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Abstract

The existence of optimal binary self-dual codes is a long-standing research prob-
lem. In this paper, we present some results concerning the decomposition of binary
self-dual codes with a dihedral automorphism group D2p, where p is a prime. These
results are applied to construct new self-dual codes with length 78 or 116. We obtain
16 inequivalent self-dual [78, 39, 14] codes, four of which have new weight enumer-
ators. We also show that there are at least 141 inequivalent self-dual [116, 58, 18]
codes, most of which are new up to equivalence. Meanwhile, we give some re-
strictions on the weight enumerators of singly even self-dual codes. We use these
restrictions to exclude some possible weight enumerators of self-dual codes with
lengths 74, 76, 82, 98 and 100.

Keywords: self-dual code, automorphism, weight enumerator

1 Introduction

Binary self-dual codes have been of particular interest for some time now. The extended
Hamming [8, 4, 4] code, the extended Golay [24, 12, 8] code and certain extended quadratic
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residue codes are well-known examples of binary self-dual codes. It is known [31] that if
there is a natural number r > 1 that divides the weight of all vectors in a binary self-dual
code C, then r = 2 or 4. A binary self-dual code in which all weights are divisible by
4 is called a doubly even self-dual (or Type II) code, otherwise we call it a singly even
self-dual (or Type I) code. All doubly even self-dual codes of length up to 40 have been
classified [34], [35], [13], [2] and a classification of singly even self-dual codes of length up
to 38 is also known [34], [35], [13], [4], [3], [28], [6].

Let C be a binary self-dual code of length n and minimum distance d. By results of
Mallows-Sloane [33] and Rains [36], we have

d 6

{
4b n

24
c+ 4; if n 6≡ 22 (mod 24),

4b n
24
c+ 6; if n ≡ 22 (mod 24).

The code C is called extremal if the above equality holds. If d = 4b n
24
c + 2 and n 6≡ 22

(mod 24) or if d = 4b n
24
c+4 and n ≡ 22 (mod 24) then we say C is near extremal. If there

is no extremal code with a given length, then we are interested in the code that attains
the largest possible minimum distance. Such a code is called an optimal code. A list of
possible weight enumerators of extremal self-dual codes of length up to 72 was given by
Conway and Sloane in [14]. This list was extended by Dougherty, Gulliver, and Harada in
[18], where lengths are listed up to 100. However, the existence of some extremal self-dual
codes is still unknown. For the classification and enumeration of binary self-dual codes,
a survey of known results can be found in [30], [37]. For the database of self-dual codes,
we refer the reader to [26], [19].

For self-dual codes with large length, a complete classification seems to be impossible.
Researchers have focused on self-dual codes with the largest possible minimum weights.
Many methods have been proposed to find new self-dual codes with good parameters.
Searching for such codes with a double circulant form is a very efficient way, which has
led to many good codes [21], [22], [25]. Harada [24] developed a method involving the
double extension of codes. Gaborit and Otmani [20] gave a general experimental method
to construct self-dual codes. Huffman [29] constructed binary self-dual codes by applying
the automorphism of codes.

In recent years there have been extensive efforts on the construction of self-dual codes
by prescribing certain automorphisms. In 1982, Huffman [29] investigated binary self-dual
codes with automorphisms of odd prime order and derived the decomposition of such a
code as a direct sum of two subcodes. In 1983, Yorgov [43] improved this method and
derived necessary and sufficient conditions for codes to be equivalent. In 1997, Buyuklieva
[12] developed a new method for constructing binary self-dual codes having an automor-
phism of order 2. In 2004, Dontcheva et al. [17] extended the results to the decomposition
of binary self-dual codes possessing an automorphism of order pq, where p and q are odd
prime numbers. This technique yields many extremal or optimal codes which possess an
automorphism (see [9], [10], [11], [15], [39], [41], [40], [42]).

Let C be a singly even self-dual [n, n/2, d] code and let C0 be its doubly even subcode
that contains all the codewords of weight divisible by 4. There are three cosets C1, C2,
C3 of C0 such that C⊥0 = C0

⋃
C1

⋃
C2

⋃
C3 and C = C0

⋃
C2. The set S = C1

⋃
C3 is
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called the shadow of C. Concerning the weight enumerator for S, the following theorem
was given in [14].

Theorem 1. Let S(y) = Σn
r=0Bry

r be the weight enumerator of S. Then the following
hold:

1. Br = Bn−r for all r,

2. Br = 0 unless r ≡ n/2 (mod 4),

3. B0 = 0,

4. Br 6 1 for r < 2n/d,

5. at most one of Br is nonzero for r < (d+ 4)/2.

It was shown in [18], [27], [22] that the weight enumerator of a binary self-dual
[78, 39, 14] code and its shadow weight enumerator have one of the forms

W78,1 = 1 + (3705 + 8β)y14 + (62244 + 512α− 24β)y16 + (774592− 4608α− 64β)y18 + · · · ,

S78,1 = αy7 +(−β−16α)y11 +(14β+120α+31616)y15 +(−560−91β+4892160)y19 + · · · ,

with α = 0, 1, 2 and −448 6 β 6 0, or

W78,2 = 1 + (3705 + 8α)y14 + (71460− 24α)y16 + (658880− 64α)y18 + · · · ,

S78,2 = y3 + (−α− 135)y11 + (32960 + 14α)y15 + (4885140− 91α)y19 + · · · ,

with −468 6 α 6 −135.
Known results on the binary self-dual [78, 39, 14] codes are listed as follows.

• The existence of such codes with the weight enumerator of the form W78,1 with
α = 0 and β = −19 was asserted in [1].

• It was shown in [22] that there are exactly six inequivalent double circulant self-
dual [78, 39, 14] codes. Five of them have weight enumerators of the form W78,1

with α = 0 and β = 0. The remaining one has weight enumerator of form W78,1

with α = 0 and β = −78.

• Gaborit and Otmani [20] constructed a code having weight enumerator of form W78,1

with α = 0 and β = −26.

• In [23], Gulliver, Harada, and Kim constructed more than 50 inequivalent codes.
Among these codes, one has weight enumerator of form W78,1 with α = 0 and
β = −78, one has weight enumerator of form W78,2 with α = −135, and all the
others have weight enumerators of form W78,1 with α = 0 and β = 0.

We also summarize known results on binary self-dual [116, 58, 18] codes.
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• Gaborit and Otmani [20] constructed a self-dual [116, 58, 18] code.

• Yorgova and Wassermann [45] found that there are at least 7 inequivalent self-dual
[116, 58, 18] codes with an automorphism of order 23.

In this paper, we investigate binary self-dual codes with a dihedral automorphism
group D2p of order 2p, where p is an odd prime. The results will be applied to classify all
binary self-dual [78, 39, 14] codes with a dihedral automorphism group D38. Some of these
have weight enumerator of form W78,1 with α = 0 and β = −38 (the existence of such
codes was previously unknown). Furthermore, we will show that there exist at least 141
inequivalent binary self-dual [116, 58, 18] codes with dihedral automorphism group D58.
Since the order of the automorphism group is 58 for all of these codes, almost all of them
are new up to equivalence.

In [8], Bouyuklieva and Willems introduced the definition of singly even self-dual codes
with minimal shadow.

Definition 2. We say a self-dual code C of length n = 24m + 8l + 2r with l = 0, 1, 2,
r = 0, 1, 2, 3, is a code with minimal shadow if:

1. wt(S) = r if r > 0; and

2. wt(S) = 4 if r = 0.

