus ‘ U1 ‘ (%) ‘ S ‘ Alg ‘ 136 ‘ ﬂAut ‘
Co1 35 | 14 | 49 | 259 | 15951 | (2,3,4) | 3712 | 509095 o8
Coo | 140 | 118 | 22 | 5469 | 9024 | (1,2,3,4) | 3712 | 509588 o8
Cos 31 | 25 6 882 | 12183 | (1,2,3,4) | 3712 | 519970 o8
Coq | 201 | 180 | 21 | 259 | 15951 1 3712 | 516084 58
Cos | 136 | 105 | 31 | 259 | 15951 1 3712 | 519390 o8
Cog 39 | 278 | 317 | 882 | 12183 | (1,2,3,4) | 3770 | 526727 58
Cor 42 | 16 | 58 | 882 | 12183 | (1,2,3,4) | 3770 | 528757 o8
Cos | 208 | 198 | 10 | 5469 | 9024 (2,3,4) | 3770 | 527017 o8

Cog 15 2 13 | 882 | 12183 1 3770 | 536500 58
C1oo 4 | 172 | 176 | 5469 | 9024 (2,3,4) | 3828 | 546853 58
Cior | 116 | 85 | 31 | 259 | 15951 1 3828 | 539255 o8
Choz 6 | 272|278 | 882 | 12183 1 3915 | 565529 o8
Chos | 14 | 96 | 110 | 259 | 15951 1 3944 | 572228 58

Cros | 208 | 198 | 10 | 5469 | 9024 | (1,2,3,4) | 3944 | 581392 58
Crs | 17 | 49 | 66 | 5469 | 9024 | (1,2,3,4) | 4002 | 588816 58
Cios | 184 | 165 | 19 | 5469 | 9024 (2,3,4) |4002 | 598444 58
Cior | 16 | 20 | 4 | 882 | 12183 1 4002 | 605346 58

Chos 6 | 272|278 | 832 | 12183 | (2,3,4) | 4060 | 605201 o8
Cioo | 17 | 39 | 56 | 882 | 12183 | (1,2,3,4) | 4060 | 616279 o8
Cio | 14 | 96 | 110 | 259 | 15951 | (1,2,3,4) | 4060 | 616047 o8
Cip | 15 2 13 | 882 | 12183 | (1,2,3,4) | 4060 | 606941 o8
Crhe | 36 | 134 | 170 | 259 | 15951 | (1,2,3,4) | 4118 | 635274 58
Cyis | 125122 | 3 | 5469 | 9024 (2,3,4) | 4147 | 632026 58
Ciia | 39 | 278 | 317 | 882 | 12183 1 4176 | 645511 58
Cii5 |299 | 273 | 26 | 5469 | 9024 1 4176 | 636724 o8
Cue | 37 | 33 | 4 | 832 | 12183 | (1,2,3,4) | 4176 | 647309 o8
Cyir | 34 | 227 | 263 | 882 | 12183 1 4205 | 658155 o8

Chs | 13 | 145 | 158 | 259 | 15951 | (2,3,4) | 4234 | 686082 o8
Cho | 97 | 67 | 30 | 882 | 12183 | (1,2,3,4) | 4234 | 661722 o8
Cioo | 44 | 39 | 5 | 259 | 15951 | (1,2,3,4) | 4234 | 672278 58
Cia1 4 | 172 | 176 | 5469 | 9024 1 4292 | 684951 58
Cioo | 42 | 16 | 58 | 882 | 12183 1 4292 | 678803 o8
Craz | 15 2 13 | 882 | 12183 | (2,3,4) | 4292 | 691592 58
Ciaq | 210|190 | 20 | 882 | 12183 | (1,2,3,4) | 4292 | 677585 o8
Cios | 35 | 14 | 49 | 259 | 15951 1 4321 | 692114 o8
Cios | 29 | 143 | 172 | 882 | 12183 | (2,3,4) | 4350 | 715169 58
Cror | 198 | 185 | 13 | 5469 | 9024 | (1,2,3,4) | 4408 | 730046 58
Cios | 13 | 145 | 158 | 259 | 15951 4437 | 725377 o8
Cho | 198 | 185 | 13 | 5469 | 9024 (2,3,4) | 4437 | 736078 o8
Ciso | 31 | 25 6 | 882 | 12183 | (2,3,4) | 4553 | 764933 o8
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Table 5 Continued

‘ Code ‘ Uy ‘ U9 ‘ Uus ‘ (%1 ‘ (%) ‘ S ‘ Alg ‘ [36 ‘ JjAut ‘
Cis1 12 | 259 | 247 | 5469 | 9024 | (1,2,3,4) | 4553 | 784682 o8
Cisa | 28 | 134 | 106 | 259 | 15951 1 4582 | 778360 o8
Ciss 5 | 279 | 284 | 882 | 12183 | (1,2,3,4) | 4698 | 817713 o8
Cizqa | 29 | 200 | 229 | 882 | 12183 1 4698 | 827718 o8
Cigs | 116 | 85 | 31 | 259 | 15951 | (2,3,4) | 4698 | 818554 o8
Cise | 36 | 134 | 170 | 259 | 15951 I 4756 | 838100 o8

Chsr 299 | 273 | 26 | 5469 | 9024 (2,3,4) | 4785 | 857124 58
Ciss | 21 | 34 | 55 | 259 | 15951 | (1,2,3,4) | 4872 | 869536 o8
Cisg | 37 | 33 | 4 | 882 | 12183 | (2,3,4) | 4872 | 879715 58

Cha0 3 1200 | 203 | 259 | 15951 1 o075 | 947343 o8
Cin 27 | 83 | 110 | 259 | 15951 1 5220 | 1005807 | 58
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