They proved that extremal self-dual codes of lengths n = 24m + 2, 24m + 4, 24m +
6, 24m+10, and 24m+22 with minimal shadow do not exist. Moreover, they give explicit
bounds in case the shadow is minimal. In this work, we consider extremal self-dual codes
with near minimal and near near minimal shadow, and near extremal self-dual codes with
minimal, near minimal, and near near minimal shadow and show nonexistence of such
codes for certain parameters.

This paper is organized as follows. In Section 2 we first recall some results about
binary self-dual codes having an automorphism of odd prime order. Then we extend
these results to the case where the codes have dihedral automorphism group D2p. In
Section 3 we investigate self-dual [78, 39, 14] codes with dihedral automorphism group
D38 and [116, 58, 18] codes with dihedral automorphism group D58. In Section 4 we prove
nonexistence of self-dual codes for certain parameters. Section 5 concludes the paper.

2 Preliminaries

Let C be a binary code with an automorphism σ of odd prime order p. If σ has c cycles of
length p and f fixed points, we say that σ is of type p− (c; f). Without loss of generality
we may write

σ = Ω1 · · ·ΩcΩc+1 · · ·Ωc+f ,

where Ωi is a p-cycle for i = 1, 2, · · · , c, whereas for i = c + 1, · · · , c + f , Ωi is a fixed
point. Let Fσ(C) = {v ∈ C|vσ = v} and Eσ(C) = {v ∈ C|wt(v|Ωi

) ≡ 0 (mod 2), i =
0, 1, · · · , c + f}, where v|Ωi

is the restriction of v to Ωi. With this notation, we have the
following lemma.
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Lemma 3. [29] C = Fσ(C)⊕ Eσ(C).

Clearly v ∈ Fσ(C) if and only if v ∈ C and v is constant on each cycle. Let π : Fσ(C)→
Fc+f2 denote the map defined by π(v|Ωi

) = vj for some j ∈ Ωi and i = 1, 2, · · · , c + f .
Then π(Fσ(C)) is a binary self-dual code [29].

By deleting the last f coordinates of Eσ(C), we obtain a new code, which is denoted
by Eσ(C)∗. For v ∈ Eσ(C)∗ we identify v|Ωi

= (v0, v1, · · · , vp−1) with the polynomial
v0 + v1x + · · · + vp−1x

p−1 from P , where P is the set of even weight polynomials in
F2[x]/(xp − 1). Thus we obtain the map ϕ : Eσ(C)∗ → P c, where P c denotes the module
of all c-tuples over P . Clearly, ϕ(Eσ(C)∗) is a submodule of the P -module P c. If the
multiplicative order of 2 modulo p is p−1, then the polynomial 1+x+x2+· · ·+xp−1 of P is
irreducible over F2. Hence P is an extension field of F2 with identity e(x) = x+ · · ·+xp−1

and the following result holds.

Lemma 4. [43] Assume that the multiplicative order of 2 modulo p is p − 1. Then a
binary code C with an automorphism σ of odd prime order p is self-dual if and only if the
following two conditions hold.

(a) π(Fσ(C)) is a binary self-dual code of length c+ f ;

(b) ϕ(Eσ(C)∗) is a self-dual code of length c over the field P under the inner product

u · v =
∑c

i=1 uiv
q
i for q = 2

p−1
2 .

To classify the codes, we need additional conditions for equivalence and we use the
following lemma.

Lemma 5. [44] The following transformations applied to C lead to equivalent codes with
automorphism σ:

(a) a substitution x→ xt in ϕ(Eσ(C)∗) where t is an integer, 1 6 t 6 p− 1;

(b) a multiplication of any coordinate of ϕ(Eσ(C)∗) by xtj where tj is an integer, 0 6
tj 6 p− 1, j = 1, 2, · · · , c;

(c) a permutation of the first c cycles of σ;

(d) a permutation of the last f coordinates of C.

The next definition gives an invariant of a code which was introduced by Dontcheva
and Harada [15].

Definition 6. Let C be a binary self-dual [n, k, d] code and {c1, c2, · · · , cm} be the set of
all codewords of weight d. The intersection numbers of the code C are defined as

Ij = ]{(cs, ct)|dis(cs, ct) = j, 1 6 s < t 6 m},

where dis(cs, ct) denotes the Hamming distance between cs and ct. Then Ij is an invariant
under permutations of the coordinates.
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The following two lemmas are efficient in excluding some types of automorphisms of
a self-dual code.

Lemma 7. [44] Let C be a binary self-dual [n, k, d] code and let σ ∈ Aut(C) be of type
p− (c; f), where p is an odd prime. If g(s) =

∑s−1
i=0d

d
2i
e, then

(a) pc > g(p−1
2
c), and

(b) f > g(f−c
2

) for f > c.

Lemma 8. [7] Let C be a binary self-dual code of length n and let σ be an automorphism
of C of type p− (c; f), where p is an odd prime. If the multiplicative order of 2 modulo p
is even, then c is even.

In order to get our results, we give the following hypothesis.

Hypothesis 9. C is a binary self-dual [n, n/2, d] code, where n > 52, n = 4p+ f , p is an
odd prime number with 2 as a primitive root, f = 0, 2, 4 and

d >

{
4b n

24
c+ 2; if n 6≡ 22 (mod 24),

4b n
24
c+ 4; if n ≡ 22 (mod 24).

From Hypothesis 9, it is easy to see that p > 13 and d > 10. As a preparation, we
have the following lemma.

Lemma 10. Under Hypothesis 9, if C has an automorphism σ of type p − (4; f), then
ϕ(Eσ(C)∗) is a self-dual [4, 2, 3] code over the field P ∼= F2p−1.

Proof. According to Lemma 4, ϕ(Eσ(C)∗) is a self-dual [4, 2] code over the field P ∼=
F2p−1 . Since the minimum distance of ϕ(Eσ(C)∗) cannot be 4, we only need to prove that
ϕ(Eσ(C)∗) has minimum distance 6= 1, 2.

Case 1: ϕ(Eσ(C)∗) has minimum weight 1.
Take u ∈ ϕ(Eσ(C)∗) with wt(u) = 1. Then we can assume that u = (v1, 0, 0, 0) with

v1 6= 0. Since (x+1)v−1
1 u = (x+1, 0, 0, 0) ∈ ϕ(Eσ(C)∗), we have wt(ϕ−1((x+1)v−1

1 u)) = 2
which contradicts the fact d > 10.

Case 2: ϕ(Eσ(C)∗) has minimum weight 2.
Take u ∈ ϕ(Eσ(C)∗) with wt(u) = 2. Suppose u = (v1, v2, 0, 0) with v1, v2 6= 0. Let

U = {vu|v ∈ P}. Then dimF2U = p − 1. Set W = ϕ−1(U) ⊆ Eσ(C)∗. Let W ∗ be the
code obtained from W by deleting the last 2p coordinates. Then W ∗ is a [2p, p − 1, d′]
code, where d′ > d. To get a contradiction, take g(s) =

∑s−1
i=0d

d′

2i
e.

First we consider the case p ≡ 1 (mod 6) and f = 0. We can write p = 6k + 1, for
some integer k > 2. Then n = 24k+ 4, d′ > d > 4k+ 2, g(1) > 4k+ 2, g(2) > 6k+ 3 and
g(3) > 7k + 4. If 2l < 2k + 1 6 2l+1 for l ∈ N then for i > l we have 2k+1

2i
6 2l+1−i 6 1
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and therefore d2k+1
2i
e = 1. Hence

g(p− 1) >
p−2∑
i=0

d4k + 2

2i
e > 7k + 4 +

p−3∑
i=2

d2k + 1

2i
e

= 7k + 4 +
l∑

i=2

d2k + 1

2i
e+ (p− 3− l)

=
l∑

i=2

d2k + 1

2i
e+ 12k + 2 + (k − l).

If k = 2, then l = 2 and g(p− 1) > 12k + 2.
If k = 3, then l = 2 and g(p− 1) > 12k + 2.
If k > 4, then l > 3. Since (k − l) > (2l−1 − l − 1

2
) > 0, we get g(p − 1) > 12k + 2.

Consequently, g(p− 1) > 12k + 2 = 2p which contradicts the Griesmer Bound [31].
For the other cases of p and f , a similar discussion leads to a contradiction. Hence,

ϕ(Eσ(C)∗) can not have minimum weight 2.

Now we are ready to prove our result.

Theorem 11. Under Hypothesis 9, if C has a dihedral automorphism group D2p, and
σ ∈ D2p is an automorphism of type p − (4; f) then C = Fσ(C) ⊕ Eσ(C), and there is a
generator matrix of ϕ(Eσ(C)∗) that has the form

gen(ϕ(Eσ(C)∗)) =

[
bu1 0 av1 av2bu3

0 bu2 av2 av1bu3

]
, (1)

where a, b are the elements of P of order q − 1 and q+1
p

, respectively. And av1 + av2 = e,

1 6 v1 < v2 6 q−2, 0 6 ui 6
q+1
p
−1 for i = 1, 2, 3, where q = 2

p−1
2 . Also, the ui’s satisfy

one of the following conditions:

1. u1 + u2 ≡ u3 (mod q+1
p

);

2. u2 + u3 ≡ u1 (mod q+1
p

);

3. u1 + u3 ≡ u2 (mod q+1
p

);

4. u1 = u2 = u3 = 0.

Proof. Suppose that C is a self-dual [n, n/2, d] code with dihedral automorphism group
D2p. Let σ ∈ D2p be an automorphism of type p− (4; f). Without loss of generality, we
can write

σ = (1, · · · , p)(p+ 1, · · · , 2p)(2p+ 1, · · · , 3p)(3p+ 1, · · · , 4p).
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Then ϕ(Eσ(C)∗) is a self-dual [4, 2, 3] code over the field P under the inner product

u · v =
∑c

i=1 uiv
q
i for q = 2

p−1
2 by Lemma 10. Let e be the identity element of P , α a

primitive element of P , and set a = αq+1 and b = α(q−1)p. Then by a computation similar
to that in [44], we have

gen(ϕ(Eσ(C)∗)) =

[
bu1 0 av1 av2bu3

0 bu2 av2 av1bu3

]
, (2)

where av1 + av2 = e, 1 6 v1 < v2 6 q − 2, and 0 6 ui 6
q+1
p
− 1 for i = 1, 2, 3.

We consider the involution of D2p acting on C. Let τ ∈ D2p be an element of order 2
such that τστ = σ−1, that is

(τ(1), · · · , τ(p))(τ(p+ 1), · · · , τ(2p))(τ(2p+ 1), · · · , τ(3p))(τ(3p+ 1), · · · , τ(4p))

= (p, · · · , 1)(2p, · · · , p+ 1)(3p, · · · , 2p+ 1)(4p, · · · , 3p+ 1).
(3)

Then by Lemma 5(b)(d) we may relabel the coordinates so that τ ∈ S where S is the set
consisting of the following elements:

(1, 2p) · · · (p, p+ 1)(2p+ 1, 4p) · · · (3p, 3p+ 1),

(1, 3p) · · · (p, 2p+ 1)(p+ 1, 4p) · · · (2p, 3p+ 1),

(1, 4p) · · · (p, 3p+ 1)(p+ 1, 3p) · · · (2p, 2p+ 1),

(1, p) · · · (p− 1

2
,
p+ 3

2
)(p+ 1, 2p) · · · (3p− 1

2
,
3p+ 3

2
) · · · (3p+ 1, 4p) · · · (7p− 1

2
,
7p+ 3

2
),

(1, p) · · · (p− 1

2
,
p+ 3

2
)(p+ 1, 2p) · · · (3p− 1

2
,
3p+ 3

2
)(2p+ 1, 4p) · · · (3p, 3p+ 1),

(1, p) · · · (p− 1

2
,
p+ 3

2
)(p+ 1, 3p) · · · (2p, 2p+ 1)(3p+ 1, 4p) · · · (7p− 1

2
,
7p+ 3

2
),

(1, p) · · · (p− 1

2
,
p+ 3

2
)(p+ 1, 4p) · · · (2p, 3p+ 1)(2p+ 1, 3p) · · · (5p− 1

2
,
5p+ 1

2
),

(1, 2p) · · · (p, p+ 1)(2p+ 1, 3p) · · · (5p− 1

2
,
5p+ 1

2
)(3p+ 1, 4p) · · · (7p− 1

2
,
7p+ 3

2
),

(1, 3p) · · · (p, 2p+ 1)(p+ 1, 2p) · · · (3p− 1

2
,
3p+ 3

2
)(3p+ 1, 4p) · · · (7p− 1

2
,
7p+ 3

2
),

(1, 4p) · · · (p, 3p+ 1)(p+ 1, 2p) · · · (3p− 1

2
,
3p+ 3

2
)(2p+ 1, 3p) · · · (5p− 1

2
,
5p+ 1

2
).

We now consider the action of τ on ϕ(Eσ(C)∗).
Let − : F2p−1 → F2p−1 , x → x = xq be the nontrivial Galois automorphism of F2p−1

with fixed field Fq.
Since the computation of each case is similar, we take τ = (1, 2p) · · · (p, p + 1)(2p +

1, 4p) · · · (3p, 3p+ 1) as a sample. For the other cases, we just list the results.
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The action of τ is given by

τ(x1, x2, x3, x4) = (x2, x1, x4, x3),

where x1, x2, x3, x4 ∈ F2p−1 . So

τ(gen(ϕ(Eσ(C)∗))) =

[
0 b

u1
av2b

u3
av1

b
u2

0 av1b
u3

av2

]
. (4)

Since τ ∈ Aut(C), then σ−1(τ(Eσ(C))) ⊆ C, due to the orthogonality of the rows of
matrices (2) and (4), we get the following equations

av1 + av2 = e, bu1+u2 + bu3a2v1 + bu3a2v2 = 0,

which imply that u1 + u2 ≡ u3 (mod q+1
p

).

If τ = (1, 3p) · · · (p, 2p+ 1)(p+ 1, 4p) · · · (2p, 3p+ 1), then u2 + u3 ≡ u1 (mod q+1
p

).

If τ = (1, 4p) · · · (p, 3p+ 1)(p+ 1, 3p) · · · (2p, 2p+ 1), then u1 + u3 ≡ u2 (mod q+1
p

).

If τ = (1, p) · · · (p−1
2
, p+3

2
)(p + 1, 2p) · · · (3p−1

2
, 3p+3

2
)(2p + 1, 3p) · · · (5p−1

2
, 5p+1

2
)(3p +

1, 4p) · · · (7p−1
2
, 7p+3

2
)), then u1 = u2 = u3 = 0.

In the other cases, there is no solution.

Remark 12. Our assumptions may seem restrictive, but they make for simple notations
and are sufficient for our purposes.

3 New Optimal Self-Dual Codes with Dihedral Automorphism
Group D2p

3.1 Self-Dual [78, 39, 14] Codes with Dihedral Automorphism Group D38

Theorem 13. There are exactly 16 inequivalent self-dual [78, 39, 14] codes with dihedral
automorphism group D38; they are listed in Table 1.

Proof. Assume that C is a self-dual [78, 39, 14] code having dihedral automorphism group
D38 and let σ ∈ D38 be an automorphism of order 19. It is easy to see that 19 − (4; 2)
is the only possible type for σ by Lemmas 7 and 8. By Lemma 4, π(Fσ(C)) is a binary
self-dual [6, 3] code. Consequently,

gen(π(Fσ(C))) =


1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

 . (5)

Let P be the vector space of even weight polynomials in F2[x]/(x19 − 1), e be the
identity of P , a = x + x2 + x5 + x6 + x13 + x14 + x17 + x18, and b = x4 + x7 + x8 + x9 +
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x10 + x11 + x12 + x15 + x16 + x17. It is easy to verify that the multiplicative orders of a
and b are 29 − 1 and (29 + 1)/19, respectively.

Since 2 is a primitive root of 19, it is easy to verify Hypothesis 9. By Theorem 11
there is a generator matrix of ϕ(Eσ(C)∗) of the form

gen(ϕ(Eσ(C)∗)) =

[
bu1 0 av1 av2bu3

0 bu2 av2 av1bu3

]
, (6)

where av1 + av2 = e, 1 6 v1 < v2 6 510, 0 6 ui 6 26 for i = 1, 2, 3, and the ui’s satisfy
one of the following conditions:

1. u1 + u2 ≡ u3 (mod 27);

2. u2 + u3 ≡ u1 (mod 27);

3. u1 + u3 ≡ u2 (mod 27);

4. u1 = u2 = u3 = 0.

From [16], we have (v1, v2) ∈ V , where V = {(1, 93), (6, 13), (7, 505), (9, 59), (15, 37),
(19, 105), (20, 99), (21, 87), (25, 251), (29, 178), (31, 193), (34, 175), (39, 111), (43, 246), (45,
61), (46, 255), (49, 119), (63, 190), (73, 219), (83, 138), (91, 167), (94, 169), (103, 108), (106,
239), (114, 221), (125, 187), (155, 213), (179, 220), (191, 242)}.

Let G be the automorphism group of the code generated by gen(π(Fσ(C))). Let
S be the stabilizer of G on the set of fixed points {5, 6}. Suppose s belongs to the
symmetric group S4. Then we use Cs to denote the self-dual code determined by Eσ
and the matrix π−1(s(gen(π(Fσ(C))))). By [32, Lemma 4.1], if s1 and s2 are permu-
tations from the group S4 and Ss1 = Ss2, then the codes Cs1 and Cs2 are equiv-
alent. So in order to get all inequivalent self-dual [78, 39, 14] codes with a dihedral
automorphism group D38, we must check π−1(s(gen(π(Fσ(C))))), where s ∈ S4/S =
{I, (1, 2, 3, 4), (1, 2), (1, 3)(2, 4), (1, 3, 4), (1, 4, 3, 2)}.

Now we consider the involution τ of D38 acting on π−1(s(gen(π(Fσ(C))))).
If τ = (1, 38) · · · (19, 20)(39, 76) · · · (57, 58), an easy computation shows that s must

be (1, 2, 3, 4).
Similarly, if τ = (1, 57) · · · (19, 39)(20, 76) · · · (38, 58), then s ∈ {(1, 3, 4), (1, 2)}.
If τ = (1, 76) · · · (19, 58)(20, 57) · · · (38, 39), then s ∈ {I, (1, 3)(2, 4), (1, 4, 3, 2)}.
If τ = (1, 19) · · · (9, 11)(20, 38) · · · (28, 30)(39, 57) · · · (47, 49)(58, 76) · · · (66, 68), then

s ∈ {I, (1, 2, 3, 4), (1, 2), (1, 3)(2, 4), (1, 3, 4), (1, 4, 3, 2)}.
Therefore, we should analyze the generator matrix

gen(C) =

[
π−1(s(gen(π(Fσ(C)))))

gen(Eσ)

]
, (7)

where gen(π(Fσ(C))) has been determined in (5) and gen(Eσ) corresponds to (6) with
(v1, v2) ∈ V , 0 6 ui 6 26 for i = 1, 2, 3, and the ui’s (i = 1, 2, 3) and s satisfy one of the
following conditions:
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1. u1 + u2 ≡ u3 (mod 27), s = (1, 2, 3, 4);

2. u2 + u3 ≡ u1 (mod 27), s ∈ {(1, 3, 4), (1, 2)};

3. u1 + u3 ≡ u2 (mod 27), s ∈ {I, (1, 3)(2, 4), (1, 4, 3, 2)};

4. u1 = u2 = u3 = 0, s ∈ {I, (1, 2, 3, 4), (1, 2), (1, 3)(2, 4), (1, 3, 4), (1, 4, 3, 2)}.

Using MAGMA [5], we found exactly 16 inequivalent self-dual [78, 39, 14] codes with
dihedral automorphism group D38. Four of them have weight enumerator W78,1 with α = 0
and β = −38 which was unknown before. The corresponding values of the parameters are
given in Table 1 (The explicit generator matrices for these self-dual codes can be found at
http://www.math.zju.edu.cn/~ggn/selfdualcodes/Self-Dual-Codes.txt). All the
codes have weight enumerators W78,1 with α = 0, so we just list the values of β. Here
I28 is the intersection number. I is the identity permutation in the group S4 and ]Aut
denotes the order of the automorphism group of the corresponding code.

Since all the intersection numbers of the codes listed in Table 1 are different, they are
inequivalent.

Table 1: Self-dual [78, 39, 14] codes with dihedral automorphism group D38

Code u1 u2 u3 v1 v2 s β I28 ]Aut
C1 6 15 21 1 93 (1, 2, 3, 4) 0 646285 38
C2 6 12 18 1 93 (1, 2, 3, 4) 0 643910 38
C3 10 10 0 215 335 (1, 3, 4) 0 644537 38
C4 10 10 0 215 335 I 0 646266 38
C5 10 13 3 29 178 I 0 643815 38
C6 10 34 24 29 178 I 0 642428 38
C7 29 9 20 35 231 (1, 3, 4) 0 642010 38
C8 22 13 18 49 119 I 0 645107 38
C9 25 21 4 83 138 (1, 3, 4) 0 650313 38
C10 24 2 22 83 138 (1, 3, 4) 0 647254 38
C11 20 25 22 83 138 (1, 3, 4) 0 645278 38
C12 17 21 23 83 138 (1, 3, 4) 0 648546 38
C13 26 6 5 9 59 (1, 2, 3, 4) −38 547523 38
C14 21 12 6 19 105 (1, 2, 3, 4) −38 546573 38
C15 21 15 9 19 105 (1, 2, 3, 4) −38 546649 38
C16 15 5 17 29 178 I −38 544882 38

Remark 14. It took about 5 hours on a 3 GHz CPU to classify the self-dual [78, 39, 14]
codes with a dihedral automorphism group D38.
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3.2 Self-Dual [116, 58, 18] Codes with a Dihedral Automorphism Group D58

Theorem 15. There are at least 141 inequivalent self-dual [116, 58, 18] codes with dihedral
automorphism group D58. They are listed in Table 5.

Proof. Suppose C is a self-dual [116, 58, 18] code with dihedral automorphism group D58

and let σ ∈ D58 have order 29. A similar discussion to that in the previous subsection
leads to

gen(C) =

[
π−1(s(gen(π(Fσ(C)))))

gen(Eσ(C))

]
, (8)

where

gen(π(Fσ(C))) =

[
1 1 0 0

0 0 1 1

]
, (9)

s ∈ S4/S, where S is the automorphism group of the code generated by gen(π(Fσ(C))),
and gen(Eσ(C)) corresponds to

gen(ϕ(Eσ(C)∗)) =

[
bu1 0 av1 av2bu3

0 bu2 av2 av1bu3

]
, (10)

with a = x+ x3 + x4 + x6 + x9 + x10 + x11 + x18 + x19 + x20 + x23 + x25 + x26 + x28 ∈ P
of multiplicative order 214 − 1, b = x + x2 + x3 + x4 + x6 + x7 + x10 + x12 + x13 + x14 +
x17 + x19 + x20 + x21 + x22 + x28 ∈ P of multiplicative order (214 + 1)/29 and P being the
set of all even weight polynomials in F2[x]/(x29 − 1), av1 + av2 = e, 1 6 v1 < v2 6 214 − 2
and 0 6 ui 6 564 for i = 1, 2, 3. The ui’s also satisfy one of the following conditions:

1. u1 + u2 ≡ u3 (mod 565);

2. u2 + u3 ≡ u1 (mod 565);

3. u1 + u3 ≡ u2 (mod 565);

4. u1 = u2 = u3 = 0.

Using MAGMA [5], we found at least 141 inequivalent self-dual [116, 58, 18] codes
with dihedral automorphism group D58. The corresponding values of the parameters
are given in Table 5 (The explicit generator matrices for these self-dual codes can be
found at http://www.math.zju.edu.cn/~ggn/selfdualcodes/Self-Dual-Codes.txt).
Here A18 denotes the number of codewords with weight 18, and I36 is the intersection
number. I is the identity permutation in the group S4 and ]Aut denotes the order of the
automorphism group of the corresponding code.

It is easy to see that all the intersection numbers of the codes listed in Table 5 are
different, hence they are inequivalent. Since all the automorphism groups have order 58,
they are inequivalent with the codes constructed in [45].
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4 Nonexistence of Some Self-Dual Codes

4.1 Some Restrictions on Weight Enumerators

In this section, we study the nonexistence of some singly even self-dual codes. According
to [14], if C is a singly-even self-dual code of length n = 24m + 8l + 2r with l = 0, 1, 2
and r = 0, 1, 2, 3, the weight enumerator of C and S are given by:

W (y) = Σ12m+4l+r
j=0 ajy

2j = Σ3m+l
i=0 ci(1 + y2)12m+4l+r−4i(y2(1− y2)2)i,

S(y) = Σ6m+2l
j=0 bjy

4j+r = Σ3m+l
i=0 (−1)ici2

12m+4l+r−6iy12m+4l+r−4i(1− y4)2i.

We can write the ci as a linear combination of the ai and as a linear combination of the
bi [36]:

ci = Σi
j=0αijaj = Σ3m+l−i

j=0 βijbj. (11)

As a preparation, we give the definition of near minimal shadow and near near minimal
shadow.

Definition 16. We say a self-dual code C of length n = 24m + 8l + 2r with l = 0, 1, 2,
r = 0, 1, 2, 3, is a code with near minimal shadow if:

1. wt(S) = r + 4 if r > 0; and

2. wt(S) = 8 if r = 0.

And a code with near near minimal shadow if:

1. wt(S) = r + 8 if r > 0; and

2. wt(S) = 12 if r = 0.

Then we have the following theorem.

Theorem 17. An extremal self-dual code of length n = 24m+ 8l+ 2r with near minimal
shadow does not exist whenever:

1. r = 1 and l = 0,

2. r = 1, l = 1 and −12m+5
−4m−2

(
5m+1
m

)
− 3m

2m+1

(
5m
m−1

)
is not an integer,

3. r = 2, l = 0 and 2(6m+1)(8m+1)
16m(2m+1)

(
5m
m−1

)
− 3m−1

2m+1

(
5m−1
m−2

)
is not an integer,

4. r = 3, l = 0 and 3(4m+1)(6m+1)
8m(2m+1)

(
5m
m−1

)
− 3m−1

2m+1

(
5m−1
m−2

)
is not an integer.
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Proof. Suppose C is an extremal singly even self-dual code of length n = 24m + 8l + 2r
with near minimal shadow, where r > 0. Then d = 4m + 4, wt(S) = r + 4, a0 = 1 and
a1 = · · · = a2m+1 = 0.

By Theorem 1, if r > 0 we have b0 = 0, b1 = 1 and b2 = b3 = · · · = bm−2 = 0 for
m > 1.

For the case when r = 1 and l = 0, if bm−1 6= 0 then there must exist some u in S with
wt(u) = 4m− 3 as well as some v in S with wt(v) = 5. But then we have u+ v ∈ C with
wt(u + v) 6 4m + 2, a contradiction to the minimum weight of C. Then we must have
bm−1 = 0. Then by (11) we have

c2m+1 = α2m+1,0 = β2m+1,1 + Σm−1
j=mβ2m+1,jbj.

This gives us c2m+1 = α2m+1,0 = β2m+1,1. The αij and βij were computed in [8] and so we
get

−(12m+ 1)(56m+ 4)

(2m+ 1)(m− 1)

(
5m− 1

m− 2

)
= −25 3m− 1

2m+ 1

(
5m− 1

m− 2

)
,

which has no integer solution.
For the case when r = 1 and l = 1, again we must have bm−1 = 0. Then (11) gives us

α2m+1,0 = β2m+1,1 + β2m+1,mbm,

and so

bm =
α2m+1,0 − β2m+1,1

β2m+1,m

=
−12m+ 5

−4m− 2

(
5m+ 1

m

)
− 3m

2m+ 1

(
5m

m− 1

)
, (12)

which must be an integer for such a code to exist.
For the case when r = 2 and l = 0 we have b2 = b3 = · · · = bm−2 = 0 and from (11)

we get
α2m+1,0 = β2m+1,1 + β2m+1,m−1bm−1,

and so

bm−1 =
α2m+1,0 − β2m+1,1

β2m+1,m−1

=
2(6m+ 1)(8m+ 1)

16m(2m+ 1)

(
5m

m− 1

)
− 3m− 1

2m+ 1

(
5m− 1

m− 2

)
, (13)

which must be an integer for such a code to exist.
When r = 3 and l = 0, we have b2 = b3 = · · · = bm−2 = 0 and from (11) we get

α2m+1,0 = β2m+1,1 + β2m+1,m−1bm−1,

which gives

bm−1 =
α2m+1,0 − β2m+1,1

β2m+1,m−1

=
3(4m+ 1)(6m+ 1)

8m(2m+ 1)

(
5m

m− 1

)
− 3m− 1

2m+ 1

(
5m− 1

m− 2

)
, (14)

which must be an integer for such a code to exist.
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For the near extremal self-dual code, we have a similar result.

Theorem 18. A near extremal self-dual code with minimal shadow does not exist when-
ever:

1. r = 1, l = 0 and 24m+2
m

(
5m−1
m−1

)
− 3

2

(
5m−1
m

)
is not an integer,

2. r = 2, l = 0 and 24m+4
m

[(
5m
m−2

)
+ 3
(

5m+1
m−2

)]
− 3

2

(
5m−1
m

)
is not an integer.

Proof. Let C be a near extremal self-dual code of length n = 24m+ 8l+ 2r with minimal
shadow, where r > 0. Then we have d = 4m+ 2, wt(S) = r, a0 = 1 and a1 = a2 = · · · =
a2m = 0.

Since r > 0, then by Theorem 1, we have b0 = 1 and b1 = b2 = · · · = bm−2 = 0 for
m > 1, otherwise there will be v in S with wt(v) 6 4m−8 + r, and u in S with wt(u) = r
so that u + v is in C and wt(u + v) 6 4m − 8 + 2r 6 4m − 2, a contradiction to the
minimum weight of C.

Now suppose r = 1, 2 and l = 0. If bm−1 6= 0 there will be u and v in S with
wt(u + v) 6 4m − 3 + r 6 4m, a contradiction to the minimum weight of C. Then
bm−1 = 0. From (11) we have

α2m,0 = β2m,0 + β2m,m.

According to [36] we have

α2m(24m+ 2r) = −12m+ r

2m
[coeff. of y2m−1 in (1 + y)−4m−r−1(1− y)−4m]

= −12m+ r

2m
[coeff. of y2m−1 in (1 + y)−r−1(1− y2)−4m]

= −12m+ r

2m
[coeff. of y2m−1 in (1− y2)−4m−r−1(1− y)r+1]

= −12m+ r

2m
[coeff. of y2m−1 in (1− y)Σm

j=0

(
4m+ r + j

j

)
y2j]

=

{
−12m+1

m

(
5m−1
m−1

)
; if r = 1,

6m+1
m

[
(

5m
m−2

)
+ 3
(

5m+1
m−1

)
]; if r = 2.

We also have β2m,0 = 2−r 3
2

(
5m−1
m

)
and β2m,m = 2−r. Then if r = 1, (11) gives us

bm =
24m+ 2

m

(
5m− 1

m− 1

)
− 3

2

(
5m− 1

m

)
, (15)

which must be an integer for such a code to exist, and if r = 2, (11) gives us

bm =
24m+ 4

m

[(
5m

m− 2

)
+ 3

(
5m+ 1

m− 2

)]
− 3

2

(
5m− 1

m

)
, (16)

which must also be an integer for a code to exist.
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If C is an extremal self-dual code of length 24m + 8l + 2r with near near minimal
shadow we get by a similar argument as above that

bm−1 = 2−5 (12m+ 1)(56m+ 4)

(2m+ 1)(m− 1)

(
5m− 1

m− 2

)
,

whence the following.

Theorem 19. An extremal self-dual code of length 24m+ 8l+ 2r with near near minimal
shadow does not exist whenever r = 1 and l = 0 and 2−5 (12m+1)(56m+4)

(2m+1)(m−1)

(
5m−1
m−2

)
is not an

integer.

We will also make use of the following lemma, which was originally proved by Ray-
Cahaudhuri and Wilson in [38].

Lemma 20. Let X be a set of cardinality v. For s 6 k 6 v − s let B be a collection
of subsets of X each having cardinality k and having the property that, for B,B′ ∈ B,
B 6= B′, the cardinality of B ∩B′ takes only s distinct values. Then |B| 6

(
v
s

)
.

Remark 21. Let C be a self-dual code of length n = 24m+ 8l+ 2r with m > 2 not having
minimal shadow, let s := wt(S) and denote the set of vectors of S of minimum weight
by Bs. Suppose that 2s − d 6 2. It follows that if u and v are members of Bs, then
wt(u ∩ v) 6 1. If 2s− d = 2 then the members of S of minimum weight can intersect in
either 0 or 1 nonzero coordinate positions. Because of the orthogonality relations among
the cosets of C0 in C⊥0 , i.e. since C1 ⊥ C3 and Ci 6⊥ Ci for i = 1, 3, we have any two
members of Ci intersecting in one nonzero coordinate position for i = 1, 2. We also have
that if u ∈ C1 and v ∈ C3 then wt(u∩ v) = 0. Let Bi be the set of vectors in Ci of weight
s. Then we have B1 and B3 are disjoint. Let mi be the effective length of Bi. Then by
Lemma 20 we have Bs 6 m1 +m3 6 n.

4.2 Application to Self-Dual Codes of Lengths 74, 76, 82, 98, and 100

In [18] several weight enumerators are computed for binary singly even self-dual codes of
length n for 66 6 n 6 100. For each length they give a combination of weight enumerators
for that of a code with minimal, near minimal, and near near minimal shadow. We have
eliminated several of the possibilities by using (12)-(16) either to show the value is not
an integer, or that it does not agree with the value computed in [18]. For n = 74 and
n = 98 we get resp. 5447/3 and 38301/2 as the value bm and so Part 1 of Theorem 18
applies. For n = 76, 82, 100 we use resp. (16), (12), (16) to get values (Table 4) that do
not agree with those given in [18], which were computed using the method introduced by
Conway and Sloane in [14]. We also use the comment following Lemma 20 to narrow the
possible range for the parameter in the near near extremal weight enumerators for cases
n = 82 and 100. These restrictions are summarized in Tables 2 and 3 below.

We now list the possible weight enumerators of extremal and near extremal singly
even self-dual codes of lengths n = 74, 76, 82, 98, and 100.
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Table 2: Summary of restrictions on possible weight enumerator for lengths
74, 76, 82, 98, 100

n Weight Enumerator Eliminated bm Reference

74 Minimal Shadow 5447/3 Part 1 of Theorem 18
76 Minimal Shadow 1050 Equation (16)
82 Near Minimal Shadow 1105 Equation (12)
98 Minimal Shadow 38301/2 Part 1 of Theorem 18
100 Minimal Shadow 14686 Equation (12)

Table 3: Summary of restrictions on possible range for α, β in the near near minimal
shadow case for lengths 82, 100

n New range for α, β Reference

82 0 6 α 6 82 Remark 21
100 0 6 α 6 min{100,− 1

20
β} where − 3265 6 β 6 0 Remark 21

• The possible weight enumerators for self-dual [74, 37, 14] codes are
S1 = −αy9 + (2590 + 14α)y13 + (674584− 91α)y17 + (364α + 44035772)y21 + · · · ,
W1 = 1 + (6364 + 32α)y14 + (100603− 160α)y16 + (32α + 1061678)y18 + · · · ,
(−185 6 α 6 0),

and
S2 = y5 + (−16− α)y9 + (2710 + 14α)y13 + (674024− 91α)y17 + · · · ,
W2 = 1 + (6346 + 320α)y14 + (102651− 160α)y16 + (32α + 1039150)y18 + · · · ,
(−19 6 α 6 −16).

The weight enumerator for the minimal shadow case was eliminated in this paper.
There is no known code for either case.

• The possible weight enumerators for self-dual [76, 38, 14] codes are
S1 = αy10 + (9500− 14α)y14 + (1831600 + 91α)y18 + (105689400− 364α)y22 + · · · ,
W1 = 1 + (4750− 16α)y14 + (79895 + 64α)y16 + (64α + 915800)y18 + · · · ,
(0 6 α 6 296),

and
S2 = y6 + (−16− α)y10 + (9620 + 14α)y14 + (1831040− 91α)y18 + · · · ,
W2 = 1 + (4750 + 16α)y14 + (80919− 64α)y16 + (905560− 64α)y18 + · · · ,
(−296 6 α 6 −16).
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Table 4: Contradictory values of bm for cases n = 76, 82 and 100

n bm computed using above method bm computed using method of [14]

76 1050 2590
82 1105 1505
100 14686 98686

The weight enumerator for the minimal shadow case was eliminated in this paper.
In [1], a code with weight enumerator W1 for α = 0 was constructed by assuming
an automorphism of order 19. It is shown in [16] that there are exactly three
inequivalent self-dual [76, 38, 14] codes having an automorphism of order 19. All of
these have weight enumerator W1 with α = 0.

• The possible weight enumerator for self-dual [82, 41, 16] codes is
S1 = αy9 + (1640− α)y13 + (281424 + 120α)y17 + (−560α + 33442552)y21 + · · · ,
W1 = 1 + (39524 + 128α)y16 + (556985− 896α)y18 + (1536α + 5628480)y20 + · · · ,
(0 6 α 6 82).

The weight enumerator for the near minimal shadow case was eliminated, and the
range for the parameter in the near near minimal shadow case was improved in this
paper. There is no known code with this weight enumerator.

• The possible weight enumerators for self-dual [98, 49, 18] codes are
S1 = αy9 + (−β − 20α)y13 + (190α + 18β + 27930)y17 + · · · ,
W1 = 1 + (70756 + 32β)y18 + (2048α + 1256752− 160β)y20 + · · · ,
(0 6 α 6 min{2, 1

20
β} where 0 6 β 6 2211),

and
S2 = y5 + (−209− α)y13 + (30570 + 18α)y17 + (9101051− 153α)y21 + · · · ,
W2 = 1 + (70756 + 32α)y18 + (1301808− 16α)y20 + (−96α + 15231280)y22 + · · · ,
(−1698 6 α 6 −209).

The weight enumerator for the minimal shadow case was eliminated in this paper.
The range for the parameter in the near near minimal shadow case was improved
in [27]. There is no known code for either case.

• The possible weight enumerators for self-dual [100, 50, 18] codes are
S1 = αy10 + (−β − 20α)y14 + (18β + 104500− 190α)y18 + · · · ,
W1 = 1 + (16β + 52250)y18 + (972180− 64β + 1024α)y20 + · · · ,
(0 6 α 6 min{100,− 1

20
β} where − 3265 6 β 6 0),

the electronic journal of combinatorics 22(4) (2015), #P4.33 18



and
S2 = y6 + (−209− α)y14 + (107140 + 18α)y18 + (26137435− 153α)y22 + · · · ,
W2 = 1 + (52250 + 16α)y18 + (994708− 64α)y20 + (−128α + 12786784)y22 + · · · ,
(−5952 6 α 6 −209).

The weight enumerator for the near minimal shadow case was eliminated, and the
range for the parameter in the near near minimal shadow case was improved in this
paper. There is no known code for either case.

5 Conclusion

This paper demonstrates some results on self-dual codes. We make two contributions
to this topic. The first one is the decomposition of binary self-dual [4p + f, 2p + f

2
, d]

(f = 0, 2, 4) codes with dihedral automorphism group D2p, where p is an odd prime. These
results are applied to classify self-dual [78, 39, 14] codes with dihedral automorphism group
D38 and we obtain some self-dual codes with new weight enumerators. Furthermore,
we also show that there are at least 141 inequivalent self-dual [116, 58, 18] codes with
dihedral automorphism group D58. Up to equivalence, most of these codes are new since
the orders of the automorphism groups of all but one known self-dual [116, 58, 18] code
are divisible by 23. The second one is the restriction on the extremal self-dual codes with
near minimal shadow, and near extremal self-dual codes with minimal, near minimal, and
near near minimal shadow. And using these results, we eliminate some of the possible
weight enumerators of self-dual codes with lengths 74, 76, 82, 98 and 100 determined in
[14] and [18]. Self-dual codes with these weight enumerators have been constructed only
for the length 76 [16], [1]. Constructing the self-dual codes with these weight enumerators
of other lengths seems to be a challenging problem.

Table 5: Self-dual [116, 58, 18] codes with dihedral auto-
morphism group D58

Code u1 u2 u3 v1 v2 s A18 I36 ]Aut
C1 9 153 144 882 12183 (2, 3, 4) 2146 178205 58
C2 37 8 29 882 12183 I 2378 209989 58
C3 14 259 273 259 15951 (2, 3, 4) 2610 260391 58
C4 21 34 55 259 15951 (2, 3, 4) 2784 287912 58
C5 3 200 203 259 15951 (1, 2, 3, 4) 2842 301397 58
C6 116 85 31 259 15951 (1, 2, 3, 4) 2842 307081 58
C7 13 189 176 882 12183 (2, 3, 4) 2842 300556 58
C8 14 132 118 882 12183 I 2842 305196 58
C9 28 134 106 259 15951 (2, 3, 4) 2842 299396 58
C10 2 138 140 882 12183 (1, 2, 3, 4) 2900 313287 58
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Table 5 Continued
Code u1 u2 u3 v1 v2 s A18 I36 ]Aut

C11 19 99 118 882 12183 (1, 2, 3, 4) 2900 318565 58
C12 19 99 118 882 12183 (2, 3, 4) 2900 310880 58
C13 13 145 158 259 15951 (1, 2, 3, 4) 2900 306066 58
C14 37 33 4 882 12183 I 2900 312417 58
C15 1 156 155 882 12183 (2, 3, 4) 2900 315549 58
C16 29 143 172 882 12183 (1, 2, 3, 4) 2958 325119 58
C17 23 169 146 882 12183 (2, 3, 4) 2958 327410 58
C18 17 39 56 882 12183 (2, 3, 4) 3016 343360 58
C19 272 245 27 5469 9024 (1, 2, 3, 4) 3016 342171 58
C20 44 39 5 259 15951 I 3016 340547 58
C21 5 234 229 882 12183 (2, 3, 4) 3016 341620 58
C22 21 120 99 882 12183 (2, 3, 4) 3016 337995 58
C23 5 150 155 5469 9024 (1, 2, 3, 4) 3074 342983 58
C24 29 200 229 882 12183 (2, 3, 4) 3074 358933 58
C25 14 96 110 259 15951 (2, 3, 4) 3074 348174 58
C26 97 67 30 882 12183 I 3074 356903 58
C27 10 167 157 5469 9024 I 3074 348377 58
C28 5 279 284 882 12183 (2, 3, 4) 3132 361717 58
C29 10 83 93 5469 9024 (2, 3, 4) 3132 372186 58
C30 39 317 278 882 12183 (2, 3, 4) 3132 368793 58
C31 31 25 6 882 12183 I 3132 359716 58
C32 16 20 4 882 12183 (2, 3, 4) 3132 367169 58
C33 2 265 267 259 15951 (2, 3, 4) 3190 381495 58
C34 27 83 110 259 15951 (1, 2, 3, 4) 3190 371809 58
C35 35 14 49 259 15951 (1, 2, 3, 4) 3190 374593 58
C36 36 134 170 259 15951 (2, 3, 4) 3190 381031 58
C37 198 185 13 5469 9024 I 3190 382916 58
C38 44 29 15 882 12183 I 3190 373375 58
C39 136 105 31 259 15951 (1, 2, 3, 4) 3190 382568 58
C40 9 189 180 5469 9024 I 3190 378276 58
C41 10 167 157 5469 9024 (2, 3, 4) 3190 382104 58
C42 12 259 247 5469 9024 (2, 3, 4) 3190 391123 58
C43 22 166 188 5469 9024 (2, 3, 4) 3248 388455 58
C44 42 16 58 882 12183 (2, 3, 4) 3248 386280 58
C45 3 200 203 259 15951 (2, 3, 4) 3248 396778 58
C46 201 180 21 259 15951 (1, 2, 3, 4) 3248 389847 58
C47 12 259 247 5469 9024 I 3248 391645 58
C48 13 189 176 882 12183 I 3248 392022 58
C49 4 172 176 5469 9024 (1, 2, 3, 4) 3306 406522 58
C50 40 217 257 5469 9024 (1, 2, 3, 4) 3306 408958 58
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Table 5 Continued
Code u1 u2 u3 v1 v2 s A18 I36 ]Aut

C51 40 217 257 5469 9024 (2, 3, 4) 3306 408697 58
C52 44 29 15 882 12183 (1, 2, 3, 4) 3306 398750 58
C53 9 153 144 882 12183 I 3306 412119 58
C54 21 120 99 882 12183 I 3306 412554 58
C55 23 169 146 882 12183 I 3306 404434 58
C56 5 279 284 882 12183 I 3335 412815 58
C57 10 83 93 5469 9024 (1, 2, 3, 4) 3364 417890 58
C58 22 166 188 5469 9024 (1, 2, 3, 4) 3364 413830 58
C59 29 200 229 882 12183 (1, 2, 3, 4) 3364 417165 58
C60 208 198 10 5469 9024 I 3364 428098 58
C61 272 245 27 5469 9024 I 3364 425778 58
C62 5 234 229 882 12183 I 3364 423777 58
C63 2 138 140 882 12183 (2, 3, 4) 3422 435812 58
C64 6 172 278 882 12183 (1, 2, 3, 4) 3422 428939 58
C65 39 272 311 5469 9024 (2, 3, 4) 3422 442511 58
C66 42 55 97 882 12183 (1, 2, 3, 4) 3422 438045 58
C67 125 122 3 5469 9024 I 3422 442395 58
C68 17 49 66 5469 9024 (2, 3, 4) 3480 449007 58
C69 42 55 97 882 12183 (2, 3, 4) 3480 452284 58
C70 2 265 267 259 15951 (1, 2, 3, 4) 3480 445556 58
C71 27 83 110 259 15951 (2, 3, 4) 3480 458200 58
C72 184 165 19 5469 9024 I 3480 454778 58
C73 140 118 22 5469 9024 I 3480 447992 58
C74 37 8 29 882 12183 (1, 2, 3, 4) 3480 447325 58
C75 5 150 155 5469 9024 (2, 3, 4) 3538 470641 58
C76 34 227 263 882 12183 (2, 3, 4) 3538 464638 58
C77 44 237 281 882 12183 (1, 2, 3, 4) 3538 464928 58
C78 14 132 118 882 12183 (2, 3, 4) 3538 463594 58
C79 210 190 20 882 12183 I 3596 484010 58
C80 91 63 28 259 15951 (1, 2, 3, 4) 3596 475455 58
C81 9 189 180 5469 9024 (2, 3, 4) 3596 486214 58
C82 1 156 155 882 12183 I 3596 478645 58
C83 39 272 311 5469 9024 (1, 2, 3, 4) 3654 489346 58
C84 34 227 263 882 12183 (1, 2, 3, 4) 3654 495581 58
C85 44 237 281 882 12183 (2, 3, 4) 3654 494943 58
C86 14 259 273 259 15951 (1, 2, 3, 4) 3654 495900 58
C87 125 122 3 5469 9024 (1, 2, 3, 4) 3654 509820 58
C88 184 165 19 5469 9024 (1, 2, 3, 4) 3654 497089 58
C89 210 190 20 882 12183 (2, 3, 4) 3683 516171 58
C90 21 34 55 259 15951 I 3712 499264 58
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Table 5 Continued
Code u1 u2 u3 v1 v2 s A18 I36 ]Aut

C91 35 14 49 259 15951 (2, 3, 4) 3712 509095 58
C92 140 118 22 5469 9024 (1, 2, 3, 4) 3712 509588 58
C93 31 25 6 882 12183 (1, 2, 3, 4) 3712 519970 58
C94 201 180 21 259 15951 I 3712 516084 58
C95 136 105 31 259 15951 I 3712 519390 58
C96 39 278 317 882 12183 (1, 2, 3, 4) 3770 526727 58
C97 42 16 58 882 12183 (1, 2, 3, 4) 3770 528757 58
C98 208 198 10 5469 9024 (2, 3, 4) 3770 527017 58
C99 15 2 13 882 12183 I 3770 536500 58
C100 4 172 176 5469 9024 (2, 3, 4) 3828 546853 58
C101 116 85 31 259 15951 I 3828 539255 58
C102 6 272 278 882 12183 I 3915 565529 58
C103 14 96 110 259 15951 I 3944 572228 58
C104 208 198 10 5469 9024 (1, 2, 3, 4) 3944 581392 58
C105 17 49 66 5469 9024 (1, 2, 3, 4) 4002 588816 58
C106 184 165 19 5469 9024 (2, 3, 4) 4002 598444 58
C107 16 20 4 882 12183 I 4002 605346 58
C108 6 272 278 882 12183 (2, 3, 4) 4060 605201 58
C109 17 39 56 882 12183 (1, 2, 3, 4) 4060 616279 58
C110 14 96 110 259 15951 (1, 2, 3, 4) 4060 616047 58
C111 15 2 13 882 12183 (1, 2, 3, 4) 4060 606941 58
C112 36 134 170 259 15951 (1, 2, 3, 4) 4118 635274 58
C113 125 122 3 5469 9024 (2, 3, 4) 4147 632026 58
C114 39 278 317 882 12183 I 4176 645511 58
C115 299 273 26 5469 9024 I 4176 636724 58
C116 37 33 4 882 12183 (1, 2, 3, 4) 4176 647309 58
C117 34 227 263 882 12183 I 4205 658155 58
C118 13 145 158 259 15951 (2, 3, 4) 4234 686082 58
C119 97 67 30 882 12183 (1, 2, 3, 4) 4234 661722 58
C120 44 39 5 259 15951 (1, 2, 3, 4) 4234 672278 58
C121 4 172 176 5469 9024 I 4292 684951 58
C122 42 16 58 882 12183 I 4292 678803 58
C123 15 2 13 882 12183 (2, 3, 4) 4292 691592 58
C124 210 190 20 882 12183 (1, 2, 3, 4) 4292 677585 58
C125 35 14 49 259 15951 I 4321 692114 58
C126 29 143 172 882 12183 (2, 3, 4) 4350 715169 58
C127 198 185 13 5469 9024 (1, 2, 3, 4) 4408 730046 58
C128 13 145 158 259 15951 I 4437 725377 58
C129 198 185 13 5469 9024 (2, 3, 4) 4437 736078 58
C130 31 25 6 882 12183 (2, 3, 4) 4553 764933 58
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Table 5 Continued
Code u1 u2 u3 v1 v2 s A18 I36 ]Aut

C131 12 259 247 5469 9024 (1, 2, 3, 4) 4553 784682 58
C132 28 134 106 259 15951 I 4582 778360 58
C133 5 279 284 882 12183 (1, 2, 3, 4) 4698 817713 58
C134 29 200 229 882 12183 I 4698 827718 58
C135 116 85 31 259 15951 (2, 3, 4) 4698 818554 58
C136 36 134 170 259 15951 I 4756 838100 58
C137 299 273 26 5469 9024 (2, 3, 4) 4785 857124 58
C138 21 34 55 259 15951 (1, 2, 3, 4) 4872 869536 58
C139 37 33 4 882 12183 (2, 3, 4) 4872 879715 58
C140 3 200 203 259 15951 I 5075 947343 58
C141 27 83 110 259 15951 I 5220 1005807 58
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